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 ABSTRACT 

BACKGROUND AND PURPOSE: Complications from endovascular thrombectomy (EVT) can negatively affect clinical outcomes, 

making the development of a more precise and objective prediction model essential. This research aimed to assess the 

effectiveness of radiomic features derived from pre-surgical CT scans in predicting the prognosis post- EVT in acute ischemic 

stroke patients. 

MATERIALS AND METHODS: This investigation included 336 acute ischemic stroke patients from two medical centers, spanning 

from March 2018 to March 2024. The participants were split into a training cohort of 161 patients and a validation cohort of 175 

patients. Patient outcomes were rated with the mRS: 0-2 for good, 3-6 for poor. A total of 428 radiomic features were derived 

from intra-thrombus and peri-thrombus regions in non-contrast CT and CT angiography images. Feature selection was conducted 

using a least absolute shrinkage and selection operator regression model. The efficacy of eight different supervised learning 

models was assessed using the area under the curve (AUC) of the receiver operating characteristic curve. 

RESULTS: Among all models tested in the validation cohort, the logistic regression algorithm for combined model achieved the 

highest AUC (0.87, with a 95% confidence interval of 0.81 to 0.92), outperforming other algorithms. The combined use of radiomic 

features from both the intra-thrombus and peri-thrombus regions significantly enhanced diagnostic accuracy over models using 

features from a single region（0.81 vs 0.70, 0.77）, highlighting the benefit of integrating data from both regions for improved 

prediction. 

CONCLUSIONS: The findings suggest that a combined radiomics model based on CT imaging serves as a potent approach to 

assessing the prognosis following EVT. The logistic regression model, in particular, proved to be both effective and stable, offering 

critical insights for the management of stroke. 

 ABBREVIATIONS: AUC=area under the curve; EVT=endovascular thrombectomy; KNN=k-nearest neighbors; LASSO=least absolute 

shrinkage and selection operator; LightGBM=Light Gradient Boosting Machine; LR=logistic regression; MLP=multi-layer perceptron; 

RF=random forest; SVM=support vector machine; XGBoost=extreme gradient boosting. 
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 SUMMARY SECTION 

PREVIOUS LITERATURE: Prior studies have examined the predictive value of CT-derived thrombus radiomics in stroke, focusing 

mainly on intra-thrombus features for predicting thrombectomy or thrombolysis outcomes. These investigations highlighted the 

role of CT signs and thrombus properties in prognostication but also revealed limitations due to reliance on subjective 

interpretation and a singular focus on intra-thrombus analysis. 

KEY FINDINGS: Our study validates a CT-based combined radiomics model utilizing both intra-thrombus and peri-thrombus 

features, with LR demonstrating the highest predictive accuracy for post-EVT outcomes in stroke. 

KNOWLEDGE ADVANCEMENT: The research advances understanding by integrating peri-thrombus features into predictive 

modeling, offering a more comprehensive and objective analysis that surpasses traditional evaluations, thereby enhancing stroke 

outcome predictions. 



 

INTRODUCTION 

Acute ischemic stroke significantly contributes to death, disability, and high morbidity globally, significantly impacting global 

mortality rates1. Endovascular thrombectomy (EVT) is the standard treatment recommended for patients experiencing acute anterior-

circulation large vessel occlusion2, 3. However, endovascular thrombectomy (EVT) is associated with certain complications, such as 

intracranial hemorrhage and malignant brain edema4-8. The presence of these conditions notably compromises the probability of 

positive clinical outcomes and elevates the risk of death. Given the heterogeneity of functional outcomes even after a successful 

procedure, there is an urgent need to both identify patients who are suitable for EVT and predict early poor outcomes. These efforts 

can subsequently enhance patient prognosis.  

In recent years, certain radiological signs such as the high-density middle cerebral artery sign, intracranial high-density areas, large 

ischemic cores, and mismatch of CT perfusion have been identified as predictors of the clinical outcomes9-12. Although these CT 

features provide valuable insights, their evaluation depends heavily on the subjective interpretation by radiologists and may not be 

sufficient for accurate prognosis prediction. Thus, developing a more precise and objective prediction model is essential.  

Radiomics analysis offers a quantitative approach by analyzing the variations in gray levels between pixels, allowing for a detailed, 

high-throughput examination of imaging data that surpasses the conventional visual assessments performed by experts. This method 

holds promise for enhancing diagnostic accuracy. Machine learning models such as support vector machine (SVM), logistic regression 

(LR), and random forest (RF) have proven effective in delivering precise predictions, thus aiding healthcare professionals in refining 

stroke management and enhancing patient outcomes13. Recent progress in CT-derived radiomics, particularly in analyzing thrombus 

properties, has shown potential in forecasting various clinical outcomes. While previous research has validated the effectiveness of CT-

derived thrombus radiomics in determining thrombus age, composition, and origin, as well as predicting outcomes after thrombectomy 

or thrombolysis treatments, and employing a CTA-based thrombus radiomics model to estimate the timing of stroke onset14-18, these 

studies have primarily focused on intra-thrombus features. There remains a significant research gap in examining peri-thrombus areas 

and their role in predicting clinical outcomes after EVT. 

Consequently, this research seeks to evaluate the predictive capacity of both intra-thrombus and peri-thrombus radiomic features 

extracted from CT scans for clinical outcomes post-EVT. We also aim to identify the most effective machine learning classifier for this 

purpose through rigorous statistical analysis.  

 

MATERIALS AND METHODS 

Patients 

This research adhered to the Declaration of Helsinki's guidelines and received approval from the ethics committees of the participating 

hospitals, and was granted a waiver from the need for informed consent. We performed a retrospective analysis on acute stroke patients 

who were admitted to two medical centers between March 2018 and March 2024. The inclusion criteria included: (1) acute stroke 

resulting from anterior-circulation large vessel occlusion; (2) visible thrombus related signs on initial NCCT or CTA at admission; (3) 

mRS score prior to stroke less than 3; (4) subsequent immediate EVT; and (5) comprehensive demographic and clinical data 

availability. Criteria for exclusion were inadequate imaging clarity due to motion or metal artifacts and incomplete clinical records. 

