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susceptibility-weighted MRI: association with vascular 

risk factors, white matter hyperintensity burden, and 
cognitive function  

Ji Su Ko, Yangsean Choi, Eun Seon Jeong, Hyun-Jung Kim, Grace Yoojin Lee, Ji Eun Park, Namkug Kim, Ho Sung Kim 
 

ABSTRACT 

BACKGROUND AND PURPOSE: To train and validate a deep learning (DL)-based segmentation model for cerebral microbleeds 
(CMB) on susceptibility-weighted MRI; and to find associations between CMB, cognitive impairment, and vascular risk factors.  

MATERIALS AND METHODS: Participants in this single-institution retrospective study underwent brain MRI to evaluate 
cognitive impairment between January–September 2023. For training the DL model, the nnU-Net framework was used without 
modifications. The DL model’s performance was evaluated on independent internal and external validation datasets. Linear 
regression analysis was used to find associations between log-transformed CMB numbers, cognitive function (mini-mental 
status examination [MMSE]), white matter hyperintensity (WMH) burden, and clinical vascular risk factors (age, sex, 
hypertension, diabetes, lipid profiles, and body mass index). 

RESULTS: Training of the DL model (n = 287) resulted in a robust segmentation performance with an average dice score of 
0.73 (95% CI, 0.67–0.79) in an internal validation set, (n = 67) and modest performance in an external validation set (dice 
score = 0.46, 95% CI, 0.33–0.59, n = 68). In a temporally independent clinical dataset (n = 448), older age, hypertension, and 
WMH burden were significantly associated with CMB numbers in all distributions (total, lobar, deep, and cerebellar; all P 
<.01). MMSE was significantly associated with hyperlipidemia ( = 1.88, 95% CI, 0.96–2.81, P <.001), WMH burden ( = -0.17 
per 1% WMH burden, 95% CI, -0.27-0.08, P <.001), and total CMB number ( = -0.01 per 1 CMB, 95% CI, -0.02-0.001, P = .04) 
after adjusting for age and sex. 

CONCLUSIONS: The DL model showed a robust segmentation performance for CMB. In all distributions, CMB had significant 
positive associations with WMH burden. Increased WMH burden and CMB numbers were associated with decreased cognitive 
function. 

ABBREVIATIONS: CMB = cerebral microbleed; DL = deep learning, DSC = dice similarity coefficient; MMSE = mini-mental status 
examination; SVD = small vessel disease; SWI = susceptibility-weighted image; WMH = white matter hyperintensity. 
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 SUMMARY SECTION 

PREVIOUS LITERATURE: Previous studies have focused on the DL model’s segmentation performance of CMB, but no studies 
have investigated the association between automated CMB segmentations and clinical variables. 

KEY FINDINGS: The DL model demonstrated robust segmentation performance with an average DSC of 0.73 in the internal 
validation set. WMH burden had a significant association with CMB number in all distributions. MMSE had a significant negative 
association with WMH burden and total CMB number after adjusting for age and sex. 

KNOWLEDGE ADVANCEMENT: These findings highlight the potential of automated CMB segmentation, using DL models, to 
further understand its clinical implications in the future. 

 Published October 23, 2024 as 10.3174/ajnr.A8552

 Copyright 2024 by American Society of Neuroradiology.



 

INTRODUCTION 

Cerebral microbleeds (CMB) are small areas of microhemorrhages visible as dark signal intensity on susceptibility-weighted 
images (SWI) or T2* gradient echo sequences of brain MRI. Typically ranging 5–10 mm, they are regarded as silent indicators 
preceding potential future intracranial hemorrhages.1 CMB is characterized by localized clusters of macrophages containing 
paramagnetic hemosiderin,2 which leads to signal attenuation on SWI or T2* gradient echo sequences owing to susceptibility 
effects. SWI is the preferred sequence for detecting CMB (over T2* gradient echo sequences) due to its higher detection rate.3 It 
has become increasingly available for brain MRI, leading to increased incidental detection of CMB, with a true-positive detection 
rate of 48–89%.1 

CMB is a common imaging finding in patients with small vessel diseases (SVD), with up to 36% of adults aged 80 to 90 
demonstrating evidence of CMB.4 Since CMB is an imaging marker of SVD, we hypothesized that the degree of CMB may be 
associated with an established vascular risk factor such as obesity, hypertension, diabetes, and hyperlipidemia.1,5–8 These risk 
factors are also associated with the development of Alzheimer’s dementia,9 and CMB may, therefore, be associated with both. A 
previous study demonstrated that cognitive impairment reflected in low mini-mental status examination (MMSE) scores is 
associated with an increased number of CMBs.10 Moreover, cerebral white matter hyperintensity (WMH)—a common imaging 
finding in the elderly—has a significant positive association with CMB.5  

To examine the relationship between CMB and clinical factors, accurate quantification of CMB is needed. In many previous studies, 
CMB was quantified through visual assessment.1,5,6,10,11 However, common imaging findings that mimic CMB included, dilated 
cortical veins, iron accumulation in the basal ganglia, and calcifications.12 Previous studies have reported a wide range of interrater 
reliability for CMB quantification with kappa values of 0.33–0.88.13 Moreover, manual counting of CMB is laborious and may be 
superseded by automated deep learning (DL)-based CMB quantification. 

The recent advancement of DL-based models has shown great promise in various medical image segmentation challenges.14 
Particularly, no-new-Net (nnU-Net), a self-configuring DL-based framework, has been found to outperform most other DL-based 
models in various segmentation tasks.15 Unlike the excellent segmentation performances in glioblastoma 16 or intracranial 
hemorrhage,17 relatively few segmentation tasks have been studied in CMB.12,18  

However, the simultaneous automated quantification of CMB and validation of their clinical significance is not well established in 
the literature. Therefore, this study aimed to evaluate the performance of a DL-based segmentation model in quantifying CMB on 
SWI, and to investigate the relationship between CMB amount, various vascular risk factors, WMH burden, and cognitive function 
in participants suspected to be in cognitive decline. 

