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 ABSTRACT 

BACKGROUND AND PURPOSE: Patients with brain tumors have high intersubject variation in putative language regions, which may 

limit the utility of straightforward application of healthy-subject brain atlases in clinical scenarios. The purpose of this study was to 

develop a probabilistic functional brain atlas that consolidates language functional activations of sentence completion and silent 

word generation language paradigms using a large sample of patients with brain tumors. 

MATERIALS AND METHODS: The atlas was developed using retrospectively collected fMRI data from patients with brain tumors who 

underwent their first standard-of-care presurgical language fMRI scan at our institution between July 18, 2015, and May 13, 2022. 

317 patients (861 fMRI scans) were used to develop the language functional atlas. An independent presurgical language fMRI dataset 

of 39 patients with brain tumors from a previous study was used to evaluate our atlas. Family-wise error corrected binary functional 

activation maps from sentence completion, letter fluency, and category fluency presurgical fMRI were used to create probability 

overlap maps and pooled probabilistic overlap map in Montreal Neurological Institute standard space. Wilcoxon signed-rank test was 

used to determine significant difference in the maximum Dice coefficient for our atlas compared to a meta-analysis-based template 

with respect to expert-delineated primary language area activations. 

RESULTS: Probabilities of activating left anterior primary language area and left posterior primary language area in temporal lobe 

were 87.9% and 91.5%, respectively, for sentence completion, 88.5% and 74.2%, respectively, for letter fluency, and 83.6% and 67.6%, 

respectively, for category fluency.  Maximum Dice coefficients for templates derived from our language atlas were significantly 

higher than the meta-analysis-based template in left anterior primary language area (0.351 and 0.326, respectively, P < .05) and left 

posterior primary language area in temporal lobe (0.274 and 0.244, respectively, P < .005). 

CONCLUSIONS: Brain tumor patient- and paradigm-specific probabilistic language atlases were developed. These atlases had superior 

spatial agreement with fMRI activations in individual patients than the meta-analysis-based template. 

 ABBREVIATIONS: SENT = sentence completion, LETT = letter fluency, CAT = category fluency, PLA = primary language area, aPLA = 

anterior PLA, pPLAT = posterior PLA in the temporal lobe, pPLAP = posterior PLA in the parietal lobe, SMA = supplementary motor 

area, DLPFC = dorsolateral prefrontal cortex, BTLA = basal temporal language area  
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 SUMMARY SECTION 

PREVIOUS LITERATURE:  The analysis of language fMRI data acquired from brain tumor patients is typically supported by atlases 

developed from predominantly healthy subjects. However substantial intersubject in brain tumor patients may adversely affect the 

utility of straightforward application of such atlases. While disease-specific population-based structural brain atlases have been 

developed from MRI data, there is no atlas developed using functional imaging data, specifically language data, from a sizable 

disease-specific population.  

KEY FINDINGS: Significantly better spatial agreement with expert-delineated language activations in individual brain tumor patients 

was found for templates generated from probabilistic language atlas developed using brain tumor patients compared to a meta-

analysis-based template. Probabilities of each activating primary and ancillary languages areas in both hemispheres were determined 

for clinical language paradigms. 

KNOWLEDGE ADVANCEMENT: Development of probabilistic language atlas based on clinical language fMRIs of brain tumor patients 

with potential clinical and research applications in language laterality assessment, network categorization and biomarker discovery. 

 

INTRODUCTION 

Brain atlases provide a common framework to interpret, communicate, and use large amounts of neuroimaging data after accounting for 

individual differences1. Our current understanding of the human brain suggests that structural anatomy alone is insufficient to explain 
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functional characteristics2; hence, functional atlases play a crucial role in consolidating and advancing current research on brain function3, 

4. Clinically, atlases of canonical language or other functional areas have been used for laterality assessment5, network categorization6, and 

biomarker discovery7. Such applications leverage atlases developed from healthy individuals, although patients with brain diseases have 

significant variations in brain anatomy and functions. While disease-specific population-based structural brain atlases have been previously 

developed from MRI data8, currently, there is no atlas developed using functional imaging data, specifically language data, from a sizable 

disease-specific population. 

