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 ABSTRACT 

BACKGROUND AND PURPOSE: Clinically, hemorrhagic transformation (HT) after mechanical thrombectomy 

(MT) is a common complication. This study is aim to investigate the value of clinical factors, CT signs, and 

radiomics in the differential diagnosis of high-density areas (HDAs) in the brain after MT in patients with acute 

ischemic stroke with large vessel occlusion (AIS-LVO). 

MATERIALS AND METHODS: A total of 156 eligible patients with AIS-LVO in Center I from December 2015 to 

June 2023 were retrospectively enrolled and randomly divided into training (n=109) and internal validation 

(n=47) sets at a ratio of 7:3. The data of 63 patients in Center II were collected as an external validation set. 

According to the diagnostic criteria, the patients in the three datasets were divided into a HT group and a non-

HT group. The clinical and imaging data from Centers I and II were used to construct a clinical factor and CT-

sign model, a radiomic model and a combined model by logistic regression (LR). Receiver operating 

characteristic (ROC) analysis was used to evaluate the diagnostic efficacy of each model in the three datasets. 

RESULTS: Clinical blood glucose (Glu) and the maximum cross-sectional area (Areamax) on CT were associated 

with the nature of the HDA according to multivariate LR analyses (P < 0.05). Among the three models, the 

combined model had the highest diagnostic efficiency, with area under the curve (AUC) values of 0.895, 0.882, 

and 0.820 in the three datasets, which were significantly greater than the AUC values of the radiomic model 

(0.887, 0.898, 0.798) and clinical factor and CT sign model (0.831, 0.744, 0.684). 

CONCLUSIONS: The combined model based on radiomics had the best performance, indicating that radiomic 

features can be used as imaging biomarkers to aid in the clinical judgment of the nature of HDA after MT. 

 
ABBREVIATIONS: HDA ＝high-density area; HT ＝hemorrhagic transformation; MT ＝mechanical thrombectomy; 

AIS-LVO ＝acute ischemic stroke with large vessel occlusion; LR ＝logistic regression; AUC ＝area under the 

curve; ICE ＝iodine contrast extravasation; DECT ＝dual energy CT; IOM ＝iodine overlay map; VNC ＝virtual 

noncontrast; Glu ＝ glucose; LASSO ＝ least absolute shrinkage and selection operator; ICC ＝ intraclass 

correlation coefficient; ROC ＝receiver operating characteristic; DCA ＝decision curve analysis 
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 SUMMARY SECTION 
PREVIOUS LITERATURE: AIS-LVO is a highly prevalent and lethal disease, and the most common treatment is 
MT if the patient is still within the time window. However, the occurrence of HT after MT is a clinical problem 
of great concern to radiology, neurology and neurosurgery. It is currently difficult to achieve early diagnosis of 
HDA in the brain after MT without DECT. Therefore radiomics may be helpful in determining the nature of HDA. 

KEY FINDINGS: Clinical factors & CT signs & Radiomics model has a good diagnostic efficacy for HT within HDA 
after MT, and external validation has confirmed this. Thus, radiomics offers a reference for clinical practice 
and assisting in early treatment decisions. 

KNOWLEDGE ADVANCEMENT: Radiomics is able to detect subtle changes in HDA density between HT and ICE, 
which is difficult for the human eye to do. Combined with clinical and imaging data, we believe that many 
clinical problems caused by HDA can be solved. 

