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 ABSTRACT 

BACKGROUND AND PURPOSE: Measurement of the mean upper cervical cord area (MUCCA) is an important biomarker in the study 

of neurodegeneration. However, dedicated high-resolution scans of the cervical spinal cord are rare in standard-of-care imaging due 

to timing and clinical usability. Most clinical cervical spinal cord imaging is sagittally acquired in 2D with thick slices and anisotropic 

voxels. As a solution, previous work describes high-resolution T1-weighted brain imaging for measuring the upper cord area, but this 

is still not common in clinical care.  

MATERIALS AND METHODS: We propose using a zero-shot super-resolution technique, SMORE, already validated in the brain, to 

enhance the resolution of 2D-acquired scans for upper cord area calculations. To incorporate super-resolution in spinal cord analysis, 

we validate SMORE against high-resolution research imaging and in a real-world longitudinal data analysis. 

RESULTS: Super-resolved images reconstructed using SMORE showed significantly greater similarity to the ground truth than low-

resolution images across all tested resolutions (p<0.001 for all resolutions in PSNR and MSSIM). MUCCA results from super-resolved 

scans demonstrate excellent correlation with high-resolution scans (r>0.973 for all resolutions) compared to low-resolution scans. 

Additionally, super-resolved scans are consistent between resolutions (r>0.969), an essential factor in longitudinal analysis. 

Compared to clinical outcomes such as walking speed or disease severity, MUCCA values from low-resolution scans have significantly 

lower correlations than those from high-resolution scans. Super-resolved results have no significant difference. In a longitudinal real-

world dataset, we show that these super-resolved volumes can be used in conjunction with T1-weighted brain scans to show a 

significant rate of atrophy (-0.790, p=0.020 vs. -0.438, p=0.301 with low-resolution). 

CONCLUSIONS: Super-resolution is a valuable tool for enabling large-scale studies of cord atrophy, as low-resolution images acquired 

in clinical practice are common and available. 

 ABBREVIATIONS: MS=multiple sclerosis; MUCCA=mean upper cervical cord; HR=high-resolution; LR=low-resolution; SR=super-

resolved; CSC=cervical spinal cord; PMJ=pontomedullary junction; MSSIM=mean structural similarity; PSNR=peak signal-to-noise ratio; 

EDSS=expanded disability status scale. 
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 SUMMARY SECTION 

PREVIOUS LITERATURE: The spinal cord is a critical target for investigation in MS. Previous works have described the calculation of 

spinal cord measurements from high-resolution spinal cord and brain images but have not yet explored clinically acquired spinal cord 

scans, which differ in resolution and acquisition. In the brain, super-resolution techniques, such as SMORE, have been shown to 

improve the reliability and accuracy of automated algorithms on images with low-resolution, isotropic voxels. 

KEY FINDINGS: Super-resolution enables quantitative analysis of spinal cord MRI, even in cases of anisotropic voxels and slice gaps. 

Super-resolved images produce results on par with high-resolution results and can be used in analysis with high-resolution images of 

the brain and spinal cord for atrophy analysis.. 

KNOWLEDGE ADVANCEMENT: We have learned that super-resolution techniques can advance quantitative analysis for large-scale 

clinical studies. With this knowledge, previous limitations in image analysis can be questioned, and new, more extensive studies can 

be conducted with greater inclusivity and depth. 

INTRODUCTION 

Magnetic resonance imaging (MRI) is a commonly used imaging modality for diagnosis, monitoring, and prognostication in people living 

with neurodegenerative diseases such as multiple sclerosis (MS)1–7. While the bulk of imaging in clinical research has focused on the brain 

and its substructures, a growing community is investigating the spinal cord in the context of neurodegenerative diseases8–12. The mean 

upper cervical cord area (MUCCA) has been shown in the literature to be strongly correlated to disability, especially as related to motor 
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and sensory tasks13–15. However, wide dissemination of this measurement remains limited due to the extreme rarity of dedicated high-

resolution (HR) spinal cord imaging in practice, where low-resolution (LR) clinical imaging or brain imaging predominates. 