 

 

MATERIALS AND METHODS 
The institutional review board of Asan Medical Center approved this single-center retrospective cohort study with a waiver of 
informed consent forms (IRB No. S2023-1027-0001). This study adhered to the methodology proposed in the CLAIM checklist 
(Table S1). 
 
Study participants 
The participants were patients who had been clinically suspected to be cognitively impaired, and who had undergone a brain MRI 
between January – August 2023 at our tertiary referral hospital. The brain MRIs of these participants were used for training and 
validating a DL-based segmentation model. Those with CMB were randomly divided into a 7:3 ratio, with 30% of the participants 
allocated to the internal validation dataset and the remaining 70%, along with the CMB absent group, allocated to the training 
dataset. Participants assessed between April–August 2023 were included for clinical analysis. The inclusion criteria were: age > 18 
years, and an available brain MRI with SWI and filtered phase images. Baseline clinical information, including diabetes, 
hypertension, hyperlipidemia, lipid profiles (total cholesterol, triglyceride, and high- and low-density lipoproteins), and body-mass 
index, was retrieved from the electronic medical records, and MMSE based cognitive scores were collected. The MMSE had 
multiple components, including temporo-spatial orientation, memory registration, attention and calculation, memory recall, 
language, and space-time configuration. The maximum score was 30. Participants were excluded if any of the clinical information 
(i.e. diabetes, hypertension, total cholesterol level, MMSE scores) was missing within one year of the MRI scan (Figure 1).  
Moreover, an independent external validation dataset was collected for the DL segmentation model performance evaluation. The 
eligibility criteria for the external validation dataset were: adult participants who had undergone a brain MRI with available SWI 
and filtered phase images from outside hospitals during January–December 2023, who had visited our tertiary referral hospital. The 
selection process for eligible participants is depicted in Figure 1.  
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MR acquisition parameters 
All MRIs were acquired using a 3.0-T scanner (Ingenia CX, Philips Healthcare) using a 32-channel head coil. The dedicated brain 
MRI protocol included three-dimensional 1-mm isovoxel T1-weighted sequence (repetition time/echo time/inversion time [m/s], 
6.3/2.9/0), two-dimensional axial FLAIR images (9000/95/2500), T2-weighted images (3000/80/0), and SWI/filtered phase images, 
which were postprocessed from multi-echo gradient images (31/19.6; four echoes, with echo spacing of 6.2 m/s) according to the 
scanner’s standard settings (Table S2).  
 
MRI preprocessing and manual CMB segmentation labeling  
Initially, SWI and the filtered phase images were stored as DICOM formats, which were converted into NIfTI file formats.19 The 
images then underwent DL-based automated brain extraction using HD-BET.20 Subsequently, all images underwent N4 bias field 
correction for intensity normalization.21 For ground truth segmentation masks, all visible CMB on SWI and phase images were 
manually segmented by a neuroradiologist (J.S.K. with 5 years of experience in diagnostic neuroradiology) using a 3D Slicer 
(version 5.6.1). A supervising neuroradiologist then reviewed the segmentations and made modifications where necessary (Y.C. 
with 10 years of experience in diagnostic neuroradiology). Finally, a pretrained DL-based model was used for whole-brain 
segmentation (SynthSeg).22 Briefly, SynthSeg is a whole-brain segmentation tool that is robust against a wide range of contrasts 
and resolutions, thus providing SWI-based reliable anatomical maps. Since SynthSeg outputs were generated from native SWI 
images, co-registration or transformation of the images was not executed. The segmentation outputs included cerebral white matter, 
the hippocampus, amygdala, cerebellum, brainstem, thalamus, caudate, putamen, pallidum, and nucleus accumbens.  
 
Training and inference of the DL segmentation model  
The DL segmentation model was solely trained on the basis of nnU-Net without any modification.15 The nnU-Net architecture 
provides self-configured pre-processing steps, including automatic cropping of the image peripheries, resampling to resolutions 
equal to the ground truth segmentation masks, and z-transform normalization. The two-channel three-dimensional input images 
were SWI and filtered-phase images. For each training, the dataset was randomly divided into five folds for cross-validation, with 
each fold completing 1000 epochs of training. The best-performing model with the highest average dice similarity coefficient 
(DSC) values in the validation set was chosen.  
The CMB outputs were co-registered with corresponding SynthSeg-generated brain MRI outputs. The CMB were then categorized 
based on their location: 1) lobar: cerebral white matter and cortex; 2) deep (brainstem, thalamus, caudate, putamen, pallidum, and 
nucleus accumbens); and 3) cerebellar. Figure 2 shows the summarized workflow for image preprocessing and training a DL 
segmentation model. The codes used for preprocessing and model inference are provided on a GitHub page 
(https://github.com/olnsnlyy/CMB_segment). 
 
Automated WMH burden quantification 
WMH, visible on two-dimensional axial FLAIR images, was automatically quantified via commercial software (LesionQuant 
module of the NeuroQuant, CorTechs Labs, San Diego, CA, USA). The two-dimensional FLAIR images of all participants were 
spatially aligned and reconstructed based on three-dimensional T1-weighted images. The WMH burden was calculated as WMH 
volumes divided by the total intracranial volumes. Both radiologists reviewed all WMH segmentations without making any further 
modifications.  
 