INTRODUCTION 

Acute ischemic stroke with large vessel occlusion (AIS-LVO) is a serious form of AIS with a dire prognosis and is 

associated with staggering disability and a mortality rate surpassing 70%.[1] At present, mechanical thrombectomy 

(MT) is the preferred therapeutic method for patients with AIS-LVO.[2] In the pursuit of averting postoperative 

complications, NCCT post-MT has emerged as an indicator of potential complications. The high-density area (HDA) 

within the cerebral parenchyma is a frequent radiological discovery with an incidence of 73%, which can stem from 

iodine contrast extravasation (ICE) during MT or incipient hemorrhagic transformation (HT).[3] Differentiating 

between these two imaging methods on CT alone is difficult, and multiple postoperative CT reviews are required 

for differentiation. However, there is a large difference in the methods used for clinical intervention. Current 

investigations predominantly focus on effectively extracting CT image features, such as the maximum CT value of 

HDA and the metallic hyperdensity sign, to distinguish between them. [4] In recent years, dual energy CT (DECT) 

has been a breakthrough in the early differential diagnosis of HT and ICE, which uses two different energy levels to 

organize material qualitative and quantitative analysis, produce different types of images, such as Z-effective, iodine 

overlay map (IOM), virtual noncontrast (VNC) and so on. Due to the different attenuation characteristics of iodine 

and blood, two specific energy levels (generally 80 keV and 140 keV) can be used to distinguish HT from ICE. 

Therefore, some studies have suggested that DECT is the gold standard to distinguish the two. However, DECT 

equipment is relatively expensive and currently has a low penetration rate, which largely limits the application of 

DECT in the differential diagnosis of the two.[5] Therefore, the results of multiple follow-up visits after MT are still 

used as the diagnostic criteria in clinical practice. 

Nevertheless, conventional imaging feature diagnosis relies heavily on the experience of radiologists and often 

falls short in precise quantitative assessments. Presently, radiomics is a frontier driven by quantitative evaluation, 

the application of which enriches our understanding of intracranial diseases, such as brain tumors, spontaneous or 

traumatic hematomas, aneurysms, and neurological function.[6-10] Therefore, radiomic quantitative evaluation can 

theoretically be applied to enhance differentiating capabilities between HT and ICE. 

However, there are few reports on the application of radiomics in the differential diagnosis of HDA, and external 

validation is lacking. Accordingly, this study endeavored to explore the utility of clinical factors, CT signs, and 

radiomics in identifying HDA post-MT in AIS-LVO patients. 



MATERIALS AND METHODS 

Study Patients 

The study received ethics committee approval, and informed consent was waived. A total of 431 patients with AIS-

LVO who underwent MT at our hospital (Center Ⅰ) and 188 patients at another hospital (Center Ⅱ) from December 

2015 to June 2023 were retrospectively collected. Patients were required to meet the following criteria: 1) had an 

AIS-LVO diagnosis by clinical and imaging examination; 2) had MT treatment performed within 12 hours after 

admission; 3) had a new-onset HDA underwent NCCT scan within 1 hour after MT; 4) had a brain NCCT scan ≥2 

times within 48 hours after MT. In addition, we excluded patients (n=275 in Center Ⅰ, n=125 in Ⅱ) for the following 

reasons: the absence of new HDA on NCCT scans (n=247 in Center Ⅰ, n=108 in Ⅱ); fewer than 2 postoperative CT 

reviews 24-48 hours (n=23 in Center Ⅰ, n=15 in Ⅱ); the presence of HDA (such as hemorrhage or calcification) in 

the corresponding region of the brain before MT (n=3 in Center Ⅰ, n=1 in Ⅱ); and incomplete clinical and imaging 

data (n=2 in Center Ⅰ, n=1 in Ⅱ). We employed an accepted approach to differentiate HT from ICE. For cases where 

the HDA had diminished or entirely dissipated within 48 hours, which was considered to the simple ICE (non-HT). 

In contrast, persistent or enlarged HDA was considered to indicate HT. DECT can also be used as a valuable 

reference standard, if available. The diagnostic criteria were as follows: HDA was present on both the original image 

and VNC image; however, when the range of HDA in the corresponding region was reduced or disappeared on IOM 

image, HT was considered. However, when HDA was present on the original image and IOM image but not in the 

corresponding region on the VNC image, ICE was considered.[11] Finally, 156 patients in Center Ⅰ were selected 

and split into a training cohort (66 males, 43 females, average age 63.93±14.05 years) and an internal validation 

cohort (25 males, 22 females, average age 63.72±14.23 years). Sixty-three patients in Center II composed the 

external validation cohort. Patients were categorized into an HT group and a non-HT group based on diagnostic 

criteria. The flow chart of patient enrollment is shown in Fig 1. 