Collected clinical data encompassed age, sex, medical history (including hypertension, diabetes, hyperlipidemia, atrial fibrillation, and 

coronary artery disease), and NIHSS score at admission. In this study, “prognosis” is defined as the clinical outcomes observed 90 days 

after EVT, as gauged by the mRS. The assessment specifically targets the restitution of motor function and the frequency of major 

complications. At 90 days, two specialized stroke neurologists (JLW, JXJ) conducted a systematic evaluation of the mRS scores. 

Patients were categorized into two groups according to their mRS scores: the good outcome group with mRS scores less than 3, and the 

poor outcome group with mRS scores ranging from 3 to 6. Patients from Center A were assigned to the training cohort, while those 

from Center B were designated to the validation cohort. The patient selection process and analytical pathway are depicted in Figure 1. 

For further details on the code and model files, please contact the corresponding author via email. 

CT data acquisition and thrombus segmentation 
The radiomics process encompassed outlining the ROI, extraction of radiomic features, feature selection, and construction of predictive 

models (Figure 2). NCCT and CTA imaging was executed using 64- to 256-slice CT scanners from two vendors (SOMATOM Force 

by Siemens, Germany; GE Revolution and GE Optime CT680 by GE, USA), set with a reconstruction slice thickness between 0.63 

and 1.00 mm. Prior to thrombus segmentation, all CT scans were subject to intensity normalization, adjusting the intensity values to a 

0-600 range. The images were also adjusted to a uniform resolution of 1 × 1 × 1 mm to standardize voxel dimensions. Thrombus-

associated ROIs were outlined using ITK-SNAP software (Version 3.6.0; http://www.itksnap.org/pmwiki/pmwiki.php)，referencing 

DSA images with the method used in our previous study15. After segmenting the intra-thrombus regions, the peri-thrombus areas were 

automatically segmented by increasing the radius by 1 mm from the original ROIs using Python (Version 2.7.13). To assess the 

precision of segmentation, 30 thrombi selected at random were delineated two times from CTA scans via one radiologist (MDL) within 

a two-week period and independently verified by another radiologist (HMG). Both readers were unaware of the patients' clinical data 

during the segmentation process. 

Feature Extraction and Selection 
Following the delineation of intra-thrombus and peri-thrombus regions, radiomic features were obtained via the PyRadiomics library 

(https://pypi.org/project/pyradiomic/). From both regions on NCCT and CTA scans, 428 features were derived in total. To normalize 

these features and reduce variability across variances, Z-score normalization was applied, scaling the features to a 0–1 range in the 

training cohort. This normalization process was replicated in the validation datasets as well. Feature selection was carried out on the 

training cohort via the Mann–Whitney U test to screen out redundant radiomic features, keeping only those significant at a level of p < 
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0.05. To assess the inter-feature relationships, Spearman’s rank correlation coefficients were calculated, and only features that 

demonstrated a correlation coefficient above 0.9 with at least two other features were kept. The refined dataset was then subjected to 

the least absolute shrinkage and selection operator (LASSO) regression model to develop a predictive radiomic signature. In this study, 

we conducted k-fold cross-validation as part of our regularization process, specifically tuning the Lambda (λ) parameter to select 

features optimally. 
 

 

FIG 1. Flow chart of the patient-selection process. 

 
Classifier Model Building and Evaluation 
For the selection of radiomic features, the max-relevance and min-redundancy method followed by the LASSO technique were 

implemented sequentially. This method ranked radiomic features with an intraclass correlation coefficient above 0.90 based on their 

relevance-redundancy index. From this ranking, the top 10 features exhibiting the highest relevance were preserved. These chosen 

features were further refined through the LASSO classifier to pinpoint an optimized subset for model development. A radiomics 

signature was established via multiple logistic regression, utilizing the selected features, and a Rad-score was computed by summing 



these features, each weighted by its respective coefficient. 

To evaluate the clinical differences between patient groups with and without good outcome, both univariate and multivariate 

analyses were performed. Additionally, eight supervised machine learning algorithms—RF, LR, SVM, k-nearest neighbors (KNN), 

extra trees, Light Gradient Boosting Machine (LightGBM), multi-layer perceptron (MLP), and extreme gradient boosting 

(XGBoost)—were utilized as classifiers. After feature selection through the LASSO method, these features were incorporated into the 

models, and a 5-fold cross-validation strategy was adopted to confirm the final Rad signature. The DeLong test was used to statistically 

assess differences in predictive performance among the radiomics models (intra-thrombus, peri-thrombus, and combined models). The 

CheckList for EvaluAtion of Radiomics study served as the guideline for standardized reporting in this radiomics research. The 

optimal classification algorithm was identified to develop a clinical prediction model that incorporates selected clinical variables. 

Statistical Analysis 
Clinical characteristics were evaluated via the t-test, Mann–Whitney U test, or chi-squared test as appropriate. To analyze the 

correlations among features, Spearman’s rank correlation coefficient was employed, retaining those features with a coefficient above 

0.9. The consistency of the ROI delineation was verified using the intraclass correlation coefficient, with an intraclass correlation 

coefficient greater than 0.75 indicating strong reliability. The predictive models’ efficacy post-EVT was assessed with receiver 

operating characteristic curve analysis and DeLong test for variations. A p-value below 0.05 was deemed statistically significant. To 

mitigate Type I errors from multiple comparisons, we utilized False Discovery Rate corrections in our analysis. 

We hereby present this article following the STARD reporting checklist （Online Supplemental Data）. 
 

 

FIG 2. Workflow of the CT-based radiomics model. 