Statistical analysis 
Continuous variables between participants according to CMB presence were compared using a two-sided independent t-test. 
Categorical variables were compared using Pearson’s chi-squared test. DSC was used to evaluate the performance of the CMB 
segmentation model in independent internal and external validation datasets. DSC measures the volumetric overlap between the 
predicted and ground truth CMB contours.23 Moreover, the sensitivity, specificity, and accuracy of CMB prediction in an external 
validation dataset were calculated and compared with the ground truth by the radiologist. Linear regression analysis was performed 
to find associations between clinical variables and log-transformed CMB numbers. Post-hoc subgroup linear regression analyses 
were performed to find associations between log-transformed CMB numbers by their distribution (i.e., deep, lobar, and cerebellar) 
and clinical variables. Additionally, linear regression investigated the association between clinical variables, WMH burden, log-
transformed CMB numbers by their distribution, and MMSE scores. A multivariable linear regression analysis including age, sex, 
diabetes, hyperlipidemia, total cholesterol, WMH burden, and total CMB number was performed with the MMSE score as the 
dependent variable. Furthermore, participants were stratified based on CMB numbers (none, 1–10, and >10) and their location. 
MMSE scores were then compared using the Kruskal-Wallis test with post-hoc comparisons. Finally, additional linear regression 
analyses were performed to examine the association between MMSE scores and CMB numbers (none, 1–10, and >10), separately 
for each CMB distribution (total, lobar, deep, and cerebellar). The adjusted coefficient of determination (R2) was calculated for 
each model. Statistical significance was set at a P-value of <.05. R statistical software (version 4.2.1; R Foundation for Statistical 
Computing) was used for all statistical analyses.  
 



 

FIG 1. A flowchart for selecting eligible study participants.  

 

 

Fig 2. Schematic workflow of image preprocessing and CMB segmentation output inference. 
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RESULTS 
 

Baseline characteristics of the study participants 
Table 1 summarizes the baseline characteristics of all participants. Among 1,183 consecutive participants with suspected 

cognitive decline, 354 were included for the training dataset (n = 287; mean age, 68 ± 14; 116 [40.4%] male and 171 [59.6%] 
female) and internal validation dataset (n = 67; mean age, 72 ± 10; 27 [40.3%] male and 40[59.7%] female) for a DL segmentation 
model. Among 829 participants with clinical information, 381 were excluded for missing information on either hypertension or 
diabetes (n = 35), total cholesterol levels (n = 104), WMH burden data (n = 60), and MMSE (n = 182), leaving 448 eligible 
participants (mean age, 72 ± 9 years; 171 [38.2%] male and 277 [61.8%] female).  

Between January–December 2023, 263 brain MRI studies were referred to our center, of which 195 were excluded for missing 
SWI (n = 173) and segmentation processing errors (n = 22). Sixty-eight participants from 49 different sites were involved (mean 
age, 52 ± 17 years; 32 [47%] male and 36 [53] female). Seventeen unique MR scanner models (four 1.5T and 13 3T) were included 
from three major manufacturers (GE HealthCare, Philips Healthcare, and Siemens Healthineers). The slice thicknesses ranged 
between 0.8–5 mm, and the in-plane spatial resolutions ranged between 0.24 × 0.24 – 0.9 × 0.9 mm2 (Table S3). 

 
CMB segmentation evaluation  
The internal and external validation datasets mean DSCs were 0.73 ± 0.25 (95% CI, 0.67–0.79) and 0.46 ± 0.32 (95% CI, 0.33–

0.59), respectively. In the internal validation dataset, the DL segmentation model demonstrated a F1 score and sensitivity of 61.8% 
(43.8–79.8%) and 85.7% (70.6–93.7%), respectively. In the external validation dataset, the DL segmentation model performed 
modestly with an accuracy, sensitivity, and specificity of 75.0 (63.6–83.8%), 70.0 (48.1–85.5%), and 77.1% (63.5–86.7%), 
respectively (Table S3). Representative images of CMB segmentations are illustrated in Figure 3. Moreover, example images of 
false positive and false negative segmentations in the external validation dataset are provided in Supplementary Figure 1. 

 

 
 
Fig 3. Representative images of SWI, CMB (red) and WMH (purple; periventricular white matter, yellow; deep white matter) 

segmentations overlaid on SWI and FLAIR in three participants. (a) 74-year-old female with normal cognition and mild WMH 



burden, with lobar and cerebellar CMB; (b) 78-year-old female with impaired cognition and large WMH burden, with increased 
CMB numbers in all three locations; and (c) 79-year-old female with impaired cognition and minimal WMH burden, with only a 
few cerebellar CMB.  

 
Comparison between participants according to CMB 
Participants with CMB were significantly older than those without CMB (73 ± 9 vs. 69 ± 10, respectively; P <.001). The 

difference in MMSE between the two groups was marginally significant (CMB present, 23.8 ± 5.5; CMB absent, 24.8 ± 4.8; P = 
.053). Participants with CMB had a significantly higher WMH burden (4.8 ± 5.6%) than those without CMB (2.4 ± 3.2%) (P 
<.001). All other clinical variables were not significantly different between the two groups (CMB present vs. absent) (Table 2).  

 
Relationship between the CMB number and clinical variables 
In the training dataset, no significant differences were observed between the ground truth-based and inference-based CMB 

counts, with both showing a negative association with total cholesterol, HDL, LDL, and a positive association with WMH burden. 