For patients with brain tumors, studies have demonstrated substantial intersubject variation in putative language regions, which can be 

attributed to tumor infiltration and surrounding edema promoting cortical reorganization and functional displacement9-11. Thus, 

straightforward applications of atlases developed using data from healthy individuals may have limited utility in patients with brain tumors. 

In the last two decades, functional MRI has emerged as the standard of care in many institutions for localizing eloquent cortices and 

lateralizing language functions for preoperative planning of brain tumor surgery12, 13. Given the availability of preoperative fMRI data and 

the use of increasingly standardized procedures14, 15, it is possible to assemble fMRI-based functional atlases that consider the intersubject 

variation of patients with brain tumors. 

Because language is multifaceted (phonologic, semantic, etc.) and involves a highly complex network of brain areas16, 17, functional 

mapping results can vary with the language task, task paradigm, and patient performance. For preoperative fMRI, studies have advocated 

for the use of multiple task paradigms to generate reliable and accurate activation of language networks18, 19. To alleviate widespread 

variability in clinical practice, the American Society of Functional Neuroradiology recommends standard sets of language paradigms, with 

the top two types of paradigms being sentence completion and silent word generation for adult patients15. 

This study aimed to develop a probabilistic functional brain atlas to consolidate language activations from these two types of paradigms 

in patients with brain tumors. For evaluation, templates of anterior and posterior primary language areas (PLAs) were generated from the 

atlas and compared to a meta-analysis-based template20 by their spatial similarity with a separate dataset of presurgical fMRI studies. 

MATERIALS AND METHODS 
Subjects 

This retrospective study was approved by the institutional review board at our institution, and the requirement for patient informed consent 

was waived. Initially, 324 patients who had undergone their first standard-of-care presurgical language fMRI between July 18, 2015, and 

May 13, 2022, were considered. Each fMRI study included at least one of the three paradigms: sentence completion (SENT), letter fluency 

(LETT), and category fluency (CAT). Patients with head motion exceeding 2 mm translation or 2° rotation were excluded in proceeding 

analysis. In total, 7 patients were excluded due to incomplete data (n = 3) or not having any language fMRI scans that met our head motion 

criteria (n = 4), leading to 317 included patients (183 male and 134 female; mean age, 51±16 years) with 861 fMRI scans for generating 

the language atlases (See Supplementary Table 1 for patient demographic and clinical characteristics). These fMRI scans consisted of 

SENT from 281 patients (157 male and 124 female; mean age, 50±16 years), CAT from 293 patients (169 male and 124 female; mean 

age, 50±16 years), and LETT from 287 patients (166 male and 121 female; mean age, 50±16 years). 

For evaluation, we used a separate fMRI dataset from a previous study that included 39 patients with brain tumors (22 male and 17 

female; mean age, 48±15 years)21. This dataset, which includes 38 SENT and 34 LETT fMRI scans, was acquired at our institution using 

identical acquisition protocols and task paradigms. 

 

Image Acquisition 

All MRI scans were performed on 3T clinical scanners (GE HealthCare, Milwaukee, WI). fMRI scans were acquired using a T2*W 

gradient-echo EPI sequence (TR/TE = 2000 ms/25 ms; Flip angle = 90 degrees; Parallel imaging acceleration factor = 2; 32 slices with 4-

mm thickness and no gap; in-plane resolution = 3.75 × 3.75 mm2; Duration = 4 minutes). Anatomic images were obtained using a 3D T1W 

inversion recovery-prepared spoiled gradient-echo sequence (TR/TE/TI = 6.1/2.1/400 ms; Flip angle = 20 degrees; 1.0 x 1.0 x 1.2 mm3 

voxel) and a T2W FLAIR sequence (TR/TE/TI = 10000/142/2250 ms; 1.0 x 1.0 x 2.0 mm3 voxel).  

Language paradigms included 6 cycles of 20-second control and 20-second task blocks. For SENT, task blocks consisted of incomplete 

sentences and patients were tasked to think of a word to be filled into a blank. For SENT control blocks, patients were shown four gibberish 

sentences in a format resembling that in the active block. For LETT task blocks, patients were shown a letter and tasked to covertly generate 

words beginning with that letter. For CAT task blocks, patients were shown a category (e.g., animals or types of food) and tasked to 

covertly generate words related to the category. For LETT and CAT control blocks, patients were asked to tap their fingers on their thumb 

bilaterally. The paradigms were displayed with an MRI-compatible liquid crystal display (Invivo SensaVue, Phillips). 