The whole spinal cord can be clearly delineated from the surrounding cerebrospinal fluid (CSF) using HR, isotropic T2-weighted (T2w) 

imaging with long echo times to minimize intra-cord contrast16,17. These scans are well standardized but take 4-5 minutes to acquire and 

have limited clinical utility, reducing their feasibility in clinical settings. In research settings, dedicated spinal cord scanning is still 

uncommon, with multiple groups proposing to use specific HR T1-weighted (T1w) brain scans already acquired in brain studies, including 

the upper part of the cervical spinal cord (CSC)18,19. These scans are common in research settings and are increasingly being adopted for 

clinical imaging. However, their implementation is still limited to research-centric clinical centers and needs widespread adoption20. 

Additionally, the acquisition (T1w vs. T2w) affects the results of automated spinal cord segmentation due to the different appearance of 

tissues like the CSF, dura matter, and white matter lesions and differences in image generation like partial voluming19,21. MUCCA 

measurements from T1w and T2w images are highly correlated, but adjustment would be required to use them interchangeably in 

longitudinal analyses. 

Clinically, sagittal T2w images of the CSC are more common. However, these images are 2D-acquired with thick slices and sometimes a 

gap between the slices. For example, some of the highest resolution clinical spinal cord images are 3||0 (read “3-skip-0”), indicating a 3mm 

slice thickness and no gap (0mm), and are commonly acquired with the resolution 3||1 (3mm slice with 1mm gap). This kind of imaging 

is unsuitable for quantitative evaluation due to the measurement variation across resolutions and subjects. 

Synthetic Multi-Orientation Resolution Enhancement (SMORE) is a self-supervised zero-shot super-resolution technique designed to 

enhance the resolution of anisotropic acquisitions22,23. SMORE has been extensively validated in the brain but has yet to be explored in 

the spinal cord. As SMORE is a zero-shot method, it requires no external training data. Instead, the training data are simulated from the 

target image, and training is performed on the simulation data (hence, self-supervised). This means that SMORE can be applied to a new 

image contrast or body part without collecting training data or worrying about training/testing bias. This differs from other super-resolution 

approaches (like SynthSR24, TSCTNet25, and others26), which utilize extensive training datasets and are currently focused on brain imaging. 

This work aims to demonstrate super-resolution as a tool to enable MUCCA estimation on clinically available LR spinal cord images. We 

make two important contributions: 

1. Demonstrate improved outcomes when using super-resolved images for MUCCA calculation compared to LR images using 

simulated datasets with HR ground truth. 

2. Measure CSC atrophy in a real-world longitudinal dataset with super-resolved LR 2D spine and HR 3D brain images. 

The results from this work set the stage for large-scale studies of CSC atrophy, which can be conducted at reduced cost and with increased 

availability by using existing clinically acquired imaging datasets. 

 

FIG 1. A representative history of one subject from the Real-World Longitudinal Dataset. The four images (left to right): 2D LR 

T2w CSC (3||0.5), 3D T1w Brain, 3D T2w CSC, 2D LR T2w CSC (3||0). 

MATERIALS AND METHODS 

Imaging Datasets 

HR Research Dataset 

Paired LR and HR images are rarely acquired, especially in the CSC. To validate super-resolution techniques quantitatively, we simulate 

LR data from acquired HR data. To this end, we selected 200 participants who underwent a research MRI protocol on a single Siemens 

Prisma scanner as a part of an existing Institutional Review Board-approved study of people with MS. Imaging included T1w 3D 

Magnetization Prepared Rapid Gradient Echo (MPRAGE) of the brain [resolution: 1mm isotropic, orientation: sagittal, field of view 