 

FIG 1. Flow chart of the grouping of the included patients and model building.  

Clinical and Imaging Data Collection 

The clinical medical records and picture archiving and communication systems (PACSs) of Center Ⅰ and Center Ⅱ 

were consulted. Laboratory data (platelet (PLT), prothrombin time (PT), thrombin time (TT), antithrombin-III (AT-

III), activated partial thromboplastin time (APTT), D-dimer (D-D), fibrinogen (FIB), international normalized ratio 

(INR), low-density lipoprotein (LDL), total cholesterol (TC), triglyceride (TG), glucose (Glu), medical history (age, 

sex, hypertension, smoking status, alcohol, cerebral infarction, cerebral hemorrhage, embolism of cardiac origin, 

intravenous thrombolysis, anticoagulant therapy), clinical records pertaining to MT treatment, systolic blood 

pressure (SBP), Glasgow Coma Scale (GCS), National Institutes of Health Stroke Scale (NIHSS), door-to-puncture 

(DPT), location of the MT, Times, Stent, mTICI and initial postoperative NCCT scans (location of HDA, maximum 

CT value, mean CT value, the maximum cross-sectional area (Areamax), high-density lesions in the subarachnoid 

space, mass effect, low-density edema zone, low-density mixed sign, metallic hyperdensity sign) were collected. 

The scanning scope extended from the skull base to the cranial apex. The following scanning parameters were used: 

64-slice spiral CT (Discovery CT 750 HD, GE Healthcare); tube voltage, 120 kV; tube current, 300 mAs; and slice 

thickness, 5 mm. When two HDAs were present in a patient, the one with the largest area was selected for analysis. 

The CT signs of the enrolled patients were evaluated by two radiologists, A and B, who had 5 years of experience 

each, and the final diagnosis was made by Radiologist C, who had 10 years of experience when radiologists A and 

B disagreed. In the training set of Center Ⅰ, through univariate and multivariate logistic regression (LR) analyses, the 



clinical factors and CT signs with P<0.05 were incorporated into a subset, and a clinical factor and CT sign model 

was established. 

Radiomics data collection 

Image preprocessing and initial texture feature extraction 

The initial postoperative NCCT scans of our patient cohort were meticulously evaluated within the PACS system at 

Center Ⅰ and Center Ⅱ. DICOM-formatted images of the largest HDA cross-section were exported and processed 

using Mazda software (version 4.6, http://www.eletel.p.lodz.pl/mazda/). After the image was loaded, we normalized 

it with the μ±3σ method (μ is the mean value of the image gray value, and σ is the standard deviation of the image 

gray value) to reduce contrast and brightness fluctuations. The default ROI was cleared, and 4× magnification was 

applied. The ROI was meticulously delineated around the HDA contours (Fig 1), and initial texture features were 

obtained. We randomly selected 30 patients, and two radiologists (A and B) independently performed ROI 

segmentation and feature extraction. Radiologist A repeated the process after one month to assess interobserver 

agreement. 

Feature selection and model establishment 

In this study, we employed MaZda software to extract a comprehensive set of 279 texture features belonging to 6 

types from all the ROIs of the training set of Center Ⅰ. To refine our feature selection process for discriminating the 

nature of HDA, we implemented the least absolute shrinkage and selection operator (LASSO) regression algorithm 

and performed a significance analysis. Subsequently, the optimal feature subset was incorporated into a LR model 

to construct the radiomic model. This radiomic model was then integrated with clinical factors and CT signs via LR 

to construct the combined model. 

