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ABSTRACT 

BACKGROUND AND PURPOSE: Privacy concerns, such as identifiable facial features within brain scans, have hindered the availability 
of pediatric neuroimaging datasets for research. Consequently, pediatric neuroscience research lags adult counterparts, particularly 
in rare disease and under-represented populations. The removal of face regions (image defacing) can mitigate this, however existing 
defacing tools often fail with pediatric cases and diverse image types, leaving a critical gap in data accessibility. Given recent NIH 
data sharing mandates, novel solutions are a critical need. 

MATERIALS AND METHODS: To develop an AI-powered tool for automatic defacing of pediatric brain MRIs, deep learning 
methodologies (nnU-Net) were employed using a large, diverse multi-institutional dataset of clinical radiology images. This included 
multi-parametric MRIs (T1w, T1w-contrast enhanced, T2w, T2w-FLAIR) with 976 total images from 208 brain tumor patients 
(Children’s Brain Tumor Network, CBTN) and 36 clinical control patients (Scans with Limited Imaging Pathology, SLIP) ranging in age 
from 7 days to 21 years old. 

RESULTS: Face and ear removal accuracy for withheld testing data was the primary measure of model performance. Potential 
influences of defacing on downstream research usage were evaluated with standard image processing and AI-based pipelines. Group-
level statistical trends were compared between original (non-defaced) and defaced images. Across image types, the model had high 
accuracy for removing face regions (mean accuracy, 98%; N=98 subjects/392 images), with lower performance for removal of ears 
(73%). Analysis of global and regional brain measures (SLIP cohort) showed minimal differences between original and defaced outputs 
(mean rS=0.93, all p < 0.0001). AI-generated whole brain and tumor volumes (CBTN cohort) and temporalis muscle metrics (volume, 
cross-sectional area, centile scores; SLIP cohort) were not significantly affected by image defacing (all rS>0.9, p<0.0001). 

CONCLUSIONS: The defacing model demonstrates efficacy in removing facial regions across multiple MRI types and exhibits minimal 
impact on downstream research usage. A software package with the trained model is freely provided for wider use and further 
development (pediatric-auto-defacer; https://github.com/d3b-center/pediatric-auto-defacer-public). By offering a solution 
tailored to pediatric cases and multiple MRI sequences, this defacing tool will expedite research efforts and promote broader 
adoption of data sharing practices within the neuroscience community. 

ABBREVIATIONS: AI = artificial intelligence; CBTN = Children’s Brain Tumor Network; CSA = cross-sectional area; SLIP = Scans with 
Limited Imaging Pathology; TMT = temporalis muscle thickness; NIH = National Institute of Health; LH = left hemisphere; RH = right 
hemisphere. 
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 SUMMARY SECTION 

PREVIOUS LITERATURE: Scientific data sharing promotes reproducibility of research and translation of findings into clinical care. 
Several centralized repositories have enabled broad sharing of large-scale imaging datasets; however, pediatric datasets have lagged 
their adult counterparts, and neuro-imaging data is particularly challenging to share due to privacy concerns, as brain scans can 
reveal identifiable features. Existing “defacing” tools to remove face regions are primarily designed for adult scans, and often 
struggle with pediatric images and do not generalize to a variety of sequence types. This work introduces the first tool (pediatric-
auto-defacer) specifically for removing facial features from multi-parametric pediatric MRIs, addressing a critical gap in data sharing 
for neuroscience research. 

KEY FINDINGS: A model was developed to automatically remove facial regions from brain MRIs for anonymization purposes. It 
performs well on several sequence types across various acquisition parameters, and does not over-remove brain tissue. Based on 
testing, defacing does not affect downstream analytical pipelines (e.g., image pre-processing or measured group-level trends). 

KNOWLEDGE ADVANCEMENT: To facilitate broad sharing of pediatric neuro-imaging datasets, a robust, automatic de-identification 
tool is provided to ease the burden on research teams to prepare and release imaging data while protecting patient privacy. This 
will accelerate neuroscience research and clinical trials in pediatrics and ultimately empower scientific discoveries. 

 

INTRODUCTION 

Data sharing is a critical component of research endeavors as it lends to scientific transparency and data reuse. For the study of rare 
diseases, data sharing is crucial for gathering a meaningful group of samples to enable statistical comparisons in the given patient 
population. Due to calls to action across disciplines, data sharing plans have recently become a mandate for NIH (National Institute of 
Health)-funded projects and deposit of data files to centralized repositories is now a requirement by many scientific journals for publication. 
Such efforts will facilitate the reproducibility of research studies and consequently their translation into real-world applications such as 
clinical care contexts, as well as bolster the inclusion of historically under-represented populations, which can mitigate bias in developed 
models and support fair AI in healthcare1. 

In alignment with FAIR2 principles, several imaging data repositories have been established such as the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI)3 and the National Cancer Institute’s The Cancer Imaging Archive (TCIA)4 and Imaging Data Commons 
(IDC), which provide effective data discovery and accessibility. While several large-scale, multi-institutional imaging datasets exist, such 
as the NLST for lung cancer (chest CTs from over 26,000 patients)5 and the Breast Cancer Screening Digital Breast Tomosynthesis (breast 
mammograms from 5,060 patients)6, comparable radiology datasets in neuroscience fields have lagged their counterparts, primarily due 
to greater difficulty of removing identifying information from brain (head and neck) scans. Brain images can be inherently identifiable due 
to the presence of an individual’s face, and their release can jeopardize patient privacy. Studies have shown brain MRIs can be used to 
identify subjects by matching to their photograph7,8, even after face regions have been blurred9. “Defacing”, or the removal of face regions 
in an image, is one way to mitigate this issue, and several defacing software tools for structural brain MRIs have been developed (e.g., 
mri_deface10, pydeface11, fsl_deface12 and others13,14), some of which have less impact on downstream processing than others15,16. That 
said, existing tools do not typically perform well on pediatric cases17, particularly in young children and infants, likely due to differences 
in brain and face anatomy across developmental stages. For example, one study found that FSL’s defacing removed brain tissue in the 
majority of children (ages 8-11) and in some young adult (ages 19-31) cases, and had worse performance for eyes and mouth removal 
compared to adults18. FreeSurfer had better performance for face removal without impacting brain tissue in the same cases, however it was 
more invasive in removing intraorbital and brain stem structures. Many tools rely on alignment to standardized face or brain atlases created 
with adult MRIs, and therefore fail to properly deface pediatric scans. Additionally, most are developed for T1-weighted (T1w) sequences, 
and there remains a need for accessible tools for defacing additional sequence types collected under standard clinical imaging protocols 
(e.g., T2-weighted (T2w)).  