(FOV): 256x240x160mm, echo time (TE): 2.98ms, repetition time (TR): 2300ms, inversion time (TI): 900ms, flip angle (FA): 9deg, 

acceleration: 2, acquisition time (AT): 5:12 min) and T2w 3D Turbo Spin Echo (T2-SPACE) of the CSC [resolution: 0.8mm isotropic, 

orientation: sagittal, FOV: 256x256x64mm, TE: 120ms, TR: 1500ms, FA: 120deg, averages: 1.4, acceleration: 3, AT: 4:02 min]. These 

images comprised our “HR Research Dataset” and are high-resolution isotropic volumes, which allow us to create simulated LR images 

and still provide a ground truth for quantitative assessment. Additionally, the paired brain and CSC images will enable us to quantitatively 

compare results from HR 3D T1w brain and HR 3D T2w CSC images. 

Real-World Longitudinal Dataset 
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Simulated LR data is insufficient to evaluate super-resolution's effect in a real-world longitudinal study.  To validate our methodology in 

a real-world example, we created a sub-cohort (N=130) from PwMS in the IRB approved study that had multiple available clinical brain 

and/or spinal cord MRIs acquired between 2013 and 2023.  Using the Johns Hopkins Precision Medicine Access Platform, we retrieved 

all brain and spinal cord scan sessions for each sub-cohort participant from the clinical imaging system collected over these ten years. Each 

scan session contributed one volume to the analysis: a 3D T1w MPRAGE brain image, a 3D T2w CSC image, or a 2D LR T2w CSC 

image. Each of these images was directly acquired on a clinical scanner. This “Real-World Longitudinal Dataset” consisted of 700 images 

with an average of 5.6 images per person and an average follow-up of 4.1 years. In terms of image acquisition, 315 (45%) images were 

LR 2D T2w CSC, 180 (26%) images were HR 3D T2w CSC, and 205 (29%) images were HR 3D T1w brain. Representative images from 

the Real-World Longitudinal Dataset are shown in Figure 1.  

Blinded Clinical Testing 

All participants underwent the MS Functional Composite (MSFC), which is composed of three separate tasks: a timed 25-foot walk 

(T25FW), a 9-hole peg test (9HPT), and a paced auditory serial addition test 27. For this analysis, we focused on the motor-associated tasks 

T25FTW and 9HPT, hypothesized to be the most relevant to spinal cord atrophy. Additionally, each participant was scored using the 

Expanded Disability Status Scale (EDSS)28, which favors motor disability in its scoring.  

Cord Segmentation and MUCCA Calculation 

The Spinal Cord Toolbox29 (v6.0) was used for all spinal cord segmentations and analyses. The spinal cord was segmented using SCT’s 

DeepSeg30 algorithm. Then, MUCCA was calculated by averaging the cross-sectional area over 3cm beginning 6cm below the 

pontomedullary junction (PMJ) as described by Bédard et al. 31. This was empirically more stable than averaging over the C2-C3 levels, 

as it did not require segmentation of the vertebral levels, and vertebral segmentation often required manual intervention, especially in T1w 

brain images. All volumes, including T1w brain and LR T2w CSC acquisitions, were segmented using this method. Quality assurance was 

done manually by a single rater (B.D.) to ensure high-quality segmentation. In <5% of cases, the PMJ had to be manually delineated. We 

selected manual PMJ landmarks using a graphical viewer in SCT, which took one rater (B.D.) less than 15 minutes for all missed cases. 

Example segmentations are shown in Figure 2. 

Super-Resolution 

Super-resolution with SMORE has two main steps: training and inference. As SMORE is a zero-shot, internally trained method, it must 

be trained on each image. SMORE is designed for super-resolution on anisotropic images, meaning that the resolution of the 3D volumes 

has two high-resolution “in-plane” directions and one low-resolution “through-plane” (or slice) direction. Training in SMORE takes 

advantage of this fact by degrading the high-resolution in-plane slices in one direction to simulate the appearance of a through-plane slice. 