 

Image Analysis and Atlas Construction 

Image analyses were performed using AFNI22 (for individual fMRI analysis except for spatial normalization), SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) (for spatial normalization), and in-house Python scripts23.  fMRI preprocessing 

included motion correction, slice timing correction, co-registration with 3D T1-weighted images, spatial normalization to Montreal 

Neurological Institute (MNI) space, and spatial smoothing with an isotropic 6-mm width at half-maximum Gaussian kernel. General linear 

model with a canonical hemodynamic response function was used to generate t-value activation maps. Significantly activated clusters (P 

< .05, family-wise error corrected) were determined using AFNI 3dClustSim to obtain the cluster threshold at the uncorrected cluster-

forming threshold of P < .0001. The thresholded t-value map was then binarized to form an activation mask for each fMRI scan. 

Language atlases for each paradigm were obtained as probabilistic overlap maps (POMs) by adding binary activation masks and divided 

by number of contributing patients. A probabilistic language atlas was also calculated as a pooled POM by adding all binary activation 

masks across the three paradigms divided by the total number of fMRI scans used. 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Probability of fMRI Paradigms Activating Language Areas 

Automated Anatomical Labelling Atlas 324 was applied to determine the probability that each fMRI paradigm activated language-related 

regions of interest (ROIs) after spatial transformation to the MNI space 25 using Advanced Normalization Tools26. The following ROIs 

were studied (see Supplementary Table 2): anterior PLA (aPLA), posterior PLA in the temporal lobe (pPLAT), posterior PLA in the parietal 

lobe (pPLAP), supplementary motor area (SMA), dorsolateral prefrontal cortex (DLPFC), basal temporal language area (BTLA), and 

insula. For each paradigm, the probability of detecting activation within each ROI was determined as the percentage of patients having 

activated cluster(s) overlapping with the ROI. 

 

Comparison with a Meta-analysis-based Template 

PLA templates from the atlas were generated and compared with a meta-analysis-based language template by its spatial similarity to fMRI 

activations in a separate fMRI dataset of 39 brain tumor patients. The templates were generated by constraining the pooled probabilistic 

language atlas with the anatomical aPLA and pPLAT ROIs described above. The meta-analysis-based language template was obtained 

from a Neurosynth result of 1101 fMRI studies with the same anatomical constraints20.  

Details of the separate fMRI dataset were described in a previous study21. Briefly, after standard fMRI processing, two board-certified 

neuroradiologists with expertise in clinical fMRI outlined significantly activated areas in the aPLA (focusing on the posterior inferior 

frontal gyrus, including the pars triangularis and pars opercularis) and pPLAT (focusing on the posterior superior temporal gyrus and 

posterior middle temporal gyrus). Variations in anatomy and fMRI cluster distribution were considered on an individual patient basis. In 

total, 62 aPLA and 61 pPLAT activation maps were obtained.  

Dice coefficient was used to evaluate the spatial similarity between the templates and the activation maps of the separate patient datasets 

within the anatomical ROIs of aPLA and pPLAT. We varied the thresholds of the two templates at fixed intervals (.1% for the probabilistic 

atlas-based template; maximum z-score/1000 for the meta-analysis-based template), and Dice coefficients were calculated for each 

thresholded template. The maximum Dice coefficient across thresholds was used for comparison. 

 

Statistical Analysis 

Wilcoxon signed-rank tests were performed to determine significant differences between templates in maximum Dice coefficient. 

Statistical analyses were conducted with scipy.stats.wilcoxon (Python 3.8.13, Scipy 1.8.1). A p-value of less than .05 was considered 

statistically significant. 

RESULTS 
Language Atlases from Individual Paradigms 

The language atlases from individual paradigms are illustrated in Fig 1. Consistently across the three paradigms, the left aPLA, left DLPFC, 

left SMA, and right cerebellum had high probability of overlap. Among the three paradigms, SENT had voxels with higher probability of 

overlap in the left pPLAT (Fig 1A), while CAT had voxels with higher overlap in the occipital lobe (Fig 1C). 