Pediatric data sharing has been significantly hindered by regulatory barriers related to privacy concerns, creating a critical unmet need 
for public imaging datasets. Herein, we build a tool to enable automatic removal of face regions from multiple types of pediatric MRIs, 
with the goal of facilitating data sharing across neuroscience fields. This is, to the best of our knowledge, the first available pediatric 
defacing tool. To address the need for a tool that can operate across multi-parametric MRIs, we use a large, multi-institutional clinical 
radiology dataset (Children’s Brain Tumor Network; CBTN19) with deep learning AI methods to develop a model for minimally invasive 
defacing. Our model was trained and validated with 208 pediatric brain tumor subjects (832 total images) and 36 clinical control subjects 
(144 images from the Scans with Limited Imaging Pathology (SLIP) cohort20), with four image sequences included per subject (T1w, T1w 
contrast-enhanced (T1w-CE), T2w, and T2w Fluid Attenuated Inversion Recovery (FLAIR) sequences). Images were acquired through 
clinical protocols, and thus capture real-world heterogeneity in scanner and image acquisition properties. 

MATERIALS AND METHODS 
 
Patient cohorts 

Retrospective data was collected from the CBTN19; a large-scale, multi-institutional repository of longitudinal clinical, imaging, genomic, 
and other paired data21. 208 subjects were selected based on imaging availability and inclusion of a range of ages at the time of imaging 
(median age 8; min=0.35, max=21.71 years) and cancer histologies (Figures 1, S1, & S2; Tables 1 & S1). MRI scans were unprocessed 
images from treatment-naïve clinical exams (T1w, T1w-CE, T2w, and T2w-FLAIR). All subjects had histologically confirmed pediatric 
brain tumors.  
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To test generalizability to non-brain tumor patients (clinical control group), a cohort of 40 subjects with available images from the 
SLIP20 dataset were selected to match the general distributions of age and sex of the CBTN cohort. 36 subjects had sufficient images and 
were included in the main analyses. 
 
Ground truth creation with semi-automated face mask segmentation 

Preliminary face masks were generated for each image using the MiDeface22 algorithm and then were manually edited. 507 of the 976 
images (52%) were found to be inaccurately defaced and were manually revised using the ITK-SNAP23 software (by authors C.S., E.G.; 
Supp. Methods). The criteria for an accurate face mask was that any brain region or temporalis muscle (given potential implications as a 
biomarker24) were not affected and identifiable facial features, including eyes, nose, mouth, and ears were fully included. Common 
corrections included restoring brain voxels, particularly in the right prefrontal cortex, and properly realigning the face mask to the subject's 
face. 

Table 1: Patient characteristics in the studied cohorts. 
Patient Characteristics Training/Valid

ation 
CBTN  

Internal 
Testing 
CBTN 

External 
Testing 
CBTN 

Clinical Control 
Testing 
SLIP 

Multicenter Yes No Yes No 
Total Patients 146 37 25 36 
Total Images 584 148 100 144 
Age at imaging, range (years) 0.35 - 19.7 0.84 - 21.71 1.08 – 17.69 0.23 – 17.33 
Age at imaging, median (years) 7.8 11.13 5.94 7.16 
Legal Sex (No. (%)) 

 
    

Male 79 (54%) 18 (49%) 14 (56%) 19 (53%) 
Female 66 (45%) 19 (51%) 11 (44%) 17 (47%) 
Unknown 1 (1%)    

Race (No. (%)) 
White 
Black or African American 
Asian 
Native Hawaiian or Other Pacific Islander 
American Indian or Alaska Native 
More than one race 
Other/Unavailable/Not Reported 

Ethnicity (No. (%)) 
Not Hispanic or Latino 
Hispanic or Latino 
Unavailable 

 
100 (68%) 
20 (14%) 
2 (1%) 
1 (1%) 
1 (1%) 
1 (1%) 
21 (14%) 
 
130 (89%) 
8 (5%) 
8 (5%) 

 
24 (65%) 
4 (11%) 
2 (5%) 
 
 
 
7 (19%) 
 
30 (81%) 
5 (14%) 
2 (5%) 

 
16 (64%) 
4 (16%) 
 
 
 
 
5 (20%) 
 
22 (88%) 
2 (8%) 
1 (4%) 

 
25 (69%) 
6 (17%) 
1 (3%) 
 
 
 
4 (11%) 
 
9 (25%) 
3 (8%) 
24 (67%) 

Histology (No. (%))       
Low-Grade Glioma/Astrocytoma 87 (60%) 22 (59%) 21 (84%) N/A 
Medulloblastoma 40 (27%) 8 (22%)   
High-Grade Glioma/Astrocytoma 9 (6%) 3 (8%) 4 (16%)  
High-Grade Glioma/DIPG 9 (6%) 3 (8%)   
Ganglioglioma 
Unknown/Not Available 

1 (1%) 
 

 
1 (3%) 

  