Simulated low-resolution patches are generated using the `degrade` feature of the `radifox-utils` Python package (https://github.com/jh-

mipc/radifox-utils) to apply a learned slice profile to the high-resolution patches. This relative slice profile is predicted using Estimating 

the Slice Profile for Resolution Enhancement of a Single image Only (ESPRESO)32, which uses adversarial learning to produce a slice 

profile that generates similar distributions of real and simulated through-plane patches. After degradation, these simulated low-resolution 

and real high-resolution pairs train a convolutional neural network to generate high-resolution patches. Once the model is trained, real 

through-plane slices are passed through the network to generate the super-resolved slices. SMORE was implemented using v4.0.5 of the 

open-source software (https://gitlab.com/iacl/smore). 

SMORE Validation 

To generate validation data from the HR Research Dataset, the HR T2-SPACE images were artificially degraded to match the four most 

common resolutions found in our clinical system for sagittal CSC images: 3||0, 3||0.3, 3||0.5, 3||1. Degradation was performed using the 

`degrade` function of the `radifox-utils` package. This blurred the image using a real-world slice profile constructed with the Shinnar–Le 

Roux algorithm33 according to the slice thickness, then downsampled the image according to the slice spacing. This is a more accurate 

simulation of a 2D-acquired image than downsampling alone because it more closely approximates the actual acquisition process of an 

MRI. 

Super-resolved (SR) and LR images were compared to HR ground truth images using Mean Structural Similarity (MSSIM)34 and Peak 

Signal-to-Noise Ratio (PSNR)35.  LR images were interpolated to the HR grid using the `resize` function of `radifox-utils` and a 3rd-order 

B-Spline for these comparisons. Each SR, LR, and HR image was also segmented, and MUCCA was calculated. MUCCA measurements 

from SR and LR images were compared to the HR results. Pearson's rho was used to determine the correlation between SR (or LR) and 

HR results at each simulated resolution. A paired Student’s t-test was used to determine whether the differences between SR/LR and HR 

MUCCA values and between image metrics (PSNR and MSSIM) were statistically significant. 

To determine the effect of super-resolution on outcomes in a clinical study, MUCCA values from LR, SR, and HR images were modeled 

as predictors of clinical outcomes using linear regression models and partial correlation using Pearson’s method. Willam’s test was used 

to determine the significance of correlation differences. Simulated real-world cohorts were created from the LR and SR datasets by 

randomly selecting a resolution (3||0.0, 3||0.3, 3||0.5, or 3||1.0) for each participant. This simulates a real-world dataset that might contain 

acquisitions acquired at different resolutions. Models and correlations were adjusted for age and sex at birth. The size of our dataset could 

result in significant results that might not hold up in smaller samples. To evaluate this, we created 100 bootstrapped samples of 50 subjects 

to evaluate the effect of sample size on the significance of the relationships. 

Longitudinal Analysis 

Correction for T1w Brain Results 

https://github.com/jh-mipc/radifox-utils
https://github.com/jh-mipc/radifox-utils
https://gitlab.com/iacl/smore
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The HR T1w brain scans in the HR Research Dataset were segmented, and MUCCA was calculated for each image. A linear fit of MUCCA 

from T2w spinal cord images versus MUCCA from T1w brain images was used to determine an additive correction factor. This corrective 

factor was applied to all T1w values in the longitudinal cohort. 

 

 

Modeling Atrophy 

Each 2D T2-weighted cervical spinal cord image from the Real-World Longitudinal Dataset was super-resolved using SMORE. Then, all 

super-resolved 2D and acquired 3D images (brain or spine) in that dataset were segmented, and MUCCA was calculated for each image. 

A linear mixed effects model of MUCCA vs. time was fit, adjusting for age at first scan and sex. 

 

FIG 2. Segmentation of representative HR, simulated LR, and SR volumes. 