 

 

FIG 1. Language functional atlases based on probabilistic overlap maps of individual paradigms. The atlases are presented using 

glass brain projection. L = left hemisphere; R = right hemisphere; SENT = sentence completion; LETT = letter fluency; CAT = 

category fluency. 



4  

 

Probability of fMRI Paradigms Activating Language Areas 

Table 1 presents the probabilities of activating in each of the ROIs with the SENT, LETT, and CAT paradigms. Generally, across the three 

paradigms, greater probabilities of activating were found in the left hemisphere than in the right hemisphere. All three paradigms had 

greater than 80% probability of activating areas in the left aPLA, left DLPFC, and left and right SMA, whereas only SENT had greater 

than 80% probability of activating the left pPLAT and only CAT had greater than 80% probability of activating right DLPFC. In the left 

pPLAT and pPLAP, SENT had noticeably higher probabilities (91.5% and 76.9%, respectively) than did LETT (74.2% and 53.0%, 

respectively) and CAT (67.6% and 56.0%, respectively).  

 

Table 1: Probability of Activation Across Three Language Paradigms 

 Probability of Activation (%) 

Paradigm SENT LETT CAT 

ROI L R L R L R 

aPLA 87.9 61.2 88.5 62.4 83.6 74.1 

pPLAT 91.5 66.9 74.2 48.8 67.6 47.8 

pPLAP 76.9 39.9 53.0 30.3 56.0 39.2 

SMA 90.7 84.0 91.6 90.6 94.5 90.4 

DLPFC 94.3 63.0 89.5 69.3 91.5 84.6 

BTLA 68.0 65.5 55.7 57.5 68.3 63.5 

Insula 59.4 43.8 65.9 51.2 59.7 52.6 

Abbreviations: ROI = region of interest; aPLA = anterior primary language area; pPLAT = posterior primary language area in temporal 

lobe; pPLAP = posterior primary language area in parietal lobe; SMA = supplementary motor area; DLPFC = dorsolateral prefrontal cortex; 

BTLA = basal temporal language area; L = left hemisphere; R = right hemisphere; SENT = sentence completion; LETT = letter fluency; 

CAT = category fluency. 

 

Probabilistic Language Atlas 

The probabilistic language atlas, built based on a pooled POM that consisted of activation maps from 861 language fMRI scans, is presented 

in Fig 2 as a penetrance map. The left hemisphere had, overall, more extensive and higher overlap probability in the atlas than right 

hemisphere. PLAs and ancillary language areas, including aPLA, pPLAT, pPLAP, pre-SMA, DLPFC, BTLA, and insula, were clearly 

identified with a 5% probability threshold (Fig. 2). The regions containing voxels with 40% or greater probability of overlap included the 

left aPLA, left DLPFC, and pre-SMA. Peak probabilities of overlap for left pPLAT and pPLAp were 24% and 12%, respectively. 

 

 

FIG 2. Pooled probabilistic language functional atlas presented as a penetrance map overlaid on T1-weighted standard MNI brain 

images. Z = MNI coordinate of each axial slice in mm. aPLA = anterior primary language area; pPLAT = posterior primary language 

area in temporal lobe; pPLAP = posterior primary language area in parietal lobe; pre-SMA = pre-supplementary motor area; DLPFC 

= dorsolateral prefrontal cortex; BTLA = basal temporal language area. 

 

Comparison with the Meta-analysis-based Template 

Fig 3 presents boxplots comparing the maximum Dice coefficients between the PLA activations of the evaluation fMRI dataset and the 

PLA templates derived from the probabilistic language atlas vs. the Neurosynth meta-analysis-based results obtained from varying 

thresholds for the templates. The maximum Dice coefficients for templates derived from the probabilistic language atlas were significantly 

higher than those for the meta-analysis-based templates both in aPLA (0.351 and 0.326, respectively, P < .05) and in pPLAT (0.274 and 
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0.244, respectively, P < .005). Fig 4 illustrates the fMRI activations and templates on overlaid on T2 FLAIR images of two representative 

patients.  Both patient A and B have glioblastoma in the left frontal lobe. At the threshold with maximum Dice coefficient, the template 

from the probabilistic language atlas had noticeably better spatial agreement with pPLAT activations in patient A. For patient B, the 

template derived from the probabilistic language atlas demonstrated better spatial agreement with both aPLA and pPLAT activations. 