 

RESULTS 
Patient Characteristics 
In our study, 336 stroke patients were carefully chosen based on defined criteria, of which 128 (38.1%) assessed as poor outcome 

following EVT. The study divided these patients into two cohorts: 161 from center A formed the training group, and 175 from center B 

comprised the validation group. Table 1 provides a detailed summary of the demographic and clinical characteristics of the patients, 

categorized based on the outcome after EVT, for both the training and validation groups. The analysis showed no significant statistical 

differences in gender, age, hypertension, hyperlipidemia, diabetes, smoking habits, coronary heart disease, or NIHSS scores between 

the good outcome and poor outcome groups across both cohorts. However, a notable statistical difference was found in the incidence 

of atrial fibrillation between the groups. No statistically significant variance was observed when comparing the two cohorts. 

Feature Extraction and Selection 
The intraclass correlation coefficient values demonstrated strong agreement (0.75-0.90) for the radiomic features. After confirming this 

consistency, all pertinent radiomic features were extracted and used to build predictive models. Ultimately, the Rad scores were 

formulated using 6, 12, and 15 features with non-zero coefficients for the intra-thrombus, peri-thrombus, and combined models, 

respectively, as shown in Figure 3. Detailed information on the chosen radiomic features can be found in the Online Supplementary 

Material. It was noted that all selected radiomic features originated from CTA images, with no features being chosen from NCCT  
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FIG 3. Radiomics feature selection based on the Least absolute shrinkage and selection operator (LASSO) algorithm and Rad 

score based on intra-thrombus(A), peri-thrombus(B) and combined regions (C). 

 

 

 

FIG 4. In the training(A) and validation(B) cohorts, the eight classifiers including the LR, SVM, KNN, RF, extra trees, XGBoost, 

Light GBM, MLP obtained AUCs for the models, respectively. In the validation cohort, the AUC range of each model based on 

intra-thrombus regions is 0.61-0.70, based on peri-thrombus regions is 0.74-0.87 and combined regions is 0.74-0.90 (C). 

 



images. 

Performance and Comparison of Models 
The performance of eight classifiers—LR, SVM, KNN, RF, Extra Trees, XGBoost, Light GBM, and MLP—was assessed in both the 

training and validation cohorts. The results are detailed in Online Supplemental Data and Figure 4.  

In the evaluation of models for the intra-thrombus, peri-thrombus, and combined regions, XGBoost consistently outperformed other 

algorithms in the training cohort. However, it experienced a noticeable decline in performance when evaluated on the validation 

cohort. KNN, LightGBM, and RF showed similar performance to XGBoost. LR performed slightly lower in the training cohort 

compared to these models and was relatively stable, but excelled in the validation cohort. 

Within the intra-thrombus models of the validation cohort, the LR achieved the highest AUC of 0.70 (95% CI: 0.62-0.78), showing 

statistically significant differences compared to XGBoost (p=0.03), RF (p=0.03), and KNN (p=0.01), exhibiting no statistically 

significant disparities when compared to LightGBM (p=0.26), Extra Trees (p=0.97), MLP (p=0.36), and SVM (p=0.13). For the peri-

thrombus models, the LR exhibited the greatest AUC of 0.80 (95% CI: 0.73-0.87), demonstrating statistically significant distinctions 

when compared to Extra Trees (p=0.002), LightGBM (p=0.04), MLP (p=0.03), and SVM (p=0.01), whereas it did not differ 

significantly from RF (p=0.18),XGBoost (p=0.05), and KNN (p=0.60). In the combined regions, the LR model reached an AUC of 

0.87 (95% CI: 0.81 - 0.92), and was statistically different compared to Extra Trees (p=0.01), KNN (p=0.02), RF (p=0.01), XGBoost 

(p<0.001), LightGBM (p<0.001), MLP (p=0.01), and SVM (p=0.01). 

190Furthermore, in the validation cohort, the diagnostic capability of the LR model using the combined regions significantly 

surpassed that of both the intra-thrombus (p<0.001) and peri-thrombus models (p=0.01). However, no significant difference in 

diagnostic performance was observed between the intra-thrombus and peri-thrombus models (p=0.05). 

We integrated clinical parameters into a LR radiomics model but observed no significant predictive gains in the validation cohort (P 

> 0.05). An exclusively clinical LR model has also been formulated. The receiver operating characteristic curves for all three models 

can be examined in the Supplementary Data available online. 

 

Table 1: Baseline demographic characteristics and clinical variables of enrolled patients 

Variables 

Training cohort (n=161) Validation cohort (n=175) P value 

Good outcome 

(n=110) 

mRS(0-2) 

Poor outcome 

(n=51) 

mRS(3-6) 

P value 

Good outcome 

(n=98) 

mRS(0-2) 

Poor outcome 

(n=77) 

mRS(3-6) 

P value 

 

Age,years 65.7±11.65 63.76±13.51 0.45 66.76±12.45 66.96±13.28 0.83 0.20 

Male, n (%) 69(62.73) 34(66.67) 0.76 68(69.39) 48(62.34) 0.41 0.66 

History, n (%)        

Hypertension 90(81.82) 41(80.39) 1.00 71(72.45) 54(70.13) 0.87 0.05 

Hyperlipidemia 36(32.73) 16(31.37) 1.00 23(23.47) 25(32.47) 0.25 0.33 

Diabetes 34(30.91) 19(37.25) 0.54 25(25.51) 24(31.17) 0.51 0.33 

Smoking 21(19.09) 15(29.41) 0.21 23(23.47) 16(20.78) 0.81 0.99 

Atrial fibrillation 74(67.27) 24(47.06) 0.02 69(70.41) 42(54.55) 0.05 0.63 

Coronary heart 

disease 
22(20.00) 7(13.73) 0.46 16(16.33) 14(18.18) 0.90 0.83 

NIHSS 14.26±8.45 14.51±8.24 0.92 14.32±7.57 15.27±6.90 0.19 0.64 

 

DISCUSSION 

In this retrospective analysis, our aim was to use radiomic features derived from intra-thrombus and peri-thrombus regions on CT 

scans to forecast prognosis following EVT in patients with acute ischemic stroke. A significant gap exists in the current research 

regarding the use of thrombus-related radiomics for predicting clinical outcomes following EVT, especially in peri-thrombotic areas, 

as some studies focus on recanalization following EVT13, 17. Our study developed and validated a radiomics model that utilizes features 

from both intra-thrombus and peri-thrombus regions to estimate prognosis after EVT. We employed eight different classifiers to 

determine which models offer robust diagnostic effectiveness and superior generalization capabilities. Among these, the LR model 
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using combined radiomics features proved to be the most precise in predicting outcomes.  