Interobserver consistency analysis of radiomics 

30 patients were randomly selected from the enrolled patients, and the ROI segmentation and initial texture feature 

extraction of HDA were independently completed by radiologists A and B. After an interval of 1 month, the ROI 

was outlined again by radiologist A for these 30 patients.[12] The intraclass correlation coefficient (ICC) of features 

extracted by two radiologists ranged from 0.787-0.945, and the ICC of features extracted by radiologist A twice 

independently ranged from 0.838-0.997. These findings demonstrated good consistency in terms of feature 

extraction. Subsequently, Radiologist A autonomously performed ROI segmentation and initial texture feature 

extraction for the remaining patients. 

Statistical analysis 

SPSS software version 26.0 and R Studio software version 4.2.0 were used for statistical analysis. The receiver 

operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of the model in three datasets 

(training set, internal validation set and external validation set). The metrics assessed included the area under the 

curve (AUC), sensitivity (SEN), specificity (SPE), and accuracy (ACC). The DeLong test was used to compare the 

diagnostic efficacy of the three models. The clinical practicability of the model was elucidated via decision curve 



analysis (DCA), which offered insights into net benefit variations with threshold probability changes. Finally, the 

model was visualized as a nomogram. P<0.05 was considered to indicate statistical significance. 

RESULTS 

Clinical factors and CT signs model 

In the training set of Center Ⅰ, the patients were divided into two groups (HT, n=50; non-HT, n=59) according to the 

diagnostic criteria. There were significant differences in clinical data encompassing the PLT, D-D, TG, cardiogenic 

embolism, Glu, admission NIHSS score, DPT, and stent between the two groups (P<0.05). According to the included 

imaging data, there were statistically significant differences between the two groups (P<0.05) in the Areamax of HDA, 

the high density subarachnoid space, the mass effect, the low density edema zone, and the low density mixed sign. 

In Online Supplemental Data:, comprehensive statistical findings are presented. Univariate and multivariate LR 

analyses in the training cohort revealed significant differences in Glu and Areamax levels (P<0.05), as shown in Table 

1. After incorporating two independent risk factors, we constructed a model of clinical factors and CT signs. Testing 

and validation were performed in the internal validation set and the external validation set. ROC curve analysis (Fig 

2, Fig 3A) demonstrated the good discriminative performance of the clinical factors and CT signs model, yielding 

AUC of 0.831 (95% CI 0.756-0.905), 0.744 (95% CI 0.597-0.892), and 0.684 (95% CI 0.542-0.825) across the three 

datasets. Brier scores approaching 0 across all three datasets indicate that the clinical factor and CT sign models had 

robust discrimination and calibration ability. Online Supplemental Data: provides a comprehensive overview of the 

diagnostic efficacy of three models. Fig 3B shows the DCA results for the external validation set. 

Radiomics model and combined model 

Initial texture feature dimension reduction, selection and model establishment 

In this study, we employed the significance analysis method and LASSO regression to condense the initial 279 

texture features across 6 categories, which were extracted using Mazda software from ROIs of the training set of 

Center I. Through tenfold cross-validation, we identified 2 vital features, S(0,4)SumAverg and 45dgr_GLevNonU, 

which were incorporated into the optimal feature set (Fig 4). 

Diagnostic value of the radiomic model and combined model 

In the training set, the optimal feature set was used to perform LR and construct the radiomic model and the combined 

model. Utilizing R Studio 4.2.0 software, the calculations demonstrated that the combined model exhibited superior 

diagnostic efficiency, with an impressive AUC of 0.895 (95% CI 0.833-0.956), 0.882 (95% CI 0.773-0.990), and 

0.820 (95% CI 0.689-0.952) across the three datasets. In comparison, the radiomic model also demonstrated 

commendable AUC of 0.887 (95% CI 0.824-0.957), 0.898 (95% CI 0.801-0.996), and 0.798 (95% CI 0.655-0.940) 

in the three datasets. According to the DeLong test, the diagnostic efficacy of the AUC of the combined model and 

the clinical factor and CT sign models were significantly different among the three datasets (training set P=0.018, 

internal validation set P=0.038, external validation set P=0.044). There were no statistically significant differences 

between the combined model and the radiomics model in any of the three datasets (all P>0.05). In the internal 

validation set, the AUC of the radiomic model was significantly greater than that of the clinical factor and CT-sign 



model (P=0.030). These findings underscore that radiomics features can further significantly improve diagnostic 

performance on the basis of the clinical factor and CT sign models, as summarized in Table 2. 