In the clinical dataset, WMH burden had significant positive associations with log-transformed CMB in all areas (total,  = 0.08, 

95% CI = 0.06–0.1, P <.001; lobar,  = 0.07, 95% CI = 0.05–0.09, P <.001; deep,  = 0.04, 95% CI = 0.03–0.05, P <.001; cerebellar, 

 = 0.02, 95% CI = 0.01–0.03, P <.001) (Figure 4, Online Supplemental Data). Older age and hypertension were also significantly 
associated with log-transfomed CMB in all areas. Total cholesterol level revealed a negative association with log-transformed total, 

lobar, and deep CMB number (total CMB,  = -0.003, 95% CI = -0.006–0.001, P = .007; lobar CMB,  = -0.003, 95% CI = -0.005–

0.001, P = .005; deep CMB,  = -0.002, 95% CI = -0.003–0.001, P = .002). HDL and LDL levels showed a negative association 

with log-transformed CMB in all areas, with statistically significant associations observed between HDL and deep CMB ( = -

0.003, 95% CI = -0.007–0.002, P = .04, and LDL and lobar CMB ( = -0.003, 95% CI = -0.006–0.005, P = .02) (Online 
Supplemental Data).  

 
 

 
Fig 4. Relationship between CMB number and WMH burden. These scatterplots illustrate associations between the log-

transformed CMB number by their distribution and WMH burden. Among these, lobar CMB numbers show the highest beta 

coefficient with WMH burden ( = 0.09, P <.001). Solid blue lines indicate the lines of best fit of linear regression and the shaded 



7 

 

areas indicate the 95% confidence intervals. The R2 values are coefficients of determination of linear regression. 
 
Relationship between the MMSE and clinical variables 
In univariable linear regression, age; diabetes; hyperlipidemia; total cholesterol; WMH burden; and total CMB numbers 

demonstrated significant associations with MMSE scores (age,  = -0.19, 95% CI = -0.24–-0.14, P <.001; diabetes,  = -1.15, 95% 

CI = -2.26–-0.04, P = .043; hyperlipidemia,  = 1.51, 95% CI = 0.52–2.51, P = .003; total cholesterol,  = 0.02, 95% CI = 0.003–

0.03, P = .014; WMH burden,  = -0.29, 95% CI = -0.38–-0.19, P <.001; total CMB number,  = -0.014, 95% CI = -0.03–-0.006, 
P = .006). Univariable linear regression analyses between log-transformed CMB numbers in each area and MMSE scores showed 

that total, deep, and lobar CMB numbers had strong negative associations with MMSE (total,  = -0.66, P = .001; deep,  = -1.2, 

P = .033; lobar,  = -0.61, P = .004) (Supplementary Figure 2). In multivariable linear regression, all variables except for total 
cholesterol and diabetes showed significant associations with MMSE scores (Table 3). Additionally, the group with >10 lobar 
CMB had significantly lower MMSE scores than those with fewer lobar CMB (P = .03) and no lobar CMB (P = .021) (Figure 5). 

 
 

 
 
Fig 5. Boxplots showing the group-comparisons of MMSE scores with respect to CMB numbers (none, 1–10, and >10). 

Significant group differences in MMSE scores are observed among the three groups of CMB numbers (total [A], deep [C], and 
cerebellar [D]). The group with >10 lobar CMB (B) has significantly lower MMSE scores than those with fewer lobar CMB (P = 
.03) and no lobar CMB (P = .021). 

 
 

DISCUSSION 
 

Our aims were to train and validate a DL segmentation model for accurate CMB quantification, and to evaluate associations among 
CMB numbers, WMH burden, vascular risk factors, and cognitive function. The segmentation performance was robust in the 
internal validation dataset (DSC = 0.73) but only modest in the external validation dataset (DSC = 0.46). In all locations, CMB 
numbers had significant positive associations with WMH burden, older age, and hypertension. Particularly, lobar and deep CMB 
numbers were significantly associated with lower total cholesterol levels. In multivariable linear regression analysis, older age, 
male gender, hyperlipidemia, a higher total CMB number, and WMH burden were associated with decreased cognitive function.  
In the internal validation dataset, the robust segmentation performance was similar to the results observed in a previous study 