Prior research has shown that the duration of thrombectomy and the frequency of interventions can influence the long-term 

outcomes in patients19, 20. There is also evidence suggesting a relationship between the thrombus's structural composition and the 

number and duration of EVT procedures21, 22. Variables like the use of stent retrievers, thrombotic makeup, and the count of 

thrombectomy sessions might lead to varying extents of vascular trauma in patients with acute ischemic stroke23, 24, indicating that 

thrombus composition could be a critical factor in forecasting prognosis post-EVT. In this study, we constructed a combined model 

using 15 selected radiomic features derived solely from CTA scans, which included 9 features from intra-thrombus regions and 6 from 

peri-thrombus regions. Our analysis reveals that radiomic features from both intra- and peri-thrombus regions have potent predictive 

capabilities, particularly those from peri-thrombus areas. In the validation cohort, radiomics from the peri-thrombus areas notably 

enhanced the prediction of prognosis post-EVT over features from intra-thrombus regions alone. Based on prior research25, 26 and 

actual measurements of vessel wall thickness in high-resolution MR images, we defined the peri-thrombus region as extending 1mm 

outward from the thrombus boundary. The peri-thrombotic region, which includes structures like the vessel wall and perivascular fat, 

may offer predictive insights into the disruption of the BBB associated with a heightened risk of complications, aligning with previous 

findings27, 28. Given that BBB disruption is commonly observed post-EVT and is linked to an increased risk of complications27, 29, 

radiomic features from peri-thrombus regions could serve as crucial predictors of clinical outcomes post-EVT. Utilizing information 

from both regions significantly improves diagnostic performance, surpassing that of models using only intra- or peri-thrombus data, 

underscoring the value of integrating data from both regions for enhanced prediction accuracy. 

The selection of classifiers is pivotal to the effectiveness of predictive models, yet there remains no universal standard guiding this 

choice, leading researchers to rely on personal preference and experience30. Consequently, this study assessed and compared eight 

different machine learning classifiers. The findings indicated that the LR model was consistently more effective than others in both 

training and validation cohorts, particularly when analyzing combined radiomic features, where it achieved the highest AUC across all 

classifiers. LR was favored over complex models for its statistical simplicity, interpretability, and robust performance for binary 

classification tasks associated with lesser risks of overfitting15, 31, 32. Given the scope and nature of our data, we believed that a 

parsimonious model like LR would be more appropriate. Complex models like SVM, MLP, RF, Extra Trees, XGBoost, KNN, and 

LightGBM, despite their high-dimensional data handling and robustness, were prone to overfitting without substantial data and careful 

tuning. The notable decline in XGBoost’s validation performance highlighted the overfitting risk and the need for a balance between 

model complexity and generalizability. LR’s consistent validation cohort performance affirmed its suitability and reliability for clinical 

diagnostics, justifying its choice due to effective generalization as demonstrated across datasets. 

In this study, except for atrial fibrillation, no clinical variables exhibited statistically significant differences between the good 

outcome and poor outcome groups in either the training or validation cohorts. Notably, a significant difference in the occurrence of 

atrial fibrillation between the good outcome and poor outcome groups was identified, which stands in contrast to other studies that 

found no significant differences31, 33, 34. This inconsistency can be explained by variations in data arrangement and the sample sizes 

involved in our research. To further understand these discrepancies, additional research with larger sample sizes is recommended. The 

combined model did not demonstrably enhance predictive performance over the radiomics-only model, suggesting a greater reliance on 

superior-performing radiomics features rather than clinical variables. 

This study has several notable limitations. Firstly, the patient sample size is relatively small, which may impact the stability of the 

machine learning model outcomes; applying these models to larger datasets could potentially provide more robust results. Secondly, 

the thrombus segmentation process was manually conducted, which could be time-consuming and might compromise the reliability of 

the results. Future research should focus on developing automated or semi-automated methods for more efficient and accurate 

thrombus segmentation. Thirdly, we sourced training and validation cohorts from separate centers, and despite image calibration and 

cross-validation efforts, potential bias may exist. Lastly, even with cross-validation and regularization techniques, overfitting is a 

challenge in high-dimensional data like ours. Future studies need to encompass more centers and larger samples to validate our 

findings with external data. 

CONCLUSIONS 

In summary, we developed and validated a CT imaging-based radiomics model to evaluate the prognosis following EVT in patients 

with acute ischemic stroke. This model could provide critical insights for clinical decision-making and outcome prediction. The 

analysis showed varied performance across different thrombus regions and classifiers, with models that combined features from 

multiple regions proving most effective. Specifically, the LR models exhibited high efficacy and stability in predicting clinical 

outcome. 

 

ACKNOWLEDGMENTS  

This study was supported by Jiangsu Province Capability Improvement Project through Science，Technology and Education （

Jiangsu Provincial Medical Key Discipline Cultivation Unit，JSDW202242）and National Natural Science Foundation of China 

(Youth Program, Grant No. 82402364). 