RESULTS 

Qualitative Evaluation 

As shown in Figure 2, SMORE substantially recovers the spinal cord's anatomical structure. This is reflected in the segmentation quality, 

as SCT is not only limited to the appearance of the spinal cord in the image (after interpolation within the algorithm) but also in the final 

resolution of the output. LR inputs produce blocky segmentations that match the image resolution. We found that interpolation before 

segmentation with SCT to avoid this difference made results substantially worse, likely due to the additional internal interpolation step 

within SCT. In the SCT segmentations, we noted four subjects where some LR images had poor-quality segmentation. In contrast, all SR 

and HR images were correctly segmented. As stated above, some images required manual delineation of the PMJ; this was mainly due to 

anatomical variation in the subjects and was the same in all images regardless of resolution or preparation. However, there were a few LR 

images at 3||1 where the PMJ was not correctly delineated when it was correct on the HR image. 

 

FIG 3. Boxplots of MSSIM and PSNR values calculated for interpolated LR and SR images at each resolution compared to HR ground 

truth. 

Quantitative Validation of SMORE 

As previously shown in the brain, SR images are more similar to the ground truth than degraded images by MSSIM and PSNR (Figure 3). 

This difference is statistically significant across all tested resolutions. However, downstream analysis feasibility depends more on the 

quality of the segmentation results than image quality. 

Figure 4 shows that low-resolution and super-resolved results have an excellent correlation with high-resolution results. The super-resolved 

correlation results are nearly 1, even in the 3||1 case, while the low-resolution results drop to 0.92. The super-resolved results also 
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demonstrate an excellent correlation between super-resolved images of different resolutions. While low-resolution results maintain some 

areas of excellent correlation between resolutions, some pairings begin to dip below 0.9. 

In Figure 5, we directly plot the relationship between SR/LR results and the corresponding HR results, including an identity line. We can 

see that the SR values are tightly following and not significantly different from the identity line (3||0.0: p=0.12, R2=0.98; 3||0.3: p=0.21, 

R2=0.95; 3||0.5: p=0.77, R2=0.96; 3||1.0: p=0.15, R2=0.96), with some increased variation around that as the slice gap increases to 1mm. 

The LR results show over-segmentation of the cord compared to HR, which increases with cord area. This is evident across all resolutions 

and is most extreme in 3||0.3 and 3||1.0 cases. This deviation in slopes from identity is also statistically significant (p<0.0001 for all 

resolutions, R2=0.91, 0.90, 0.86, 0.85 for each resolution, respectively).  

 

FIG 4. Heat maps showing the correlation between each simulated resolution and other simulated resolutions, as well as with 

ground-truth high-resolution for both super-resolved and low-resolution images. 

Clinical Correlations 

Figure 6 shows the correlations between MUCCA values derived from the HR, LR, and SR randomized resolution datasets and clinical 

outcomes. For each of these outcomes, correlations to MUCCA values are statistically significant (EDSS: LR r=-0.22/p=0.010, SR r=-

0.30/p=<0.001, HR r=-0.30/p=<0.001; 25FTW: LR r=-0.22/p=0.014, SR r=-0.26/p=0.003, HR r=-0.27/p=0.002; 9HPT: LR r=-

0.29/p=<0.001, SR r=-0.38/p=<0.001, HR r=-0.38/p=<0.001). Additionally, LR correlations were significantly less than the HR 

correlations (EDSS: p=0.04, 25FTW: p=0.046, 9HPT: p<0.001), while the SR correlations were not significantly different. In linear 

modeling, the slope of the effect from LR MUCCA values is underestimated compared to HR values (EDSS: LR=-0.033, HR=-0.052; 

25FTW: LR=-0.009, HR=-0.014; 9HPT: LR=-0.250, HR=-0.394). However, the effect slope for SR values is nearly identical to the effect 

of HR values (EDSS: SR=-0.051, 25FTW: SR=-0.013, 9HPT=SR=-0.388). Additionally, the significance of the LR relationships did not 

hold up in smaller samples. For example, our bootstrapped samples yielded an average p-value of 0.12 when comparing LR MUCCA 

values to 25FTW. At the same time, the HR and SR MUCCA values retain a significant relationship with 25FTW (average p=0.005).  