Scanner Magnetic Field Strength (T) (No. (%)) 
3 
1.5 

Scanner Manufacturer (No. (%)) 
Siemens 
GE 
Philips 
Toshiba 

  
95 (65%) 
51 (35%) 
 
134 (92%) 
10 (7%) 
1 (1%) 
1 (1%) 

  
26 (70%) 
11 (30%) 
 
33 (89%) 
4 (11%) 

 
9 (36%) 
16 (64%) 
 
16 (64%) 
9 (36%) 
 

 
36 (100%) 
 
 
36 (100%) 

 
AI deep learning model development 

CBTN images were stratified into training/validation and testing sets (80-20 split) based on demographics (age, sex, race) and histology 
(Table 1). nnU-Net25 v1 (https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1; 3D full resolution; Supp. Methods) was used with 5-fold 
cross-validation, initial learning rate 0.01, stochastic gradient descent (SGD) with Nesterov momentum (μ=0.99), and number of 
epochs=1000 x 250 minibatches. Each unprocessed T1w/T1w-CE/T2w/FLAIR sequence was treated as a separate input. The set of 4 
images for each subject could be used for either training or validation but not both (i.e., images from a single subject could not be split 
into training and validation within a given fold). Given a large percentage of the CBTN scans were from CHOP, we additionally split the 
testing cohort into “internal” (CHOP) and “external” (4 separate institutions) testing datasets. 
 
Defacing accuracy 

Model performance was evaluated with (previously unseen) images in the testing cohorts. Traditional performance scores such as the 
Sørensen-Dice score (spatial overlap between model predicted mask and ground truth mask), sensitivity (percent of pixels correctly 
identified by the model), and 95% Hausdorff distance metrics (distances between nearest voxels in the predicted and ground truth masks, 
of which 95% of voxels fell within) were generated. 
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As an additional assessment of defacing accuracy, two raters (authors Ne.K. and Na.K.) evaluated model performance in the testing 
cohorts. For each image, they rated coverage of the eyes and ears (separately for left and right), mouth, and nose with either: 1 (fully 
covered), 0.75 (approximately 75% masked), 0.5 (50% masked), 0.25 (25% masked), or 0 (not masked at all); and whether any brain tissue 
was removed (Yes/No). After initial independent review, images with disagreement were reviewed until a consensus was reached. 
 
Impact of defacing on downstream analytics 

Given the overarching aim to facilitate data sharing of brain MRIs for research purposes, it is essential any modification of the images by 
defacing minimally impacts downstream analysis. Several methods were used to assess this using standard image processing steps, in both 
the brain tumor (CBTN) and non-brain tumor (SLIP) groups separately. 

Pre-processing and application of pre-trained AI models: For each subject in the CBTN testing cohorts, T1w, T2w, and FLAIR 
sequence images were co-registered with their corresponding T1w-CE sequence and resampled to an isotropic resolution of 1 mm3 based 
on the anatomical SRI24 atlas26 using the Greedy algorithm (https://github.com/pyushkevich/greedy)27 in the Cancer Imaging Phenomics 
Toolkit open-source software v.1.8.1 (CaPTk, https://www.cbica.upenn.edu/captk)28. Accuracy of co-registration was confirmed by visual 
assessment of the 4 images. 

Pre-processed data for each subject was then input into existing pretrained AI models for automatic brain tissue extraction and tumor 
subregion segmentation (https://github.com/d3b-center/peds-brain-seg-pipeline-public)29,30. This was performed once using the original 
images (non-defaced), and once using the defaced images. Resulting brain and tumor segmentation masks were compared between these 
conditions. 

Cortical and subcortical volumetric measures: For 31 subjects in the SLIP testing cohort, their T1w scan was input to FreeSurfer’s 
reconstruction pipeline (recon-all; https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all)31 to generate cortical and subcortical structure 
parcellations (5 subjects were excluded due to insufficient T1w image quality). This was performed once with original images and once 
with defaced images. Resulting volumetric measurements based on the parcellations were compared between these conditions. 

We additionally used an existing AI-powered pipeline to estimate the thickness (TMT) and cross-sectional area (CSA) of the temporalis 
muscle (https://doi.org/10.5281/zenodo.8428986)24 for 28 SLIP subjects (5 subjects excluded for insufficient quality T1w images, 3 
subjects excluded for being younger than 3 years of age as required by the tool). 
 
Please see Supplemental Materials for a description of all statistical comparisons and a CLAIM checklist to indicate alignment with the 
proposed methodological guidelines recommended for AI in medical imaging32–34. 
 

 

FIG 1. Diagram of overall study workflow. Data cohorts included brain tumor (CBTN) and non-brain tumor control (SLIP). Initial 
ground truth face masks were created with MiDeface and manually edited. A 3D deep learning model was trained with the nnUNet 
framework, using a single image as input, and tested on withheld data. The impact of defacing on downstream image processing 
and AI-based pipelines was evaluated with CBTN and SLIP testing data. The trained model is provided in an open-source software 
container on GitHub. 
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RESULTS 
 