 



REFERENCES 
1.Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology 

2019;18:439-58. https://doi.org/10.1016/s1474-4422(19)30034-1 

2. Sarraj A, Hassan AE, Abraham MG, et al. Trial of Endovascular Thrombectomy for Large Ischemic Strokes. The New England journal of medicine 

2023;388:1259-71. https://doi.org/10.1056/NEJMoa2214403 

3.Yoshimura S, Sakai N, Yamagami H, et al. Endovascular Therapy for Acute Stroke with a Large Ischemic Region. The New England journal of 

medicine 2022;386:1303-13. https://doi.org/10.1056/NEJMoa2118191 

4.Zhang X, Xie Y, Wang H, et al. Symptomatic Intracranial Hemorrhage After Mechanical Thrombectomy in Chinese Ischemic Stroke Patients: The 

ASIAN Score. Stroke 2020;51:2690-96. https://doi.org/10.1161/strokeaha.120.030173 

5.Zi W, Qiu Z, Li F, et al. Effect of Endovascular Treatment Alone vs Intravenous Alteplase Plus Endovascular Treatment on Functional Independence 

in Patients With Acute Ischemic Stroke: The DEVT Randomized Clinical Trial. Jama 2021;325:234-43. https://doi.org/10.1001/jama.2020.23523 

6.Harker P, Aziz YN, Vranic J, et al. Asymptomatic Intracerebral Hemorrhage Following Endovascular Stroke Therapy Is Not Benign: A Systematic 

Review and Meta-Analysis. Journal of the American Heart Association 2024;13:e031749. https://doi.org/10.1161/jaha.123.031749 

7.Huang X, Yang Q, Shi X, et al. Predictors of malignant brain edema after mechanical thrombectomy for acute ischemic stroke. Journal of 

neurointerventional surgery 2019;11:994-98. https://doi.org/10.1136/neurintsurg-2018-014650 

8.Thorén M, Dixit A, Escudero-Martínez I, et al. Effect of Recanalization on Cerebral Edema in Ischemic Stroke Treated With Thrombolysis and/or 

Endovascular Therapy. Stroke 2020;51:216-23. https://doi.org/10.1161/strokeaha.119.026692 

9.Merlino G, Tereshko Y, Pez S, et al. Hyperdense middle cerebral artery sign predicts favorable outcome in patients undergoing mechanical 

thrombectomy. Journal of thrombosis and thrombolysis 2023;55:312-21. https://doi.org/10.1007/s11239-022-02731-4 

10.Lu ZJ, Lai JX, Huang JR, et al. Predictive value of intracranial high-density areas in neurological function. World journal of psychiatry 

2024;14:1080-86. https://doi.org/10.5498/wjp.v14.i7.1080 

11.Beyeler M, Pohle F, Weber L, et al. Long-Term Effect of Mechanical Thrombectomy in Stroke Patients According to Advanced Imaging 

Characteristics. Clinical neuroradiology 2024;34:105-14. https://doi.org/10.1007/s00062-023-01337-4 

12.Olivot JM, Albucher JF, Guenego A, et al. Mismatch Profile Influences Outcome After Mechanical Thrombectomy. Stroke 2021;52:232-40. 

https://doi.org/10.1161/strokeaha.120.031929 

13.Xiong X, Wang J, Ke J, et al. Radiomics-based intracranial thrombus features on preoperative noncontrast CT predicts successful recanalization of 

mechanical thrombectomy in acute ischemic stroke. Quantitative imaging in medicine and surgery 2023;13:682-94. https://doi.org/10.21037/qims-22-

599 

14.Wang C, Li T, Jia Z, et al. Radiomics features on computed tomography reflect thrombus histological age prior to endovascular treatment of acute 

ischemic stroke. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association 2023;32:107358. 

https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107358 

15.Jiang J, Wei J, Zhu Y, et al. Clot-based radiomics model for cardioembolic stroke prediction with CT imaging before recanalization: a multicenter 

study. European radiology 2023;33:970-80. https://doi.org/10.1007/s00330-022-09116-4 

16.Wang C, Hang Y, Cao Y, et al. A nomogram for predicting thrombus composition in stroke patients with large vessel occlusion: combination of 

thrombus density and perviousness with clinical features. Neuroradiology 2023;65:371-80. https://doi.org/10.1007/s00234-022-03046-0 

17.Qiu W, Kuang H, Nair J, et al. Radiomics-Based Intracranial Thrombus Features on CT and CTA Predict Recanalization with Intravenous Alteplase 

in Patients with Acute Ischemic Stroke. AJNR American journal of neuroradiology 2019;40:39-44. https://doi.org/10.3174/ajnr.A5918 

18.Cheng Y, Wan S, Wu W, et al. Computed Tomography Angiography-Based Thrombus Radiomics for Predicting the Time Since Stroke Onset. 

Academic radiology 2023;30:2469-76. https://doi.org/10.1016/j.acra.2022.12.032 

19.Alawieh A, Vargas J, Fargen KM, et al. Impact of Procedure Time on Outcomes of Thrombectomy for Stroke. Journal of the American College of 

Cardiology 2019;73:879-90. https://doi.org/10.1016/j.jacc.2018.11.052 

20.Bourcier R, Saleme S, Labreuche J, et al. More than three passes of stent retriever is an independent predictor of parenchymal hematoma in acute 

ischemic stroke. Journal of neurointerventional surgery 2019;11:625-29. https://doi.org/10.1136/neurintsurg-2018-014380 

21.Abbasi M, Arturo Larco J, Mereuta MO, et al. Diverse thrombus composition in thrombectomy stroke patients with longer time to recanalization. 

Thrombosis research 2022;209:99-104. https://doi.org/10.1016/j.thromres.2021.11.018 

22.Maekawa K, Shibata M, Nakajima H, et al. Erythrocyte-Rich Thrombus Is Associated with Reduced Number of Maneuvers and Procedure Time in 

Patients with Acute Ischemic Stroke Undergoing Mechanical Thrombectomy. Cerebrovascular diseases extra 2018;8:39-49. 

https://doi.org/10.1159/000486042 

23.Funatsu N, Hayakawa M, Hashimoto T, et al. Vascular wall components in thrombi obtained by acute stroke thrombectomy: clinical significance and 

related factors. Journal of neurointerventional surgery 2019;11:232-36. https://doi.org/10.1136/neurintsurg-2018-014041 

24.Koge J, Kato S, Hashimoto T, et al. Vessel Wall Injury After Stent Retriever Thrombectomy for Internal Carotid Artery Occlusion with Duplicated 

Middle Cerebral Artery. World neurosurgery 2019;123:54-58. https://doi.org/10.1016/j.wneu.2018.11.223 