The Brier scores revealed close-to-zero values for both the radiomic model and the combined model across the 

three datasets, indicating strong discrimination, calibration, repeatability, and extrapolation capabilities. Notably, 

both models exhibited superior sensitivity and accuracy compared to those of the clinical factor and CT sign models 

(Online Supplemental Data:). 

The DCA results of the three models in the external validation set are shown in Fig 3B. Our findings clearly 

demonstrate that the combined model outperforms the other models in diagnosing HDA with HT, particularly at a 

threshold probability range of 16%-44%, indicating that its clinical practical value is the highest. The ROC curves 

of the three models in the three datasets are shown in Fig 2, and the AUC values are visualized as bar charts for easy 

comparison (Fig 3A). Among the three models, the combined model had the highest diagnostic efficiency; therefore, 

a nomogram was drawn (Fig 3C). 

 

FIG 2. A-F: ROC curves of clinical factors and the CT signs model, Radiomics model and combined model in 

the training set, internal validation set and external validation set. 

 



 

FIG 3. A: The AUC values of the three models are visualized as bar graphs; B: DCA curves of clinical factors 

and the CT signature model, radiomics model, and combined model in the external validation set; C: 

Nomogram of the combined model. 

 

FIG 4. A-B: LASSO regression and significance analysis are used to refine the optimal features. 

DISCUSSION 

At present, the clinical judgment of the nature of HDA is mostly based on the subjective evaluation of postoperative 

brain NCCT images[13], which is highly variability due to radiologists’ experience. With the precision of radiomics 

in overcoming the uncertainty of human subjective judgment, this study aimed to establish a clinical factor and CT 

sign model, a radiomic model, and a combined model. A comparative evaluation of the diagnostic efficacy of the 

three models, alongside external validation (Center II), verified their stability and applicability. 



To enable early identification of simple ICE and intraparenchymal hemorrhage (IPH) following MT, Chen et 

al.[14] pioneered the classification of simple and mixed contrast hemorrhages as IPH, a method adopted in our study. 

The Rad-score exhibited robust performance, with impressive AUC values of 0.848 and 0.826 in the training and 

validation cohorts, respectively. However, our novel radiomic model, which leverages NCCT scans, outperformed 

Chen's model, with AUC values of 0.887 (training set) and 0.898 (internal validation set). The introduction of clinical 

risk factors further enhanced diagnostic efficacy, achieving AUC values of 0.895 (training set) and 0.882 (internal 

validation set). Remarkably, external validation in Center II reaffirmed our combined model's robustness, with an 

AUC of 0.820, attesting to its high diagnostic efficiency, generalizability, and stability.  

Similarly, Ma et al.[15] also conducted a meticulous investigation encompassing clinical, radiomic and combined 

models on this issue. These findings underscore the commendable performance of the radiomic model in both the 

training set (AUC=0.955) and the validation set (AUC=0.869), with the combined model exhibiting the disadvantage 

of diagnostic proficiency (AUC=0.972 in the training set; AUC=0.926 in the validation set). Notably, both models 

significantly outperformed the clinical factor and CT sign models. However, the sample size of this study was limited 

(104 patients), which may affect the accuracy, stability and reproducibility of the model; thus, external validation is 

needed in the future for robust clinical applicability and generalizability. Moreover, a small sample size may also 

lead to an imbalance between groups and the possibility of overfitting the model. Ma et al.[15] applied 3D 

measurement methods to segment HDA. While some studies[16] have suggested that 3D analysis provides richer 

information, others[17] have argued that 2D measurements are more reliable due to potential overfitting with 

additional layers. Furthermore, the time-consuming layer-by-layer delineation of 3D measurements may impact 

clinical decision-making in HT diagnosis and intervention. 