Defacing Accuracy 

Across images, dice scores indicated decent spatial overlap between manual ground truth and model-predicted face masks in the internal 
(Mean=0.78, Median=0.8, Standard Error of the Mean (SEM)=0.008), external (Mean=0.75, Median=0.78, SEM=0.02), and clinical 
control (Mean=0.75, Median=0.77, SEM=0.01) groups (Fig. 2). Repeated-measures ANOVAs confirmed there was no effect of image 
type (T1w/T1w-CE/T2w/FLAIR) on dice scores in the internal (F(3,108)=0.38, p=0.77) and external (F(3,72)=1.8, p=0.16) cohorts, 
however there was a significant effect in the clinical control group (F(3,105)=6.14, p=0.007) with better model performance for T2w and 
FLAIR compared to T1w and T1w-CE (Table S2). Pearson correlations showed no effect of age on dice scores averaged across image 
types (internal: r(35)=0.19, p=0.25; external: r(23)=0.29, p=0.17; control: r(34)=0.28, p=0.095; Fig. S3). One-way ANOVAs indicated no 
effect of sex (internal: F(1,35)=2.0, p=0.17; external: F(1,23)=0.28, p=0.6; control: F(1,34)=3.17, p=0.08) or race (internal: F(3,33)=0.18, 
p=0.911; external: F(2,22)=0.61, p=0.551; control: F(2,32)=1.07, p=0.356) on dice scores, and no effect of histopathological diagnosis 
(internal: F(4, 32) = 0.442, p = 0.777; external: F(1, 23) = 0.377, p = 0.545) or general tumor location (internal: F(4,32) = 0.837, p = 0.512; 
external: F(3,21) = 0.1, p = 0.959) in the CBTN testing cohorts. 

 

 

FIG 2. Model performance results. Plots show aggregate metrics across image types for each testing cohort (see Table S1 for 
results for image type separately); error bars represent standard error of the mean. (A) Standard metrics for segmentation 
evaluation including dice similarity, sensitivity, and 95% Hausdorff distance; (B) Average performance ratings based on visual 
inspection by two raters (1=fully covered, 0.75=approximately 75% masked, 0.5=50% masked, 0.25=25% masked, 0=not masked at 
all). 

 

On further review, it was determined that the spatial metrics were not an ideal measure of defacing performance due to variability in 
extension of the face mask into the air in front of the face in the ground truth segmentations (Figures 3 & S4). To more accurately assess 
model performance, two raters (Ne.K., Na.K.) reviewed each defaced image in the internal, external, and clinical control testing groups. 
After applying the model-predicted face masks to the corresponding images, the raters were instructed to score the model’s accuracy in 
masking (coverage of) the left eye, right eye, nose, mouth, left ear, and right ear separately (1=fully masked, 0.75/0.5/0.25=% partially 
masked, 0=not masked) for each image separately. 

Across facial features, the average rated accuracy of model defacing was high for each testing set (Means: internal=0.93, external=0.86, 
control=0.89). Composite scores combining the eyes, mouth, and nose ratings indicated high masking performance for these features (Fig. 
2, Table S2; internal=0.97, external=0.98, control=0.98), while performance for masking the ears was lower (internal=0.85, external=0.62, 
control=0.72). For every image, both raters reported no brain voxels were impacted by defacing in the internal, external, or clinical control 
groups. Repeated-measures ANOVAs showed a significant effect of image type on defacing performance in the clinical control group 
(F(3,75)=10.8, p<0.0001), with higher average ratings for T1w (M=0.91) and T1w-CE (M=0.91) compared to T2w (M=0.89) and FLAIR 
(M=0.86); but no effect of image type in the internal (F(3,108)=1.17, p=0.33) or external (F(3,72)=0.32, p=0.81) groups. Average rating 
across subjects and image types for each feature is displayed in Figure S5. 
 
Assessing impact of defacing on downstream analytics 
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Pre-processing and application of pre-trained AI models: Defaced and original (non-defaced) images underwent pre-processing 
and were input to pretrained AI tools to assess any impact of defacing on standard downstream analysis using all four image sequences 
(T1w/T1w-CE/T2w/FLAIR). Visual inspection showed equivalent co-registration performance between defaced and original images. For 
the pediatric brain tumor test datasets, the volumes of AI-generated brain masks were equivalent between defaced and non-defaced images 
(internal: rS(35) > 0.99, p < 0.0001; external: rS(23) > 0.99, p < 0.0001; Fig. 4 upper and middle). AI-generated tumor segmentations were 
also unaffected by defacing, indicated by equivalent volumes of contrast-enhancing tumor, non-enhancing tumor, cystic, and edema 
subregions (internal: all subregions rS(35) > 0.99, p < 0.0001; external: all subregions rS(23) > 0.99, p < 0.0001; Fig. 4; Table S3).  
 
 

 
FIG 3. Representative example images of model predicted versus manual ground truth segmentation masks. Subjects shown 
with high (left box; T1w-CE sequence) and low (right box; FLAIR sequence) dice similarity scores between the model predicted 
(upper row) and manual ground truth (lower row) face masks. This illustrates how dice score, although a common metric for such 
segmentation tasks, was not an accurate measure of model performance in the present study, as ground truth masks were variable 
in their extension into space in front of the face (particularly due to “MiDeface” lettering imposed by the MiDeface Freesurfer 
tool that was used to generate initial face masks). 



 7 
 

 
FIG 4. Testing the impact of defacing on AI-generated volumetrics. Each point represents one subject; the red line indicates a 
linear trend. Upper/middle: Comparison of tumor subregion volumes between defaced (x-axis) and original (y-axis) images in 
pediatric brain tumor subjects. There was very high agreement between brain and tumor segmentation volumes. Lower: 
Comparison of estimated temporal muscle thickness (TMT), area (CSA), and TMT centile scores between defaced (x-axis) and 
original (y-axis) T1w images from the clinical control group (point colors indicate age). Correlations indicated very high agreement 
between TM thickness, cross-sectional area, and resulting TMT centile scores. 
 