25.Obusez EC, Hui F, Hajj-Ali RA, et al. High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction 

syndrome and central nervous system vasculitis. AJNR American journal of neuroradiology 2014;35:1527-32. https://doi.org/10.3174/ajnr.A3909 

26.Zhu C, Haraldsson H, Tian B, et al. High resolution imaging of the intracranial vessel wall at 3 and 7 T using 3D fast spin echo MRI. Magma (New 

York, NY) 2016;29:559-70. https://doi.org/10.1007/s10334-016-0531-x 

27.Hom J, Dankbaar JW, Soares BP, et al. Blood-brain barrier permeability assessed by perfusion CT predicts symptomatic hemorrhagic transformation 

and malignant edema in acute ischemic stroke. AJNR American journal of neuroradiology 2011;32:41-8. https://doi.org/10.3174/ajnr.A2244 

28.Renú A, Laredo C, Lopez-Rueda A, et al. Vessel Wall Enhancement and Blood-Cerebrospinal Fluid Barrier Disruption After Mechanical 

Thrombectomy in Acute Ischemic Stroke. Stroke 2017;48:651-57. https://doi.org/10.1161/strokeaha.116.015648 

29.Shi ZS, Duckwiler GR, Jahan R, et al. Early Blood-Brain Barrier Disruption after Mechanical Thrombectomy in Acute Ischemic Stroke. Journal of 

neuroimaging : official journal of the American Society of Neuroimaging 2018;28:283-88. https://doi.org/10.1111/jon.12504 

30.Gu H, Zhang X, di Russo P, et al. The Current State of Radiomics for Meningiomas: Promises and Challenges. Frontiers in oncology 

2020;10:567736. https://doi.org/10.3389/fonc.2020.567736 

31.Xie G, Li T, Ren Y, et al. Radiomics-based infarct features on CT predict hemorrhagic transformation in patients with acute ischemic stroke. 

Frontiers in neuroscience 2022;16:1002717. https://doi.org/10.3389/fnins.2022.1002717 

32.Bisaso KR, Karungi SA, Kiragga A, et al. A comparative study of logistic regression based machine learning techniques for prediction of early 

virological suppression in antiretroviral initiating HIV patients. BMC medical informatics and decision making 2018;18:77. 

https://doi.org/10.1186/s12911-018-0659-x 



3-1 

33.van Kranendonk KR, Treurniet KM, Boers AMM, et al. Clinical and Imaging Markers Associated With Hemorrhagic Transformation in Patients 

With Acute Ischemic Stroke. Stroke 2019;50:2037-43. https://doi.org/10.1161/strokeaha.118.024255 

34.Xu J, Chen XY, Wang HY, et al. Hemodynamic predictors of early neurological deterioration and clinical outcome after endovascular treatment in 

large artery occlusion. Heliyon 2024;10:e24746. https://doi.org/10.1016/j.heliyon.2024.e24746 

 

SUPPLEMENTAL FILES 

Online Supplemental Data: 

Online Supplemental Data: Performance of eight classifiers in training and validation cohort 