 

 

FIG 3. Box plots of maximum Dice coefficient for probabilistic language atlas-derived vs Neurosynth-derived templates. Dice 

coefficients were calculated across thresholds for each template with respect to each individual’s activations in aPLA and pPLAT. 

Maximum Dice coefficient across thresholds was used to construct the box plot. Horizontal orange lines indicate median values, 

and blue dots indicate mean values among subjects (n=39). aPLA = anterior primary language area; pPLAT = posterior primary 

language area in temporal lobe. *P < .05. **P < .005. 

 

 

FIG 4. Sentence completion fMRI activations and the language templates in anterior primary language area (aPLA) and posterior 

PLA in temporal lobe (pPLAT) overlaid on T2 FLAIR images of two representative patients. Significant fMRI activations (P<0.05, 

FWE corrected) are displayed with color blobs ranging from red to yellow. Green and blue contours outline the probabilistic 

language atlas- (top) and Neurosynth-based (bottom) templates at maximum dice coefficients for the aPLA and the pPLAT, 

respectively.  

DISCUSSION 

Language atlases provide templates for quantitative assessment of language mapping, such as localization, lateralization, and strength, as 

well as for automated detection of language networks with resting-state fMRI 5-7. This study presents the first language atlas built from 

preoperative fMRI results of patients with brain tumors using the language paradigms similar to those recommended by the American 

Society of Functional Neuroradiology (i.e., sentence completion and silent word generation) 15.  
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Although patients with brain tumors can have discernible intersubject variation in functional activations, language atlases from this 

study involve a large number of fMRI activations projected onto a standard space. Thus, we were able to reproduce known characteristics 

of the language network. For example, critical language regions that are commonly assessed clinically, such as Broca’s area (aPLA), 

Wernicke’s area (pPLAT), angular and supramarginal gyrus (pPLAP), DLPFC, pre-SMA, and BTLA can be observed18, 27, 28. Left-

hemisphere dominance is still observed considering the higher probability of overlap in left-hemisphere PLAs and ancillary language areas 

compared to their right-hemisphere counterparts27, 28.  

In agreement with the literature, we observed that the semantic task (SENT) was more likely to activate posterior PLAs compared to 

the two silent word generation tasks (CAT and LETT)15, 29. This can be attributed to sentence completion tasks being more proficient at 

activating the posterior language network29, 30. Across all three paradigms, the higher probability of overlap in pPLAT compared to that of 

pPLAP agrees with a previous study of language regions in presurgical fMRI18. We also found that the probability of detecting activation 

in the right DLPFC for the CAT task was higher than that of the SENT and LETT tasks. This finding can be attributed to more likely 

recruitment of the right DLPFC for the CAT task, which is corroborated by a separate study on verbal fluency paradigms31, and to the 

involvement of the right DLPFC in retrieval tasks32. The probability of detecting activation in the SMA for both hemispheres was similar 

across the three paradigms, a likely consequence of the intersubject variation during spatial normalization and the 6 mm isotropic 

smoothing applied during preprocessing. Considering that SMA laterality is known to corroborate language laterality5, it can still be 

observed that the spatial extent of SMA activations is asymmetric towards the left hemisphere on the POM.   

The pooled probabilistic language atlas developed in this study is equivalent to the weighted average of the three language paradigm 

POMs. As such, the pooled probabilistic language atlas developed in this study emphasizes areas of activation common across the three 

paradigms. Based on use case and context, the pooling strategy and choice of paradigms to include can differ. Thus, we had also created 

language atlases from single paradigms and made them available. The distinguishing attribute between our language atlases and others 

developed from healthy individuals is its information on intersubject variation. In our atlases, this difference is encapsulated by the spatial 

extent of the atlas at a specified overlap threshold, with higher thresholds corresponding to a lower tolerance for variation. For example, 

the spatial extent of areas with higher overlap in the frontal lobe is continuous between the proximally close aPLA and DLPFC in the left 

hemisphere and can be attributed to using a population of patients with brain tumors for atlas building; these patient populations are to be 

heterogeneous in terms of functional anatomy9. Given the implementation of the POM methodology, sources of inter-subject variation 

taken into consideration include intrinsic variation, normalization imprecision due to lesion-distorted anatomy, and functional 

reorganization due to tumor invasion. 