Cortical and subcortical volumetric measures: For 31 subjects in the clinical control (SLIP) cohort, we further investigated any 
impact of defacing on derived brain measures from T1w images using a standard anatomical reconstruction pipeline (FreeSurfer recon-
all). There was very high agreement between estimated global and regional measures, with all comparisons between original and defaced 
images being positively significant (mean rS(29)=0.93, all p<0.0001; Table S4; Fig. S6). Correlations were above 0.9 for 48 out of 58 
measures. Regions with the lowest agreement were the left and right cerebellum white matter (left: rS(29)=0.71, p<0.0001; right: 
rS(29)=0.69, p<0.0001). 9 global measurements (cortex, cerebral white matter, subcortical gray matter, total gray matter, supratentorial, 
brain segmentation, CSF, and total intracranial volumes) were equivalent between original and defaced (rS(29)>0.86). Paired t-tests 
indicated no significant differences between original and defaced brain measures (Table S4; Fig. S6), with the exception of the right vessel 
(original M=11.3, SEM=1.38; defaced M=14.7, SEM=2.19; t(30)=-2.32, p=0.03) and the right hippocampus (original M=3940.8, 
SEM=101; defaced M=3972.8, SEM=101; t(30)=-2.36, p=0.03), which were estimated to be slightly larger on average in the defaced 
compared to original images. Overall, these results indicate defacing had minimal impact on cortical and subcortical volumetric 
assessments using a standard processing pipeline, which aligns with previous report of minimal effects of defacing tools on global 
FreeSurfer measurements17. 

To examine the impact of defacing on regional measurements in close proximity to the face, we extracted temporalis muscle thickness 
(TMT; mm) and cross-sectional area (CSA) measurements (SLIP cohort ages > 3 years; N=28) using an existing AI-powered pipeline24 
with T1w images. Notably, TM scores have been implicated as a predictive marker for sarcopenia across patient populations35–38. Spearman 
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correlations showed high agreement of estimated TMT (rS(26)=0.96, all p<0.0001) and CSA (LH: rS(26)=0.96, p<0.0001; RH: rS(26)=0.97, 
p<0.0001; Fig. 4 lower) between defaced and original images. Paired t-tests indicated no difference in TMT volumes between original and 
defaced images (t(27)=-1.8, p=0.08), but a significant difference in CSA (LH: t(27)=-3.74, p<0.0001; RH: t(27)=-4.79, p=0.0009) with 
lower surface area estimates for the defaced (LH: M=306.2, SEM=30; RH: M=314.7, SEM=33) compared to original (LH: M=339.9, 
SEM=35; RH: M=350.5, SEM=37) images. Resulting centile scores based on TMT, age, and sex (compared with TMT distributions 
estimated from large-scale datasets24) were not significantly affected by defacing (rS(26)= 0.9, p<0.0001; t(27)=-0.97, p=0.34). 

DISCUSSION 

Data sharing of MRIs is crucial to transparent and reproducible research, particularly in the era of predictive AI that requires ample volumes 
of representative data. Widely available pediatric imaging datasets are needed to accelerate discoveries in neuroscience, particularly in 
rare disease contexts. To this end, we aim to enable MRI data sharing through the development of an open-source de-identification tool 
for the automatic removal of identifiable facial features. A deep learning model for face masking was trained using a large, multi-
institutional dataset of clinically acquired, multi-parametric MRIs (Children’s Brain Tumor Network). 

The trained model had strong performance removing the face (eyes, nose, mouth) in an unseen dataset, with adequate, though lower, 
performance on ear removal. This is potentially due to a lack of presence of ears in some images in the training dataset (limited field of 
view). Notably, although the model was trained on data from brain tumor patients, it could generalize to a separate dataset of clinically 
matched controls indicating its potential use across anatomically normal and disease-impacted cohorts. To enable wider usage by the 
community, the trained model is publicly provided as an open-source software package, and we encourage further model development to 
extend the model to additional disease and healthy populations (see potential clinical limitations in Supp. Results). 

Critically, image alteration by defacing should not impact usage in intended research purposes. To ensure this, we compared the outputs 
of standard processing pipelines between defaced and original (non-defaced) images. Statistical trends for AI-estimated whole brain and 
tumor volumes (brain tumor group), in addition to derived brain region volumes, global brain metrics, and AI-generated temporalis muscle 
measurements (control group), were unaffected by defacing. Most estimated measures were equivalent between defaced and original 
images, and any resulting measurement differences did not impact overall patterns at a group-level. Thus, there was minimal impact of 
defacing on the utility of the structural images for downstream analysis with standard research pipelines. 

Many existing defacing tools are limited to T1w sequences13,22,39, and we sought to expand support to additional structural image types 
(T2w, FLAIR, T1w-CE), given their prevalence in clinical and research practices. That said, our tool is limited to four sequences, and 
further development could expand to additional types such as functional MRI and other advanced imaging (e.g., diffusion weighted 
imaging). Although consensus review was used to assess defacing performance, additional quantitative metrics such as face recognition 
rate may provide a more objective measure of de-identification performance. Another limitation of this study is that, while the training 
dataset included images across six institutions, a large portion of the dataset came from a single institution (CHOP). Future work should 
focus on expanding to larger studies to bolster model generalizability, and would benefit from direct comparison between deep learning 
and existing computer-vision methods. 

CONCLUSIONS 

In conclusion, we developed an AI-powered pediatric defacing tool with the goal of facilitating wider de-identification of structural MRIs 
for data sharing purposes. The tool is publicly available (https://github.com/d3b-center/pediatric-auto-defacer-public) and can be used on 
multiple image types. Future work can extend the model to additional populations and MR sequences to provide a universal method to 
facilitate data sharing and ultimately drive discoveries in neuroscience research. 
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Supplemental Methods 
 
 

 Class N subjects  
Diagnosis 

  
 Low-grade glioma/astrocytoma (WHO grade I/II) 130 
 Medulloblastoma 48 
 High-grade glioma/astrocytoma (WHO grade III/IV) 16 
 Brainstem glioma (diffuse intrinsic pontine glioma) 11 
 Ganglioglioma 1 
 Supratentorial PNET 1 
 Not otherwise specified 1 
General tumor location   
 Cerebellum/Posterior fossa 102 
 Midline or brain stem 60 
 Cortical 28 
 Ventricles 10 
 Optic pathway 7 

Table S1. Diagnosis and tumor location information for CBTN training dataset. 
Histopathologically-confirmed diagnosis and general tumor location (primary) for each subject in the 
model training cohort. “Midline or brain stem” location can include: pons, basal ganglia, thalamus, 
suprasellar/hypothalamic/pituitary, midbrain/tectum, and/or medulla. 
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Figure S1. Distribution of TE in training dataset (CBTN; N subjects = 146; N images = 584) for T1w, 
T1w-CE, T2w, and FLAIR sequences. 
 