In this study, LASSO regression and significance analysis were used to refine the initial features. Ultimately, two 

discriminative features emerged as the focal points of our analysis: S(0,4)SumAverg and 45dgr_GLevNonU. 

SumAverg denotes the sum of pixel averages in a specific direction, derived from co-occurrence matrix analysis, 

which reflects the uniformity of tissue density by describing the density change with increasing distance in the ROI, 

with lower values signifying reduced uniformity.[18, 19] Yue et al. [20] used the Mazda software, and by combining 

texture features , clinical data and CT features, it was found that S(1,0,0) SumAverg showed good discriminative 

ability (AUC=0.892) for distinguishing signet-ring cell carcinoma (SRCC) from adenocarcinoma (AC), with higher 

efficacy than clinical features (AUC=0.745). Conversely, GLevNonU denotes gray level nonuniformity, extracted 

from the run-length matrix, where the matrix elements are defined as the frequencies that satisfy a particular gray 

level value in a particular run length. Thus, the feature GLevNonU is a measure of the uniformity of the pixel gray 

level distribution of the underlying tissue, with elevated values indicative of heightened image heterogeneity, 

reflecting the heterogeneity of the image in different directions.[21] Li et al [22] performed texture analysis based 

on CT images to predict whether primary hepatocellular carcinoma has microvascular invasion (MVI), and the 

results showed that the 45dgr_GLevNonU in the MVI-positive group was significantly higher than that in the MVI-

negative group (AUC = 0.762). Remarkably, the S(0,4)SumAverg of the HT group was lower than that of the non-

HT group, and the 45dgr_GLevNonU was higher than that of the non-HT group in our study, revealing that HT in 

HDA, as observed in NCCT images, exhibited diminished uniformity compared to pure ICE. This result 



demonstrated that there is more leakage of tangible substances from the blood during the development of HT, thus 

causing heterogeneity on NCCT images. This nuanced distinction, often elusive to the human eye, underscores the 

unique advantage of radiomics in quantifying the heterogeneity of HDA density. 

This study revealed that a high blood glucose level at admission was an independent risk factor for HT, which 

was consistent with the results of prior research.[23-25] In a meticulous multicenter randomized controlled trial 

(RCT) conducted by Tian et al.[26], two pivotal factors, namely, elevated NIHSS scores and heightened admission 

blood glucose levels, independently emerged as robust predictors of symptomatic intracerebral hemorrhage (sICH). 

From a pathophysiological perspective, the linkage between hyperglycemia and heightened HT risk after MT can be 

delineated. As blood glucose levels surge, accelerated anaerobic glycolysis occurs within cells, leading to the 

accumulation of acidic metabolites. These metabolites, in turn, serve as catalysts for the production of matrix 

metalloproteinase-9 and subsequent extracellular matrix protein degradation, thereby compromising the integrity of 

the BBB.[27] This dual-action mechanism escalates BBB permeability, thereby heightening vulnerability to HT. 

Furthermore, high blood glucose levels may compromise cerebral autoregulatory function, potentially exacerbating 

reperfusion injury following successful recanalization of MT.[28-30] In light of these findings, the management of 

blood glucose levels both in daily life and in the perioperative period is imperative for mitigating the risk of 

postoperative HT in patients with AIS-LVO. 