Classifiers Groups Accuracy AUC 95% CI Sensitivity Specificity PPV NPV F1 Score 

Intra-thrombus          

LR 
Training 0.78 0.81 0.73- 0.88 0.69 0.82 0.64 0.85 0.66 

validation  0.70 0.70 0.62- 0.78 0.44 0.91 0.79 0.67 0.57 

SVM 
Training 0.81 0.82 0.73- 0.90 0.73 0.86 0.70 0.87 0.71 

validation 0.65 0.63 0.55- 0.72 0.49 0.77 0.62 0.66 0.55 

KNN 
Training 0.86 0.91 0.87- 0.96 0.65 0.96 0.89 0.86 0.75 

validation 0.61 0.61 0.52- 0.69 0.13 0.99 0.91 0.59 0.23 

RF 
Training 0.88 0.87 0.81- 0.94 0.71 0.96 0.88 0.88 0.78 

validation 0.65 0.63 0.54- 0.72 0.51 0.77 0.63 0.66 0.56 

ExtraTrees 
Training 0.75 0.81 0.73- 0.88 0.73 0.76 0.59 0.86 0.65 

validation 0.66 0.70 0.62- 0.78 0.65 0.67 0.61 0.71 0.63 

XGBoost 
Training 0.91 0.92 0.87- 0.98 0.78 0.97 0.93 0.91 0.85 

validation 0.65 0.64 0.55- 0.72 0.31 0.92 0.75 0.63 0.44 

LightGBM 
Training 0.80 0.86 0.80- 0.92 0.77 0.82 0.66 0.88 0.71 

validation 0.67 0.67 0.59- 0.75 0.55 0.78 0.66 0.69 0.60 

MLP 
Training 0.78 0.81 0.74- 0.89 0.71 0.82 0.64 0.86 0.67 

validation 0.68 0.69 0.61- 0.77 0.51 0.82 0.68 0.68 0.58 

Peri-thrombus          

LR 
Training 0.73 0.83 0.76 - 0.90 0.75 0.73 0.56 0.86 0.64 

validation  0.77 0.80 0.73 - 0.87 0.68 0.85 0.78 0.77 0.72 

SVM 
Training 0.75 0.83 0.76 - 0.91 0.84 0.70 0.57 0.91 0.68 

validation 0.74 0.72 0.64 - 0.80 0.66 0.80 0.72 0.75 0.69 

KNN 
Training 0.83 0.88 0.83 - 0.93 0.55 0.96 0.88 0.82 0.68 

validation 0.73 0.81 0.75 - 0.88 0.47 0.94 0.86 0.69 0.61 

RF 
Training 0.73 0.86 0.80 - 0.92 0.82 0.69 0.55 0.89 0.66 

validation 0.74 0.76 0.69 - 0.84 0.69 0.78 0.71 0.76 0.70 

ExtraTrees 
Training 0.68 0.81 0.74 - 0.88 0.82 0.61 0.49 0.88 0.62 

validation 0.68 0.72 0.64 - 0.79 0.74 0.63 0.61 0.76 0.67 

XGBoost Training 0.90 0.96 0.93 - 0.99 0.94 0.88 0.79 0.97 0.86 

https://doi.org/10.1016/j.heliyon.2024.e24746


validation 0.68 0.75 0.68 - 0.82 0.71 0.65 0.62 0.74 0.66 

LightGBM 
Training 0.78 0.88 0.83 - 0.93 0.71 0.82 0.64 0.86 0.67 

validation 0.66 0.74 0.67 - 0.82 0.68 0.65 0.61 0.72 0.64 

MLP 
Training 0.67 0.82 0.75 - 0.88 0.90 0.56 0.49 0.93 0.63 

validation 0.72 0.77 0.69 - 0.84 0.57 0.84 0.73 0.71 0.64 

Combined          

LR 
Training 0.85 0.91 0.86 - 0.96 0.84 0.86 0.73 0.92 0.78 

validation  0.81 0.87 0.81 - 0.92 0.81 0.82 0.78 0.84 0.79 

SVM 
Training 0.91 0.91 0.85 - 0.98 0.82 0.96 0.89 0.92 0.86 

validation 0.77 0.81 0.75 - 0.88 0.70 0.82 0.75 0.78 0.73 

KNN 
Training 0.81 0.91 0.87 - 0.96 0.78 0.82 0.67 0.89 0.72 

validation 0.74 0.80 0.73 - 0.87 0.56 0.90 0.81 0.72 0.65 

RF 
Training 0.87 0.94 0.91 - 0.98 0.86 0.87 0.76 0.93 0.81 

validation 0.74 0.77 0.70 - 0.84 0.56 0.89 0.80 0.72 0.66 

ExtraTrees 
Training 0.87 0.89 0.83 - 0.95 0.69 0.96 0.88 0.87 0.77 

validation 0.75 0.79 0.72 - 0.86 0.71 0.78 0.71 0.78 0.71 

XGBoost 
Training 0.95 0.98 0.95 - 1.00 0.90 0.97 0.94 0.96 0.92 

validation 0.74 0.77 0.70 - 0.84 0.62 0.84 0.75 0.74 0.68 

LightGBM 
Training 0.85 0.93 0.88 - 0.97 0.86 0.85 0.72 0.93 0.79 

validation 0.73 0.74 0.67 - 0.82 0.58 0.85 0.75 0.72 0.66 

MLP 
Training 0.87 0.90 0.85 - 0.96 0.80 0.90 0.79 0.91 0.80 

validation 0.77 0.82 0.76 - 0.89 0.70 0.83 0.76 0.78 0.73 

AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value; RF, random forest; LR, logistic 

regression, SVM, support vector machine, KNN, k nearest neighbors; Light GBM, light gradient boosting machine; MLP, multi-

layer perceptron; XGBoost, extreme gradient boosting. 

 

 

 

 

 

Online Supplemental Table 1: The detailed description of the selected radiomics features 

Radiomics features 
classification 

Radiomics features Description of radiomics characteristics 

Intra-thrombus Model   

firstorder 

TotalEnergy 
Represents the sum of squared voxel intensities throughout the image volume. Provides insight 
into the total magnitude of voxel values, which could reflect the mass and potential energy of 
the thrombus. 

Median 
A measure of central tendency, it is the middle value of voxel intensities when arranged in 
ascending order. Ideal for understanding the typical attenuation value, the median can relate to 
the composition of the thrombus. 

Neighbouring Gray Tone 
Difference Matrix(ngtdm) 

 
Contrast 

“Contrast” measures the local variations in image intensity. High contrast may indicate 
heterogeneity in the thrombus, potentially associated with clot composition. 
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Busyness 
Evaluates the rate of change in intensity values between a voxel and its neighbours. May 
indicate the complexity and the degree of structural change within the thrombus. 

Gray Level Size Zone 
Matrix (glszm) 

GrayLevelNonUniformity 
Measures the non-uniformity of gray-level intensity values, which reflects zones with similar 
gray level values. A higher non-uniformity suggests varying densities within the thrombus, 
potentially corresponding to different components like fibrin or red blood cells. 

shape Flatness 
Quantifies the flatness of the thrombus shape, calculated from the eigenvalues of a shape-based 
matrix. Helps identify irregular thrombus geometries. 

Peri-thrombus   

firstorder 

Minimum 
The lowest intensity value within the region of interest. Can indicate the presence of different 
regions within the peri-thrombus. 

TotalEnergy 
The sum of squared voxel intensities, indicating the overall magnitude of voxel values. 
May reflect on the peri-thrombus density and structure. 

Kurtosis 
A statistical measure that describes the distribution shape concerning the tails. Higher kurtosis 
indicates a more outlier-prone distribution. Provides insights into tissue heterogeneity. 

Skewness 
Reflects asymmetry in the distribution of voxel intensity values. Helps predict asymmetrical or 
irregular attributes. 

Gray Level Run Length 
Matrix(glrlm) 

RunEntropy 
Measures the randomness or complexity in the distribution of runs of pixels. A higher value 
could indicate a complex structure. 

LongRunHighGrayLevelE
mphasis 

Gives preference to the runs of high-intensity values that are longer. May suggest areas with 
dense calcifications within the peri-thrombus. 

RunLengthNonUniformity 
Quantifies the non-uniformity of run lengths, assessing the texture of the structures. 
Uneven run lengths might point to peri-thrombus heterogeneity. 

Gray Level Co-occurrence 
Matrix(glcm) 

Contrast 
Measures pixel intensity contrast between pixel pairs across the image, reflecting texture 
roughness. Helpful in understanding the level of density. 

Imc1 
A correlate of the homogeneity of textures across an image. Lower values may correlate with 
more uniform structures. 