investigating DL-based CMB segmentation (DSC = 0.72).24 Nonetheless, the DSC of the external validation dataset was noticeably 
lower than that of the internal validation dataset. This discrepancy is probably attributable to the highly variable MR acquisition 
settings within the external validation dataset, differing in MR manufacturers, magnetic fields, in-plane resolutions, and slice 
thicknesses. Moreover, the mean age of the external dataset was significantly lower than that of internal dataset, which may also 
have affected the segmentation performance. Despite the lower DSC in the external validation dataset, the DL model’s CMB 
detection rate was acceptable, which is promising considering that true positive CMB detection is clinically more relevant than 
accurate volumetric segmentation. More importantly, the DL model’s generalizability has been proven by the robust external 
validation dataset. 
In recent years, several automated approaches for CMB detection have been proposed. One notable method utilized a two-stage 
framework based on a 3D fast radial symmetry transform and deep residual neural networks, achieving a sensitivity of 95.8% with 
a precision of 70.9%, and 1.6 false positives per case.12 However, this study lacked external validation and used a relatively small 
dataset. Another approach employed a regional-based You Only Look Once (YOLO) for candidate detection followed by a 3D-
CNN for false positive reduction, demonstrating a sensitivity of 93.62% and 78.85% for high and low-resolution data, 
respectively.25 Despite its efficacy, the complex DL structure of these two studies have been limited in their adaptability compared 
to simpler models like nnU-net, which our study utilizes. Lastly, a study focusing on traumatic brain injury cases compared 
classification and segmentation approaches, finding the U-Net model to be the most effective with a 90% detection rate at false 
positive counts of 17.1 in patients with traumatic brain injury.18 However, its limited scope in relation to traumatic brain injury 
cases and the small dataset size raises questions about the generalizability of the results. Our approach, utilizing the nnU-net model, 
offers a simpler yet efficient alternative, providing a modest performance while maintaining a straightforward architecture that 
facilitates potential modifications and adaptability. 
Older age and hypertension are well-established risk factors for CMB.1 However, an interesting finding was that the total, deep, 
and lobar CMB number was negatively associated with total cholesterol levels. Several studies have also found a negative 
association between lipid profiles and CMB prevalence.6,7,26 A large cross-sectional study of neurologically healthy individuals in 
Japan revealed an inverse correlation between total cholesterol levels and the prevalence of deep CMB.7 In other studies, the serum 
low-density lipoprotein level was negatively correlated with deep CMB,6 while the Framingham heart study showed a negative 
association between total cholesterol and lobar CMB.26 Reduced levels of total cholesterol have been associated with smooth 
muscle deterioration and endothelial cells weakness, making arterial walls more fragile and prone to microaneurysm development, 
potentially causing leakage and rupture.8  
CMB and WMH are the most common radiologic manifestations of SVD; they frequently coexist in patients with SVD and share 
an identical pathological basis.27,28 However, visual assessments of WMH, such as the Fazekas scale, have limited value for the 
accurate volumetric quantification of WMH. Balestrieri et al.5 measured WMH volume using a semi-automated method, finding a 
significant positive correlation between CMB and WMH volume. Herein, the lobar CMB number exhibited the highest positive 
association with WMH burden, suggesting a potential link between lobar CMB and WMH stemming from cerebral amyloid 
angiopathy.29–31 
Several studies have investigated the association between cognitive function and SVD imaging findings, including CMB and 
WMH. Zamboni et al. demonstrated that in patients with transient ischemic attacks, reduced cognitive function was linked to an 
increased probability of WMH in the frontal periventricular white matter.32 Poels et al. discovered that the links between deep or 
cerebellar CMB and cognitive function were weaker compared to strictly lobar CMB and influenced by other factors such as brain 
atrophy and SVD indicators . In contrast, the association between lobar CMB and cognition was found to be highly significant.10 
Likewise, the lobar CMB number exhibited the strongest negative association with cognition among the CMB distribution patterns, 
suggesting that strictly lobar CMB may indicate pathologies related to cerebral amyloid angiopathy, such as the vascular 
accumulation of beta-amyloid, which may directly affect cognition.10,33 Another hypothesis suggests that strictly lobar CMBs may 
have a more pronounced impact on surrounding brain tissue compared to deep or cerebellar CMBs due to their potential to disrupt 
functionally significant cortical and subcortical structures.34 Moreover, the MMSE scores were lower in the CMB-lobar group 
compared to the CMB-mixed group, indicating that lobar CMB related to cerebral amyloid angiopathy may contribute significantly 
to the pathological process of cognitive decline.35 

This study has a few limitations. First, there is the inherent bias associated with the retrospective nature of this study. Second, 
a few participants were excluded due to missing information on body mass index and detailed lipid profiles (i.e., triglyceride and 
high- and low-density lipoproteins). Third, only the MMSE was used to assess cognitive function. This may have limited our 
comprehension of the impact of CMB in various cognitive domains. Fourth, the DL segmentation model was trained in a single 
center; subsequently, the segmentation performance in the external validation dataset was only modest. However, such 
underperformance was anticipated since DL models trained with medical images have consistently shown lower performances in 
external validation datasets.36 Further research is needed to improve the technical aspects of the DL segmentation model for CMB. 
Fifth, when comparing the demographics among the training dataset, internal validation dataset, and clinical dataset, a significant 
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difference was observed in age, suggesting that there might be discrepancies between the groups. However, no significant 
differences were found in other clinical variables or the CMB count. Sixth, we did not exclude patients with medication histories 
that may have acted as confounding factors. However, since each dataset involves a relatively similar cohort group that visited the 
hospital for mild cognitive impairment or dementia, the impact is expected to be minimal. Finally, reports suggest that vessel wall 
thickening, enlarged perivascular space, decreased vascular density, cerebral blood flow, and increased vessel tortuosity are 
associated with SVD. However, in our study, we did not analyze the association between these factors and CMBs.37,38 Finally, our 
study population only included participants suspected of clinical impairment and our results cannot, therefore, be generalized. 
 

 
 

CONCLUSIONS 

The DL segmentation model accurately quantified CMB in all locations. After adjusting for age and sex, multivariable linear 
regression revealed that hyperlipidemia, a higher total cerebral microbleed number, and WMH burden were associated with 
decreased cognitive function. Our study efficiently analyzed CMB and WMH burdens and explored their clinical relevance 
regarding cognitive function. 
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Tables 

Table 1: Baseline characteristics of participants  

Variable Training 
dataset (n = 
287) 

Internal 
validation dataset 
(n = 67) 

External 
validation dataset 
(n = 68) 

Clinical dataset  

(n = 448) 

P 

Age, years 68 ± 14 72 ± 10 53 ± 17 72 ± 9  < .001 

Sex    
 

.81 

Male 116 (40.4) 27 (40.3) 32 (47) 171 (38.2)  

Female 171 (59.6) 40 (59.7) 36 (53) 277 (61.8)  

Diabetes 63 (22.0) 11 (16.4) NA 119 (26.6) .11 

Hypertension 126 (43.9) 34 (50.7) NA 219 (48.9) .35 

Hyperlipidemia 127 (44.3) 35 (52.2) NA 180 (40.2) .13 

BMI (kg/m2)* 24.2 ± 3.8 23.4 ± 3.4 NA 24.2 ± 3.3 .31 

MMSE 24.7 ± 5.0 24.3 ± 4.8 NA 24.1 ± 5.3 .43 

Total cholesterol (mg/dL) 173.2 ± 42.2 173.2 ± 56.9 NA 167.3 ± 38.3 .15 

Triglycerides (mg/dL)† 121.0 ± 66.9 118.8 ± 64.6 NA 115.9 ± 65.8 .70 

HDL (mg/dL)† 55.5 ± 14.3 56.0 ± 13.9 NA 55.2 ± 14 .91 

LDL (mg/dL)† 97.2 ± 35.8 92.0 ± 38.4 NA 92.8 ± 32 .29 

WMH burden (%) 3.9 ± 5.7 4.1 ± 5.4 NA 4.0 ± 5.1 .94 

CMB present  154 (53.7) 67 (100) 22 (32.4) 287 (64.1)  

CMB number, median (IQR 25, 
75) 

1 (0, 3)) 1 (1, 3)) 0 (0, 1)) 1 (0, 3)) .21 

 

Note.—Mean data are ± SDs and numbers of participants with percentages in parentheses for categorical data.  