We compared our results with those of Neurosynth because it is a widely-referenced large-scale platform for automated synthesis of 

fMRI data. The Neurosynth result is a statistical inference map generated using a chi-square test of independence and informs if a voxel’s 

coordinates have been reported more consistently in studies involving the term “language” than in studies that did not20. Therefore, it 

allowed us to calculate Dice coefficients in a similar fashion among varying thresholds to ensure a fair comparison. The comparison 

demonstrated that our templates had better agreement with individual patient’s fMRI. This may be attributed to the Neurosynth meta-

analysis including fMRI studies with different cohorts, primarily healthy individuals, various task and resting-state fMRI paradigms, and 

different acquisition and analysis methods, whereas our atlas was built from a uniform source of fMRI data. In addition, for patients with 

brain tumors, the position of a tumor with respect to the classic/principal functional anterior-Broca and posterior-Wernicke areas can 

influence the locoregional functional reorganization. Given the quite large group of patients included in the study, it is possible that filtering 

for contributing patients with similar tumor locations (e.g. anterior or posterior) during atlas development may allow for better spatial 

agreement with the evaluation dataset. 

We envision our atlas to have potential clinical and research applications through the derivation of templates for ROIs. An example 

would be language assessment of patients with brain tumors in which templates of functional ROIs atlases based on healthy individuals 

are often used to calculate the laterality index. Templates generated from our atlas account for functional anatomy distortions due to the 

tumor, which may improve the fidelity of the calculated laterality index5, 33. Another example is imaging biomarker studies, wherein post-

warping of primary and ancillary language areas into patient space, they can serve as language localizers for quantifying imaging measures, 

whether from fMRI activations of more specific paradigms, or different MRI sequences, or different imaging modalities34, 35. Our atlas 

could also be used to guide resting-state fMRI template matching for detecting language networks6, 36 These applications could rely on 

manual delineation of language areas by experts, but atlases help to make the process automated and less operator dependent. The potential 

clinical implications of this study will depend on the improvement with each different use of the atlas, e.g. more accurate assessment of 

language lateralization, imaging biomarker quantification, or rs-fMRI language mapping. Further validation studies and clinical trials may 

be needed to assess the practicality and effectiveness of the atlas in clinical settings. Although the existence of large lesions and distorted 

anatomy may introduce potential inaccuracy of spatial registration37, recent studies have demonstrated that such errors are reduced with 

more modern deformable registration methods allowing for reasonably good performance even in patients with brain tumors38. In addition, 

for large ROIs such as PLAs, the misregistration may remain local and its effect would be specific to applications (e.g., laterality 

calculation, biomarker quantification, template matching). If the ROI is far from the tumor, e.g. using anterior PLA atlas to calculate the 

laterality index for patient’s tumor near posterior PLA, the effect of spatial registration should be minimum. If the use of atlas directly 

focuses on the language ROI covering/adjacent to lesions, we would recommend the users inspect the registration closely. Again, since 

the ROIs are with large spatial extents, the overall effect may not be significant. However, when there are concerns, one may consider 

extending the ROIs by applying a lower probability threshold on the atlas. This is one of the advantages of the probabilistic atlas. 

This study presents some limitations. First, this is a single-institution study with MRI data gathered from limited scanner platforms. 