In this study, our multivariate analysis of various CT signs revealed that the Areamax of the HDA serves as an 

independent risk factor for HT. However, our results diverge from those of Portela's research, where no statistically 

significant difference in the Areamax index of HDA was detected between the HT (1561.9 mm²) and non-HT (1123.7 

mm²) groups.[31] It is worth noting that Portela's study had a limited sample size of 29 patients and lacked validation 

sets. We conducted internal and external validation based on a larger sample size (AUC=0.792 in the training set; 

AUC=0.713 in the internal validation set; and AUC=0.642 in the external validation set), and the results showed that 

the Areamax mutation in the HDA was an independent risk factor for HT. However, other studies have suggested that 

the high diagnostic efficacy of Areamax may be attributed to the fact that ICE and HT are different stages of the same 

pathological process.[32] In minor BBB basement membrane damage, only slight permeability increase occurs, 

leading to the extravasation of low-molecular-weight substances such as iodinated contrast agents. Conversely, 

severe damage results in heightened permeability, allowing larger molecular weight substances such as blood 

constituents to escape into the extravascular space. Gradual accumulation of these larger molecules contributes to 

the expansion of HDA on CT images.[32] Furthermore, HT-induced vascular rupture or the “avalanche” effect can 

lead to continuous hemorrhage and hematoma enlargement in the brain parenchyma.[33-35] 

While the performance of our study's model is deemed satisfactory, several limitations must be acknowledged. 

First, this retrospective approach presents inherent constraints, warranting future prospective, large-scale, 

multicenter RCTs for enhanced evidential support. Second, manual ROI delineation, a time-intensive process prone 

to fatigue-induced variability among radiologists, was employed. Future investigations should leverage machine 

learning and AI for efficient, reproducible, and accurate lesion segmentation. Third, the absence of pre-MT 

medication data and analysis of the impacts of antiplatelet and lipid-lowering drugs limit our conclusions. Fourth, 

our LR-based model awaits comparison with various machine learning algorithms, including vector machine (SVM), 



random forest (RF), linear SVC, adaptive enhancement (AdaBoost), decision tree (DT), and Bayesian algorithms, 

as well as exploration of deep learning for radiomics with substantial, high-dimensional data. 

CONCLUSIONS 

In conclusion, among the three models discussed in this study, the combined radiomic model demonstrated superior 

diagnostic performance. Thus, radiomics has emerged as a valuable imaging biomarker, offering a reference for 

clinical practice and assisting in early treatment decisions. 
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Table 1 Multivariate LR analysis of clinical factors and CT signs in the training cohort 

Factors P value OR(95%CI) 

PLT(10^9/L) 0.122 0.99(0.98-1.00) 

D-D(μg/ml) 0.418 1.07(0.90-1.29) 

TG(mmol/L) 0.822 0.91(0.35-1.89) 

Embolism of cardiac origin 0.378 1.75(0.51-6.36) 

Glu(mmol/L) 0.029* 1.26(1.05-1.58) 

NIHSS 0.826 1.01(0.88-1.17) 

DPT(min) 0.704 1.00(0.99-1.00) 

Stent 0.151 0.18(0.01-1.38) 

Areamax (mm2) 0.006* 1.00(1.00-1.01) 

High-density lesions in the subarachnoid 
space 

0.582 0.71(0.20-2.33) 

Mass effect 0.080 4.00(0.90-21.35) 

Low density edema zone 0.220 2.67(0.58-14.29) 

Low density mixed sign 0.944 0.96(0.29-3.09) 

* P <0.05 is considered to indicate statistical significance. 

 

Table 2 Statistical differences in the AUC values of the three models 

 

Datasets clinical factors & CT 

signs model/Radiomics 

model 

Radiomics 

model/Combined 

model 

clinical factors & CT signs 

model/Combined model 

Training set 0.113 0.551 0.018* 

Internal validation set 0.030* 0.289 0.038* 

External validation set 0.269 0.817 0.044* 

 

* P <0.05 is considered to indicate statistical significance. 