BMI = body mass index, CMB = cerebral microbleed, HDL = high-density lipoprotein, LDL = low-density lipoprotein, MMSE = mini-

mental status examination, WMH = white matter hyperintensity, NA = not applicable 

*Number of participants with known BMI, n = 348 

†Number of participants with known triglyceride, HDL, and LDL levels, n = 339
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Table 2: Comparison of clinical variables between participants with cerebral microbleeds 

Clinical variables CMB present (n = 307) CMB absent (n = 141) P 

Age 73 ± 9 69 ± 10 <.001 

Sex 
  

.08 

Male 126 (41) 96 (68.1) 
 

Female 181 (59) 45 (31.9) 
 

Hypertension 158 (51.5) 61 (43.3) .13 

Diabetes 82 (26.7) 37 (26.2) >.99 

Hyperlipidemia 116 (37.8) 64 (45.4) .16 

BMI (kg/m2)* 24.2 ± 3.6 24.2 ± 2.8 .98 

MMSE 23.8 ± 5.5 24.8 ± 4.8 .053 

Total Cholesterol (mg/dL) 165.3 ± 38.3 171.7 ± 38.2 .10 

Triglyceride (mg/dL)† 115 ± 63.4 118.1 ± 71.4 .69 

HDL (mg/dL)† 55.1 ± 13.5 55.7 ± 15.1 .71 

LDL (mg/dL)† 91.9 ± 31.2 94.8 ± 33.6 .45 

WMH burden (%) 4.8 ± 5.6 2.4 ± 3.2 <.001 

Note.—Mean data are ± SDs and numbers of participants with percentages in parentheses for categorical data.  

BMI = body mass index, CMB = cerebral microbleed, HDL = high-density lipoprotein, LDL = low-density lipoprotein, MMSE = mini-mental 
status examination, WMH = white matter hyperintensity 
*CMB present (n = 237) and absent (n = 111) 
†CMB present (n = 235) and absent (n = 104) 

 

 

Table 3: Relationship between cognition (MMSE) and vascular risk factors  
        Univariable linear regression        Multivariable linear regression 

Clinical variables  95% CI P  95% CI P 

Age -0.19 -0.24, -0.14 <.001 -0.14 -0.19, -0.09 <.001 

Sex, male 0.87  -0.14, 1.88 .09 1.5 0.55, 2.45 .002 

Hypertension -0.33 -1.31, 0.66 .52 
 

 
 

Diabetes -1.15  -2.26, -0.04 .043 -0.41 -1.5, 0.68 .47 

Hyperlipidemia 1.51 0.52, 2.51 .003 1.88 0.96, 2.81 <.001 

BMI (kg/m2) 0.09 -0.07, 0.26 .27 
 

 
 

Total Cholesterol (mg/dL) 0.02 0.003, 0.03 .014 0.01 -0.003, 0.02 .14 

Triglyceride (mg/dL) 0.004 -0.004, 0.01 .27 
 

 
 

HDL (mg/dL) 0.03 -0.01, 0.07 .15 
 

 
 

LDL (mg/dL) -0.001 -0.02, 0.02 .87 
 

 
 

WMH burden (%) -0.29 -0.38, -0.19 <.001 -0.17 -0.27, -0.08 <.001 

Total CMB number -0.014 -0.03, -0.006 .006 -0.01 -0.02, -0.001 .04 

Note.— CI = confidence interval, BMI = body mass index, CMB = cerebral microbleed, HDL = high-density lipoprotein, LDL = low-density 
lipoprotein, MMSE = mini-mental status examination, SE = standard error, WMH = white matter hyperintensity 
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SUPPLEMENTAL FILES 

 

Online Supplemental Data: Univariable linear regression between cerebral microbleed numbers and clinical variables  
Total Lobar Deep Cerebellar 

Variables  95% CI P  95% CI P  95% CI P  95% CI P 

Age 0.03 0.02, 0.04 <.00
1 

0.02 0.02, 
0.03 

<.001 0.00
8 

0.004, 
0.013 

<.00
1 

0.007 0.002, 0.01 .00
7 

Sex, male 0.17 -0.02, 
0.36 

.08 0.16 -0.02, 
0.33 

.07 0.00
9 

-0.08, 0.09 .84 0.05 -0.05, 0.16 .29 

Hypertension 0.33 0.14, 0.51 <.00
1 

0.23 0.07, 0.4 .006 0.19 0.11, 0.27 <.00
1 

0.14 0.04, 0.24 .00
5 

Diabetes 0.16 -0.05, 
0.37 

.15 0.13 -0.06, 
0.32 

.18 0.06 -0.03, 0.15 .21 0.08 -0.03, 0.19 .16 

Hyperlipidemia 0.03 -0.16, 
0.22 

0.77 0.01 -0.16, 
0.18 

.89 0.04 -0.04, 0.13 .33 0.07 -0.03, 0.17 .19 

BMI  

(kg/m2) 

-0.02 -0.06, 
0.008 

.14 -0.03 -0.06, 
0.001 

.06 0.00
1 

-0.01, 0.01 .88 -
0.007 

-0.02, 0.01 .42 

WMH burden  

(%) 