 

 

  
Figure S2. Distributions of image dimensions (left) and voxel sizes (right) for T1w, T1w-CE, T2w, 
and FLAIR sequences across each training and testing cohort.  
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nnU-Net 

We employed the self-adaptive nnU-Net framework for model development (https://github.com/MIC-
DKFZ/nnUNet/tree/nnunetv1) 1,2. This deep learning method has shown strong performance across a 
variety of 2D and 3D image segmentation tasks (MRI, CT) and has outperformed other models in 
community benchmarking challenges, particularly in the context of generalization to new datasets with 
minimal over-fitting3,4. Because the model development is self-configured, manual tuning is not 
required to achieve strong predictive performance. The framework includes five-fold cross-validation 
using the training dataset to optimize the model’s hyperparameters with an ensemble approach. 
Additionally, input images undergo standardized pre-processing and post-processing steps, allowing a 
complete pipeline that can receive various unprocessed images as input and produce uniform results 
(across parameters such as image size, resolution, intensity distributions). In the context of the present 
study, this allowed us to develop a robust tool that does not require the user to perform any image 
preparation and can be utilized across various imaging protocols at different scanners and institutions. 
For more details on the model architecture and nnU-Net methodology, please see original papers: 
Isensee et al., 2021a, 2021b. 
 
Our training dataset consisted of 584 total images (146 T1w, 146 T1w-CE, 146 T2w, 146 FLAIR) 
from 146 CBTN patients. The model was trained to predict a single segmentation class. 
 
1. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method 

for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203-211. 
doi:10.1038/s41592-020-01008-z 

2. Isensee F, Jäger PF, Full PM, Vollmuth P, Maier-Hein KH. nnU-Net for Brain Tumor 
Segmentation. In: Crimi A, Bakas S, eds. Brainlesion: Glioma, Multiple Sclerosis, Stroke and 
Traumatic Brain Injuries. Springer International Publishing; 2021:118-132. doi:10.1007/978-3-030-
72087-2_11 

3. Wang R, Lei T, Cui R, Zhang B, Meng H, Nandi AK. Medical image segmentation using deep 
learning: A survey. IET Image Processing. 2022;16(5):1243-1267. doi:10.1049/ipr2.12419 

4. Jiang H, Diao Z, Shi T, et al. A review of deep learning-based multiple-lesion recognition from 
medical images: classification, detection and segmentation. Computers in Biology and Medicine. 
2023;157:106726. doi:10.1016/j.compbiomed.2023.106726 
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Training procedures for generation of face masks 

Two authors served as annotators (C.S., E.G.), each with neuroanatomy education and experience with 
medical imaging data (MRIs). In an initial training session 10 cases were reviewed, and several 
additional review sessions were conducted throughout the annotation process. Annotators were 
instructed to open a given image and initial face mask in ITK-Snap and scroll through the 3D image 
volumes (across axial, sagittal and coronal views) to assess coverage of each facial feature and make 
modifications as needed using the built-in editing tools. Generally, the mask was required to cover the 
superficial layer of skin, from forehead to jaw and all area between the outer cheeks and extending 
into the air in front of the face. With coverage of: 
 

Feature Description 
Eyes Orbital regions between left to 

right temple including upper 
nasal bone between the eyes. 

Mouth Lips and perioral region from 
jaw to nose and extending into 
either cheek regions up to 
nasolabial fold. 

Nose Full nasal region  
Ear All outer ear structures 

 
Annotators were also instructed to ensure that the mask did not impact brain tissue voxels. 
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Statistical comparisons 

 
Defacing Accuracy 
 
 Dice scores: Dice scores were calculated based on the spatial overlap of model-predicted 
versus ground truth face masks. Several statistical tests were used to assess the influence of different 
variables on dice scores, for each testing cohort separately (internal CBTN, external CBTN, SLIP). A 
repeated measures analysis of variance (ANOVA) was used to test for the effect of image sequence 
type (4 levels; within-subject variable) on dice scores (1 level; dependent variable). After averaging 
dice scores across image type, Pearson correlations were used to measure the linear relationship 
between subject age and dice score. One-way ANOVAs were used to measure the effect of subject sex 
(2 levels) or race (4) on dice scores. Additional ANOVAs tested the effect of diagnosis (internal: 5; 
external: 2) and general tumor location (internal: 5; external: 4) on dice scores of the CBTN test 
datasets. Paired t-tests were used to assess for differences in group mean dice score (defaced vs. 
original). 
 
 Manual ratings: A repeated measures ANOVA (4 x 1) was used to test the effect of image 
sequence type on composite ratings (average performance rating across eyes, mouth, & nose) for each 
testing cohort separately. 
 

Assessing impact of defacing on downstream analytics 

 AI-predicted brain volume (internal & external CBTN cohorts): A Spearman correlation 
was used to measure the rank-order relationship between brain volume generated from defaced images, 
versus brain volume generated from original images. Paired t-tests assessed differences in group means 
(defaced vs. original) of predicted brain volume. 
 
 AI-predicted tumor segmentations (internal & external CBTN cohorts): Spearman 
correlations were used to measure the rank-order relationships between tumor subregion volumes 
(enhancing, non-enhancing, cystic, edema) generated from defaced images, versus tumor subregion 
volumes generated from original images. Paired t-tests assessed differences in group means (defaced vs. 
original) of whole tumor segmentation volume. 
 