This preprint represents the accepted version of the article and also includes the supplemental material; it differs from the printed version 
of the article. 
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SUPPLEMENTAL FILES: 

Online Supplemental Data: Results of univariate regression between clinical factors and CT signs in the training cohort 

Factors Training set P value 

HT(n=50) non-HT(n=59) 
 

Preoperative clinical factors 

Age, years 66.58±1.72 61.68±1.98 0.064 

Sex, male 31(62%) 35(59%) 0.776 

PLT(10^9/L) 166.78±7.90 199.64±8.43 0.006* 

PT(s) 13.60(12.80-14.10) 13.60(12.80-14.43) 0.557 

TT(s) 16.70(15.70-18.30) 17.60(16.20-18.73) 0.210 

AT-Ⅲ(%) 95.00(83.10-104.00) 89.00(79.75-98.88) 0.135 

APTT(s) 33.40(27.70-36.20) 31.75(27.30-36.13) 0.529 

D-D(μg/ml) 1.06(0.59-2.81) 1.37(0.72-4.16) 0.047* 

FIB(g/L) 2.97(2.65-3.52) 2.85(2.33-3.50) 0.213 

INR 1.07(1.01-1.14) 1.10(1.02-1.18) 0.353 

LDL(mmol/L) 2.55±0.13 2.73±0.08 0.227 

TC(mmol/L) 4.15±0.16 4.46±0.09 0.099 

TG(mmol/L) 1.11(0.87-1.57) 0.89(0.76-1.16) 0.041* 

History of hypertension 34(68%) 36(61%) 0.449 

History of smoking 19(38%) 22(37%) 0.939 

History of alcohol 12(24%) 16(27%) 0.710 

History of cerebral infarction 12(24%) 7(12%) 0.096 

History of cerebral hemorrhage 1(2%) 3(5%) 0.623 

Embolism of cardiac origin 32(64%) 24(41%) 0.015* 

Intravenous thrombolysis 12(24%) 15(25%) 0.864 

Anticoagulant Therapy 4(8%) 2(3%) 0.410 

SBP(mmHg) 132.00(125.00-149.00) 136.00(122.75-152.25) 0.561 
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Glu(mmol/L) 6.29(5.40-7.87) 7.75(6.77-11.39) 0.000* 

GCS 13(11-15) 12(9-14) 0.165 

NIHSS 17.38±0.63 15.56±0.55 0.032* 

DPT(min) 280.00(240.00-360.00) 240.00(200.00-312.50) 0.009* 

Intraoperative clinical factors  

Location of MT (Anterior circulation) 45(90%) 56(95%) 0.466 

Times 2(1-3) 2(1-3) 0.156 

Stent 3(6%) 12(20%) 0.048* 

mTICI(≥2b) 46(92%) 58(98%) 0.177 

CT signs 

Location of HDA (Basal ganglia) 43(86%) 54(92%) 0.358 

Maximum CT value (HU) 86.00(73.00-110.00) 86.00(76.00-110.25) 0.770 

Mean CT value (HU) 56.00(49.00-68.00) 58.50(47.75-68.25) 0.956 

Areamax (mm2) 459.50(336.25-876.75.00) 250.00(136.00-392.00) 0.000* 

High-density lesions in the subarachnoid 
space 

35(70%) 26(44%) 0.007* 

Mass effect 19(38%) 4(7%) 0.000* 

Low density edema zone 14(28%) 6(10%) 0.017* 

Low density mixed sign 39(78%) 30(51%) 0.003* 

Metallic hyperdensity sign 24(48%) 24(41%) 0.443 

*PLT: platelet, PT: prothrombin time, TT: thrombin time, AT-III: antithrombin-III, APTT: activated partial thromboplastin time, D-D: D-
dimer, FIB: fibrinogen, INR: international normalized ratio, LDL: low-density lipoprotein, TC: total cholesterol, TG: triglyceride, SBP: 
systolic blood pressure, Glu: glucose, GCS: Glasgow Coma Scale, NIHSS: National Institutes of Health Stroke Scale, DPT: door-to-
puncture, mTICI: Mechanical Thrombectomy in Cerebral Infarction, Areamax: the maximum cross-sectional area. P <0.05 is considered to 
indicate statistical significance. 

 

 

Online Supplemental Data: Diagnostic performance of the three models 
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