 

FIG 5. Scatter plots of super-resolved (left) and low-resolution (right) vs. high-resolution MUCCA values. The line of fit and 95% 



6  

confidence intervals are plotted in the corresponding color, and the identity line is plotted in grey. 

 

 

FIG 6. Scatter plots of MUCCA values versus clinical outcomes: EDSS (left), 9-hole peg test (middle), and 25-ft walk (right). Each 

plot shows points, lines of fit, and 95% confidence intervals for HR (blue), SR (orange), and LR (green). 

T1w Brain Comparison 

Figure 7 shows the relationship between MUCCA results from T1w brain images and T2w CSC images from the HR Research Dataset. 

These measures are strongly correlated (ρ=0.974). However, there is also a clear and substantial bias (β=9.184). We can adjust for this 

bias by adding a correction factor to all T1w brain results. This allows the recovery of a near-identity relationship (slope not significantly 

different from 1, p=0.100). This adjustment was used to correct the T1w brain results in the longitudinal analysis. 

 

FIG 7. Left: Scatter plot of HR brain vs. HR spine MUCCA value, Right: Violin plot showing the distribution of MUCCA values from 

brain and spine datasets. 

Longitudinal Analysis 

Table 1 shows the fixed effects from the linear mixed effects model fit on the LR and SR versions of the Real-World Longitudinal Dataset. 

The decline of MUCCA over time (the “Time (from first scan)” effect) is lower than expected and not significant in either the LR or SR 

models. After inspecting the data, it was clear that the difference in contrast between the 2D-acquired and 3D-acquired images created a 

bias in the results. After adjusting for this bias (Table 2), the SR model now has a much larger time effect that is statistically significant. 

The cohort using low-resolution images also shows a slight increase in the time effect, but it is not significant. There is also a significant 

effect of age at first scan, sex, and age at first scan × time in the SR model. 

Table 1: Results from linear mixed-effects models of MUCCA over time. “Low-Resolution” and “Super-Resolved” are separate 

models fit using the super-resolved or low-resolution versions of the longitudinal cohort. The “Time (from first scan)” fixed effect 

represents the change in MUCCA each year. 

 Low-Resolution Super-Resolved 

 coefficient p-value coefficient p-value 

Sex (M)  3.293 0.040  3.101 0.048 
Age (at first scan, years) -0.162 0.062 -0.122 0.154 
Time (from first scan, years) -0.356 0.360 -0.522 0.167 
Age (at first scan)  
x Time (from first scan, years) 

 0.007 0.393  0.018 0.020 

 

DISCUSSION 

This paper demonstrates the ability of SMORE to super-resolve clinically available CSC MRIs, enabling reliable MUCCA calculation. 

This was validated directly in simulated experiments of the HR Research Dataset and the Real-World Longitudinal Dataset.  

In simulated experiments, SMORE was able to recover qualitative anatomical features and improve quantitative similarity to HR ground 

truth images, especially around the spinal cord. We see similar improvement quantitatively, although all values are lower than in previous 
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work with SMORE in the brain23, indicating a greater effect of differences in resolution on the degraded anatomy. The spinal cord is a 

small structure in a large cervical spine MRI, so structures outside the spinal canal can likely explain differences in qualitative and 

quantitative results. 

Table 2: . Results from linear mixed-effects models of MUCCA over time, including a correction for 2D spinal cord images. “Low-

Resolution” and “Super-Resolved” are separate models fit using the super-resolved or low-resolution versions of the longitudinal 

cohort. The “Time (from first scan)” fixed effect represents the change in MUCCA each year. 