The dataset reflects the typical patient population undergoing presurgical fMRI in our institution. Including data from other institutions, 

which would incorporate more diverse patient cohorts and/or fMRI paradigms/method, could further refine the atlas. In parallel, 

multicenter studies have shown that fMRI data acquired on different scanners will have different activation effect size and spatial 

smoothness39. This may impact the atlas on areas with lower overlap probabilities (extents). However, we expect that the central tendencies 
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of high overlap probabilities to remain similar and corresponding brain regions identified in our atlas would still be useful for appropriate 

language-related analyses. Second, our atlas was developed using only data from patients with brain tumors. But it is worthwhile to note 

that a substantial portion of presurgical fMRI studies are performed for patients requiring brain tumor resection40. Third, only clinical 

language generation (LETT and CAT) and semantic paradigms (SENT) were used to develop the atlas. Thus, the functional anatomy 

typically recruited in these tasks is emphasized in our atlas. Other fMRI task paradigms may yield different weightings in language areas 

and may involve additional brain regions. The potential implications of this variation would likely depend on its application and whether 

the weights and the additional regions are used, e.g. for assessing language lateralization or for assisting rs-fMRI analysis.  

CONCLUSIONS 

In conclusion, we have developed probabilistic language atlases comprising of 861 presurgical language fMRI scans from 317 patients 

with brain tumors. Three paradigms were used in our study, and probabilities of each activating primary and ancillary languages areas in 

both hemispheres were determined. We found significantly better spatial agreement with expert-delineated language activations in 

individual patients for the PLA templates generated from our atlas to a meta-analysis-based template. 
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SUPPLEMENTAL FILES 

 

Supplementary Table 1: Patient demographic and clinical characteristics  

Characteristic No. of patients 

Age (mean) (range) (yr) 51 ± 16 (18-87) 

Sex  

Male 184 

Female 133 

Hand dominance  

Right 253 

Mixed 25 

Left 30 

N.A. 9 

Tumor location  

Medial frontal 2 

Left frontal 108 

Left parietal 25 

Left temporal 91 

Left occipital 1 

Left insula 21 

Left frontal-parietal 6 

Left frontal-temporal 7 

Left parietal-temporal 8 

Left parietal-occipital 2 

Left temporal-occipital 3 

Left frontal-parietal-temporal 1 

Left parietal-temporal-occipital 1 

Left intraventricular 1 

Right frontal 15 

Right parietal 5 

Right temporal 7 

Right occipital 1 

Right insula 8 

Right frontal-temporal 2 

Right frontal-parietal-temporal 1 

N.A. 1 

Pathology  

Glioblastoma 139 

Astrocytoma  

   Grade III 33 

   Grade II 47 

   Grade I 1 

   Grade Unassigned 2 

Oligodendroglioma  

   Grade III 19 

   Grade II 25 

   Grade Unassigned 1 

Meningioma  
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   Grade II 1 

   Grade I 2 

Glioma  

   Grade III 2 

   Grade II 3 

   Grade Unassigned 1 

Brain metastases 32 

Choroid plexus carcinoma  

   Grade III 1 

Dysembryoplastic neuroepithelial tumor  

   Grade I 1 

CNS lymphoma 1 

Mesenchymal tumor 1 

Others 2 

N.A. 3 
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Supplementary Table 2. Language-related ROIs and their Automated Anatomical Labelling Atlas 3 Counterparts 

Respective left and right hemisphere counterparts from Automated Anatomical Labelling Atlas 3 were applied for analyses 

in left and right language-related regions-of-interest (ROIs) in this study. 

 

Language-related ROI Automated Anatomical Labelling Atlas 3 Regions (labels) 

Anterior Primary Language Area (aPLA) Inferior frontal gyrus, opercular part (L:7, R:8) 

Inferior frontal gyrus, triangular part (L:9, R:10) 

Temporal Posterior Primary Language Area 

(pPLAT) 

Superior temporal gyrus (L:85, R:86) 

Middle temporal gyrus (L:89, R:90) 

Parietal Posterior Primary Language Area (pPLAP) Supramarginal gyrus (L:67, R:68) 

Angular gyrus (L:69, R:70) 

Supplementary Motor Area (SMA) Supplementary motor area (L:15, R:16) 

Dorsolateral Prefrontal Cortex (DLPFC) Middle frontal gyrus (L:5, R:6) 

Basal Temporal Language Area (BTLA) Parahippocampal gyrus (L:43, R:44) 

Fusiform gyrus (L:59, R:60) 

Inferior temporal gyrus (L:93, R:94) 

Insula Insula (L:33, R:34) 

 