0.08 0.06, 0.1 <.00
1 

0.07 0.05, 
0.09 

<.001 0.04 0.03, 0.05 <.00
1 

0.02 0.01, 0.03 <.0
01 

Total 
Cholesterol  

(mg/dL) 

-0.003 -0.006, -
0.001 

.007 -0.003 -0.005, -
0.001 

.005 -
0.00
2 

-0.003, -
0.001 

.002 -
0.000
8 

-0.002, 
0.001 

.25 

Triglyceride  

(mg/dL) 

0.0003 -0.001, 
0.002 

.68 0.0002 -0.001, 
0.002 

.82 0.00
03 

-0.0003, 
0.001 

.34 0.000
1 

-0.0007, 
0.001 

.75 

HDL  

(mg/dL) 

-0.003 -0.01, 
0.004 

.36 -0.002 -0.009, 
0.005 

.61 -
0.00
3 

-0.007, -
0.0002 

.04 -
0.003 

-0.007, 
0.001 

.11 

LDL (mg/dL) -0.003 -0.006, 
0.0001 

.06 -0.003 -0.006, -
0.0005 

.02 -
0.00
1 

-0.003, 
0.001 

.07 -
0.000
5 

-0.002, 
0.001 

.54 

Note.— CI = confidence interval, BMI = body mass index, HDL = high-density lipoprotein, LDL = low-density lipoprotein, SE = standard error, 
WMH = white matter hyperintensity. Total, lobar, deep, and cerebellar cerebral microbleeds were log-transformed.  

 

 

Table S1. Checklist for Artificial Intelligence in Medical Imaging (CLAIM):  2024 Update 

Section / Topic No. Item Page / Line No NA 

TITLE / ABSTRACT      

 1 Identification as a study of AI methodology, specifying the 
category of technology used (e.g., deep learning) 

1   

ABSTRACT      

 2 Summary of study design, methods, results, and conclusions 1   

INTRODUCTION      

 3 Scientific and/or clinical background, including the intended 
use and role of the AI approach 

2/25   

4 Study aims, objectives, and hypotheses  2/34   

METHODS      

Study Design 5 Prospective or retrospective study 2/41   

6 Study goal 2/34   

Data 7 Data sources 2/45   

8 Inclusion and exclusion criteria 2/49   
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9 Data pre-processing 3/68   

10 Selection of data subsets   V 

11 De-identification methods 2/41   

12 How missing data were handled   V 

13 Image acquisition protocol 2/61   

Reference Standard 14 Definition of method(s) used to obtain reference standard 3/71   

15 Rationale for choosing the reference standard   V 

16 Source of reference standard annotations   V 

17 Annotation of test set  2/68   

18 Measures of inter- and intra-rater variability of features 
described by the annotators 

  V 

Data Partitions 19 How data were assigned to partitions 2/46   

20 Level at which partitions are disjoint 2/45   

Testing Data 21 Intended sample size  V  

Model 22 Detailed description of model 3/80   

 23 Software libraries, frameworks, and packages 3/81   

 24 Initialization of model parameters   V 

Training 25 Details of training approach 3/80   

 26 Method of selecting the final model 3/85   

 27 Ensembling techniques   V 

Evaluation 28 Metrics of model performance 3/85   

 29 Statistical measures of significance and uncertainty 3/115   

 30 Robustness or sensitivity analysis 3/84   

 31 Methods for explainability or interpretability 3/85   

 32 Evaluation on internal data Table 1   

 33 Testing on external data 2/56   

 34 Clinical trial registration   V 

RESULTS      

Data 35 Numbers of patients or examinations included and excluded 5/127   

 36 Demographic and clinical characteristics of cases in each 
partition 

Table 1   

Model performance 37 Performance metrics and measures of statistical uncertainty 5/139   

 38 Estimates of diagnostic performance and their precision 5/139   

 39 Failure analysis of incorrect results   V 

DISCUSSION      

 40 Study limitations 9/255   

 41 Implications for practice, including intended use and/or clinical 
role  

10/273   

OTHER INFORMATION      

 42 Provide a reference to the full study protocol or to additional 
technical details 

3/91   

 43 Statement about the availability of software, trained model, 3/91   
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and/or data 

 44 Sources of funding and other support; role of funders   V 

 

 

Table S2: MRI acquisition parameters 

Parameter T2 FLAIR T2WI SWI 3D T1WI 

Repetition time (msec)  9000 3000 31 6.3 

Echo time (msec)  125 80 7.2 2.9 

Echo time spacing (msec) NA NA 6.2 NA 

Inversion time (msec) 2500 NA NA NA 

Flip angle (degree)  90 90 17 9 

No. of averages 1 1 1 1 

Matrix 256×256 384×384 368×297 256×256 

Section thickness (mm)  3 4 2 1 

Intersection gap (mm)  0 0 0 0 

Field of view (mm2)  220×220 220×220 220×178 256×256 

Total scan time  3 min 36 sec 2 min 33 sec 3 min 3 sec 6 min 11 sec 

Note.—3D = three-dimensional, FLAIR = fluid-attenuated inversion recovery, NA = not applicable, SWI = susceptibility weighted image, T1WI = T1-
weighted image, T2WI = T2-weighted image 

 

 

Table S3: MRI Characteristics of External Datasets 

Sit
es 

Se
x 

A
ge 

MR 
manufacture

r 
MR model 

In-plane 
resolution (mm2) 

Slice thickness 
(mm) 