 Freesurfer generated measures (SLIP cohort): Spearman correlations were used to assess the 
rank-order relationship of global and regional (cortical and subcortical) volumetric measurements 
between defaced and original T1w images. Paired t-tests were also used to assess for differences in 
group means (defaced vs. original) for each measurement separately. 
 
 AI-predicted temporalis muscle thickness (TMT), cross-sectional area (CSA), & centile 
scores (SLIP cohort): Spearman correlations were used to assess the rank-order relationship of TMT, 
CSA, and centile scores between defaced and original T1w images. Paired t-tests were also used to 
assess differences in group means (defaced vs. original) for each measure separately. 
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Supplemental Results 
 

 
Figure S3. Correlations between subject age (x-axis) and dice scores across image types (y-axis) 
indicated no effect of age on model performance in any of the testing datasets. Each point represents 
one subject, line indicates linear regression fit to illustrate linear trend. 
  

Clinical ControlInternal External
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Figure S4. Additional examples of images with proper model-generated face masks, but low dice scores 
due to inconsistencies in the manually generated ground truth masks (e.g., variable extension into air).  
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Figure S5. Average consensus ratings across image types, for each body part separately, in the internal 
(CBTN), external (CBTN), and clinical control (SLIP) groups. Error bars indicate +/- Standard Error of 
the Mean.  
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Figure S6. Scatter plots showing estimated volumes of cortical and subcortical regions derived from 
original (face intact; y-axis) and defaced (x-axis) images for each subject in the SLIP cohort (N=31; 
each dot represents one subject). Red line indicates linear regression fit to illustrate linear trend. 
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 Validation Internal Testing 
CBTN 

External Testing 
CBTN 

Clinical Control 
Testing 

SLIP 
Dice Similarity 

Mean / Median / SEM 
0.78 / 0.80 
/ 0.01 

0.78 / 0.80 / 0.01 0.75 / 0.78 / 0.02 0.75 / 0.77 / 0.01 

T1w  0.78 / 0.80 / 0.01 0.76 / 0.78 / 0.02 0.73 / 0.78 / 0.02 
T1w-CE  0.78 / 0.79 / 0.01 0.76 / 0.79 / 0.02 0.72 / 0.75 / 0.02 
T2w  0.79 / 0.81 / 0.01 0.72 / 0.78 / 0.03 0.79 / 0.81 / 0.01 
FLAIR  0.77 / 0.79 / 0.01 0.74 / 0.78 / 0.02 0.76 / 0.79 / 0.02 

Sensitivity 

Mean / Median / SEM 
0.80 / 0.83 
/ 0.01 

0.79 / 0.83 / 0.01 0.76 / 0.80 / 0.03 0.78 / 0.83 / 0.02 

T1w  0.79 / 0.82 / 0.02 0.76 / 0.79 / 0.03 0.77 / 0.82 / 0.03 
T1w-CE  0.80 / 0.84 / 0.02 0.76 / 0.79 / 0.03 0.75 / 0.81 / 0.02 
T2w  0.81 / 0.83 / 0.01 0.74 / 0.81 / 0.04 0.84 / 0.85 / 0.01 

FLAIR  0.78 / 0.82 / 0.02 0.76 / 0.78 / 0.03 0.78 / 0.82 / 0.02 

95% Hausdorff Distance 
Mean / Median / SEM 

7.71 / 5.39 
/ 0.60 

7.10 / 5.46 / 0.59 8.45 / 6.26 / 1.78 10.09 / 7.38 / 1.02 

T1w  7.59 / 5.83 / 1.01 8.77 / 7.14 / 1.45 14.93 / 10.30 / 2.30 
T1w-CE  7.88 / 5.39 / 1.08 8.99 / 7.07 / 1.24 15.33 / 10.30 / 1.78 
T2w  6.09 / 5.10 / 0.55 8.95 / 4.24 / 3.44 5.65 / 4.79 / 0.47 

FLAIR  6.83 / 5.39 / 1.01 7.09 / 5.00 / 1.56 4.43 / 3.39 / 0.60 

 
    

Composite face score (eyes + 
mouth + nose) 

 0.97 0.98 0.98 

Eyes  1 1 1 
Mouth  1 0.97 0.98 
Nose  0.90 0.93 0.94 
Ears  0.85 0.62 0.72 

Percentage of images with  
brain voxels impacted 

 0% 0% 0% 

Table S2. Summary statistics of defacing model performance. (Upper) Standard metrics (dice, 
sensitivity, Hausdorff distance) of model performance for predicted (compared to ground truth) face 
masks across each testing cohort. (Lower) Rater-determined accuracy of model-generated defacing 
performance. Scores represent the average percent coverage of facial features (scale of 0-1). SEM = 
Standard error of the mean. 
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Internal Testing 

CBTN 
External Testing 

CBTN 

Whole brain volume t(35) = -0.58, p = 0.566 t(24) = 1.45, p = 0.16 

Tumor segmentation volume t(35) = -1.67, p = 0.104 t(24) = -0.54, p = 0.595 

   
Table S3. Paired t-tests comparing AI-generated volumes between defaced and original images. 
Results show no significant difference in model-predicted whole brain or tumor volumes. 
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 Region rS(29) p t(30) p 

Global measures 
(volume) 

     

 Cortex >0.99 3.62E-34 0.15 0.88 

 Cerebral White Matter >0.99 2.89E-27 0.93 0.359 
 Brain Seg >0.99 5.68E-29 1.41 0.17 
 Brain Seg (NotVent) >0.99 1.43E-27 1.39 0.176 
 Brain Seg (NotVent) Surface >0.99 1.36E-28 1.38 0.177 
 Estimated Total Intracranial 