Gray Level Dependence 
Matrix(gldm) 

LargeDependenceHighGr
ayLevelEmphasis 

Emphasizes larger dependencies with higher gray-level values. Can suggest peri-thrombus with 
sections of dense matter. 

ngtdm Strength 
Evaluates the strength of patterns or textures within the image. Strong patterns could indicate a 
consistent structural makeup that impacts treatment decisions. 

glszm ZoneVariance 
Measures the distribution of zone size and gray level variations. Variance in zone sizes can 
reflect the presence of different structure characteristics. 

Combined  
Intra- 

thrombus 

firstorder 

Median The same as above. 
TotalEnergy The same as above. 

Skewness 
“Skewness” reflect the asymmetry of the intensity histogram. It might provide insights into the 
physical characteristics of the thrombus. 

ngtdm Contrast The same as above. 

gldm 
LargeDependenceHighGr

ayLevelEmphasis 
This feature measures the joint distribution of large dependence with higher gray-level values. 
Clinically, it could be related to more dense or calcified areas within the thrombus. 

glszm 

GrayLevelNonUniformity The same as above. 

LargeAreaLowGrayLevel
Emphasis 

Highlights the presence of extensive, low-intensity areas, potentially indicating a softer 
thrombus composition. 



ZoneVariance 
These attributes assess the variability and uniformity of gray levels. Variations in gray level 
might suggest different textures within the thrombus. 

shape Flatness The same as above. 
Peri- 

thrombus 
firstorder 

Minimum The same as above. 
Skewness The same as above. 

glszm ZoneVariance The same as above. 
glcm DifferenceVariance Can assess the variation in intensity differences, suggesting textural complexity. 

glrlm 
LongRunHighGrayLevelE

mphasis 
The same as above. 

RunEntropy The same as above. 

 

 
Online Supplemental Table 2: Performance of clinical variables in validation cohort 

Models Accuracy AUC 95% CI Sensitivity Specificity PPV NPV F1 Score P value 

Intra-thrombus models          
Clinical 0.60  0.56  0.55-0.57 0.10  0.99  0.89  0.58  0.19  
Radiomics 0.67  0.71  0.70-0.72 0.51  0.81  0.67  0.68  0.58 0.18 
Radiomics+ Clinical 0.67  0.73  0.80-0.83 0.32  0.94  0.81  0.64  0.46  

Peri-thrombus models          
Clinical 0.60  0.56  0.55-0.57 0.10  0.99  0.89  0.58  0.19  
Radiomics 0.76 0.79 0.77-0.80 0.65  0.85  0.77  0.75  0.70 0.82 
Radiomics+ Clinical 0.69 0.79 0.78-0.81 0.32  0.98  0.93  0.65  0.48  

Combined models          
Clinical 0.60  0.56  0.55-0.57 0.10  0.99  0.89  0.58  0.19  
Radiomics 0.73  0.81  0.79-0.82 0.68  0.77  0.69  0.75  0.68 0.49 
          
Radiomics+ Clinical 0.74  0.81  0.72-0.74 0.45  0.96  0.90  0.69  0.60  

 

 

 
 

Online Supplemental Fig 1: The receiver operating characteristic curves for all three clinical models. 
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AIM 

STARD stands for “Standards for Reporting Diagnostic accuracy studies” . This list of items was developed to contribute to the completeness and transparency of reporting of diagnostic accuracy studies. 

Authors can use the list to write informative study reports. Editors and peer-reviewers can use it to evaluate whether the information has been included in manuscripts submitted for publication. 

 

 

Explanation 

A diagnostic accuracy study evaluates the ability of one or more medical tests to correctly classify study participants as having a target condition. This can be a disease, a disease stage, response or 

benefit from therapy, or an event or condition in the future. A medical test can be an imaging procedure, a laboratory test, elements from history and physical examination, a combination of these, or any 

other method for collecting information about the current health status of a patient. 

The test whose accuracy is evaluated is called index test. A study can evaluate the accuracy of one or more index tests. Evaluating the ability of a medical test to correctly classify patients is typically done by 

comparing the distribution of the index test results with those of the reference standard. The reference standard is the best available method for establishing the presence or absence of the target condition. 

An accuracy study can rely on one or more reference standards. 

If test results are categorized as either positive or negative, the cross tabulation of the index test results against those of the reference standard can be used to estimate the sensitivity of the index test (the 

proportion of participants with the target condition who have a positive index test), and its specificity (the proportion without the target condition who have a negative index test). From this cross tabulation 

(sometimes referred to as the contingency or “2x2” table), several other accuracy statistics can be estimated, such as the positive and negative predictive values of the test. Confidence intervals around 

estimates of accuracy can then be calculated to quantify the statistical precision of the measurements. 

If the index test results can take more than two values, categorization of test results as positive or negative requires a test positivity cut-off. When multiple such cut-offs can be defined, authors can report 

a receiver operating characteristic (ROC) curve which graphically represents the combination of sensitivity and specificity for each possible test positivity cut-off. The area under the ROC curve informs in 

a single numerical value about the overall diagnostic accuracy of the index test. 

The intended use of a medical test can be diagnosis, screening, staging, monitoring, surveillance, prediction or prognosis. The clinical role of a test explains its position relative to existing tests in the clinical 

pathway. A replacement test, for example, replaces an existing test. A triage testis used before an existing test; an add-on testis used after an existing test. 

Besides diagnostic accuracy, several other outcomes and statistics may be relevant in the evaluation of medical tests. Medical tests can also be used to classify patients for purposes other than diagnosis, 

such as staging or prognosis. The STARD list was not explicitly developed for these other outcomes, statistics, and study types, although most STARD items would still apply. 

 

 

DEVELOPMENT 

This STARD list was released in 2015. The 30 items were identified by an international expert group of methodologists, researchers, and editors. The guiding principle in the development of STARD was to  

select items that, when reported, would help readers to judge the potential for bias in the study, to appraise the applicability of the study findings and the validity of conclusions and recommendations. The 

list represents an update of the first version, which was published in 2003. More information can be found on http://www.equator-network.org/reporting-guidelines/stard. 

Please leave this space alone as it will be supplemented by the editorial office when needed. 
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