 Low-Resolution Super-Resolved 

 coefficient p-value coefficient p-value 

Sex (M)   3.253 0.042  3.180  0.042 
Image Type (2D, LR or SR)  0.829 0.190 -4.577 <0.001 
Age (at first scan, years) -0.152 0.080 -0.174  0.041 
Time (from first scan, years) -0.438 0.301 -0.790  0.020 
Age (at first scan)  
x Time (from first scan, years) 

 0.007 0.394  0.016  0.029 

Acquisition parameters in clinical cohorts are highly variable. For this reason, interoperability between contrasts and resolutions is critical 

to successful longitudinal analysis of clinically acquired images. In a real-world clinical environment, it is common for resolution to change 

over time as patients get imaging at other locations or protocols are updated. Correlation between different resolutions is vital to the 

feasibility of this method over longitudinal follow-up. Even the LR images produce MUCCA values with high to excellent correlations to 

the HR ground truth and each other. Yet, they still underestimate correlations when compared to clinical outcomes. In these simulated 

experiments, near identity is required to maintain the clinical correlations with sufficient statistical power. In our exploration of clinical 

correlations, we also see the possibility of producing a statistically significant result that underestimates the true effect according to HR 

data. This large cohort (N=200) produced significant results with very low p-values; however, similar findings were not obtained in smaller 

random subsets.  

In addition to SR clinical spine images, we include HR 3D T1w brain images in our definition of “clinically available MRI.” While this is 

still uncommon in many clinical settings, using these images without contrast is becoming more popular, especially as reimbursement of 

quantitative image analysis is now possible for U.S. payers36. This also allows the frequent follow-up of MUCCA when brain MRIs are 

performed without spine imaging. In clinical datasets, different providers have different ordering preferences that can depend on the 

individual patient, so following patients with every scan possible enriches the available data pool. 

Limitations 

Analysis of our longitudinal cohort showed that super-resolved images play an important role in reliably quantifying atrophy. However, 

this analysis has limitations. As demonstrated by the statistical bias between 2D and 3D T2w images, there is a need to control for the 

differences in image contrasts. In this analysis, we performed statistical correction by adjusting for 2D image contrast in our mixed effects 

model, but other methods should also be explored to control for these differences. We also have no well-controlled validation for the effect 

sizes presented here. We plan to conduct this validation by collecting longitudinal HR spinal cord scans of research participants and 

comparing the results to longitudinal follow-ups that include other scan types. Additionally, we have not studied the effect of spinal cord 

lesions on the analysis. Lesion evolution is essential to MS pathology, especially in the spinal cord. In this work, we focused on the effects 

of atrophy, using T2w images where lesions are less apparent. However, these are inconsistent across acquisitions and may contribute to 

the differences in volumes in LR CSC images and the T1w brain images, where lesions could be mistaken for CSF more frequently than 

in the heavily T2w 3D CSC images. 

Future Directions 

We look forward to expanding this cohort in size and follow-up duration to investigate these findings further. We also look to collect more 

detailed clinical data over the participants’ histories to correlate longitudinal patterns to clinical outcomes. In particular, we look to expand 

this analysis to include lesions to study the inflammatory pieces of the MS disease course. Ultimately, we aim to investigate MUCCA as 

a predictor and monitor of clinical progression.  

CONCLUSIONS 

In conclusion, we demonstrated the feasibility of MUCCA calculations after super-resolution from clinically available MRIs such as 2D-

acquired T2w spinal cord images and 3D T1w brain images. We showed that SMORE produced super-resolved image volumes from 2D-

acquired spinal cord scans with MUCCA values nearly identical to HR ground truth images. We also demonstrated that these, along with 

corrected values from T1w brain scans, can be used in a longitudinal analysis of spinal cord atrophy in people with MS. This opens the 

door to large, inclusive, clinically derived datasets for large-scale analysis of spinal cord atrophy. 
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