(eTIV) 0.99 6.32E-26 -1.65 0.11 
 Total Gray Matter >0.99 6.81E-28 0.64 0.526 
 Subcortical Gray Matter 0.98 2.35E-22 -1.03 0.309 
 CSF 0.86 6.34E-10 -0.27 0.788 

Regional measures 
(volume)      

 Supratentorial (NotVent) >0.99 3.62E-34 0.97 0.341 
 LH Cortex >0.99 1.38E-32 0.11 0.914 
 Right Lateral Ventricle >0.99 6.33E-32 0.31 0.759 
 Supratentorial >0.99 8.86E-31 1.01 0.323 
 Brain Stem >0.99 2.82E-30 0.95 0.351 
 RH Cerebral White Matter >0.99 1.43E-27 0.6 0.554 
 Left Lateral Ventricle >0.99 2.89E-27 1.56 0.13 
 RH Cortex >0.99 1.08E-26 0.17 0.866 
 4th Ventricle 0.99 6.32E-26 0.72 0.476 
 LH Cerebral White Matter 0.99 7.99E-25 1.22 0.234 
 Left Caudate 0.98 1.50E-23 -1.15 0.258 
 Right Ventral DC 0.98 7.80E-22 -0.86 0.395 
 CC Posterior 0.98 1.35E-20 0.06 0.955 
 CC Mid Anterior 0.97 1.03E-19 0.65 0.518 
 CC Central 0.97 4.58E-19 -1.19 0.243 
 Right Hippocampus 0.97 4.58E-19 -2.36 0.025 
 Left Hippocampus 0.96 2.57E-18 -1.23 0.227 
 CC Mid Posterior 0.96 9.22E-18 -0.8 0.43 
 Right Thalamus Proper 0.96 1.59E-17 -0.92 0.366 
 Left Amygdala 0.96 2.78E-17 -1.17 0.253 
 Right Caudate 0.96 3.18E-17 0.62 0.54 
 3rd Ventricle 0.96 3.64E-17 -0.93 0.362 
 CC Anterior 0.95 7.72E-17 -1.07 0.291 
 Left Ventral DC 0.95 1.31E-16 -1.26 0.219 
 Right Amygdala 0.95 1.48E-16 -1.78 0.085 
 Right Inferior Lateral Ventricle 0.95 1.88E-16 0.55 0.583 
 Left Thalamus Proper 0.95 3.78E-16 1.08 0.29 
 Left Choroid Plexus 0.93 1.65E-14 0.41 0.686 
 Right Cerebellum Cortex 0.93 2.08E-14 0.54 0.595 
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 Region rS(29) p t(30) p 

 Right Putamen 0.93 3.71E-14 -0.28 0.779 
 Left Cerebellum Cortex 0.92 4.28E-13 0.8 0.427 
 Left Inferior Lateral Ventricle 0.92 5.25E-13 1.63 0.113 
 Left Putamen 0.91 1.00E-12 0.41 0.688 
 Right Choroid Plexus 0.91 2.68E-12 0.85 0.401 
 Left Accumbens area 0.90 2.84E-12 0.17 0.863 
 Right Pallidum 0.90 3.86E-12 0.19 0.85 
 Left Vessel 0.90 9.42E-12 1.87 0.072 
 Right Vessel 0.84 2.27E-09 -2.32 0.027 
 Left Pallidum 0.78 2.94E-07 -0.45 0.657 
 Optic Chiasm 0.76 5.58E-07 -0.84 0.405 
 Right Accumbens area 0.72 5.53E-06 -0.33 0.745 
 Left Cerebellum White Matter 0.71 7.53E-06 1.49 0.147 
 Right Cerebellum White Matter 0.69 1.81E-05 1.27 0.212 

Other Global 
Measures      

 
Surface Holes 0.89 1.51E-11 0.91 0.371 

 LH Surface Holes 0.84 3.93E-09 0.98 0.337 
 RH Surface Holes 0.92 1.43E-13 0.36 0.725 
 MaskVol-to-eTIV 0.84 3.46E-09 1.48 0.148 
 BrainSegVol-to-eTIV 0.78 2.44E-07 1.93 0.063 
 WM hypointensities 0.90 4.77E-12 1.02 0.314 

 

Table S4. Comparison of Freesurfer brain measures between original (non-defaced) and defaced 
T1w images of the clinical control group. Group-level spearman correlations (rS) and paired t-tests (t) 
indicate high agreement in estimated measures across regions (N=31). Statistically significant 
comparisons are indicated with bold text. Abbreviations - NotVent: excluding ventricles or CSF; CC: 
corpus callosum; DC: diencephalon. 
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Potential limitations in application to clinical populations 

Please note that craniofacial, orbital, and ear pathologies can be obscured when using this algorithm. In 
addition, it is important to note that our training dataset exclusively included images acquired from 
brain/CNS tumor patients (Table S1). Our results therefore do not determine how the model would 
perform in clinical populations with structural malformations and anomalies particularly in craniofacial 
regions. Some examples are: cleft lip and palate, craniosynostosis, hemifacial microsomia, 
hemangiomas, temporal bone and ear pathologies. Because such samples are not included in the training 
dataset, it is possible that the model will not properly deface the brain images from these patients. 
 

If it is desired to utilize this tool on populations with potential craniofacial deformities, the 
resulting files (face masks and/or defaced images) output by the model should be visually reviewed to 
ensure sufficient facial masking coverage for de-identification purposes. Manual refinement may be 
necessary. 
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disjoint 
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Supp. Methods section “nnU-
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Supp. Methods section “nnU-
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26 Method of selecting the final 
model 
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 40 Study limitations Paragraphs 2 & 4 

Supp. Results section 
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41 Implications for practice, 
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Paragraphs 1 & 2 
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OTHER 
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