Ground Truth 
CMB count 

Predicted 
CMB count 

TN/FN/F
P/TP† 

DS
C‡ 

1 F 32 Philips Achieva 0.47 × 0.47 3 0 0 TN  
 

M 49 Philips Ingenia  0.47 × 0.47 3 0 0 TN  

2 F 55 Philips Ingenia 
Elition X 

0.34 × 0.34 1 
0 0 TN  

3 M 55 Siemens VIDA 0.53 × 0.53 2 0 0 TN  
 

M 43 Siemens VIDA 0.53 × 0.53 2 0 0 TN  

4 F 19 Siemens Essenza* 0.72 × 0.72 1.6 0 0 TN  

5 F 78 Siemens Skyra 0.45 × 0.45 2 0 0 TN  

 F 76 Philips Ingenia CX 0.33 × 0.33 1 0 1 FP  

6 F 29 Philips Ingenia 
Elition X 

0.43 × 0.43 1.5 
0 0 TN  

7 F 73 Siemens Skyra 0.25 × 0.25 2.5 0 0 TN  

8 F 68 GE Signa 
Pioneer 

0.47 × 0.47 1 
1 1 TP 

0.0
2 

9 M 20 GE Premier 0.45 × 0.45 2 0 0 TN  

10 M 74 Siemens Verio 0.57 × 0.57 1.5 1 1 TP 0.4 

11 M 54 Siemens Skyra 0.75 × 0.75 1 0 0 TN  
 

M 61 Philips Ingenia 0.5 × 0.5 3 0 0 TN  

12 M 63 Siemens VIDA 0.55 × 0.55 2 
170 88 FN 

0.3
6 

13 F 48 Philips Ingenia 0.43 × 0.43 2 0 0 TN  
 

M 38 Philips Ingenia  0.43 × 0.43 2 3 3 TP 0.7
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3 

14 F 50 Philips Ingenia 
Elition X 

0.31 × 0.31 1 
0 0 TN  

15 F 31 Siemens VIDA 0.45 × 0.45 4 0 0 TN  

16 M 80 Philips Ingenia CX 0.29 × 0.29 1 7 7 TP 0.7 
 

M 66 Philips Ingenia CX 0.29 × 0.29 1 
1 1 TP 

0.7
8  

M 29 Siemens Symphony 
Tim* 

0.75 × 0.75 1.6 
4 0 FN 0 

 F 54 Philips Ingenia CX 0.29 × 0.29 1 0 0 TN  

17 F 25 Siemens VIDA 0.36 × 0.36 2 0 0 TN  
 

M 76 Siemens Skyra 0.49 × 0.49 3 0 0 TN  
 

M 55 Siemens Skyra 0.49 × 0.49 3 0 0 TN  

18 F 35 Siemens VIDA 0.55 × 0.55 2 0 0 TN  

19 F 49 Siemens Verio 0.49 × 0.49 2 0 0 TN  
 

M 61 Siemens Verio 0.47 × 0.47 2 0 1 FP  

 F 30 Siemens Verio 0.45 × 0.45 2 0 1 FP  

20 M 38 GE Signa 
Architect 

0.43 × 0.43 1.5 
0 1 FP  

 F 46 Philips Ingenia 
Elition X 

0.31 × 0.31 1 
0 0 TN  

21 F 59 Philips Achieva 0.41 × 0.41 0.8 
2 2 TP 

0.7
2 

22 M 54 Siemens Sempra* 0.9 × 0.9 2 0 1 FP  

23 M 68 Siemens VIDA 0.57 × 0.57 1 
17 9 FN 

0.4
5  

F 47 Siemens Skyra 0.49 × 0.49 1 0 0 TN  

24 F 33 Philips Ingenia 
Elition X 

0.43 × 0.43 1 
0 0 TN  

25 F 56 Philips Ingenia CX 0.43 × 0.43 2 
1 1 TP 

0.7
5 

26 M 71 Siemens Verio 0.72 × 0.72 2 2 0 FN 0 

27 M 75 Siemens Verio 0.36 × 0.36 1 0 1 FP  

28 M 22 Philips Achieva 0.25 × 0.25 5 0 0 TN  

 F 82 Philips Ingenia 0.25 × 0.25 5 
5 5 TP 

0.7
6 

29 M 65 Siemens VIDA 0.6 × 0.6 2 
1 1 TP 

0.7
6 

30 F 58 GE Signa 
Architect 

0.43 × 0.43 1.2 
0 0 TN  

31 M 59 Philips Achieva 0.24 × 0.24 1.5 0 0 TN  

32 M 61 Siemens Skyra 0.72 × 0.72 2 0 1 FP  

 F 40 Siemens Skyra 0.72 × 0.72 2 1 0 FN 0 

33 F 31 Siemens Magnetom 
Lumina 

0.43 × 0.43 2 
0 0 TN  

34 M 59 Philips Achieva 0.45 × 0.45 1.5 2 2 TP 0.7 

35 F 44 Siemens Magnetom 
Lumina 

0.45 × 0.45 1.5 
0 0 TN  

36 M 50 Philips Ingenia CX 0.45 × 0.45 1 
4 4 TP 

0.7
7 
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37 M 66 Philips Achieva 
dStream 

0.45 × 0.45 0.85 
0 0 TN  

38 M 57 Siemens Skyra 0.69 × 0.69 1.5 0 0 TN  

39 M 78 Philips Achieva 
dStream 

0.37 × 0.37 1.5 
1 1 TP 

0.7
6 

40 F 61 Philips Ingenia CX 0.41 × 0.41 1.5 0 0 TN  

 F 66 Philips Ingenia 0.43 × 0.43 1.5 1 3 FP 0 

41 M 74 Philips Ingenia CX 0.3 × 0.3 1 
1 3 FP 

0.1
2 

 F 34 Philips Ingenia CX 0.3 × 0.3 1 
2 1 FN 

0.5
6 

 F 56 Philips Ingenia CX 0.3 × 0.3 1 
1 1 TP 

0.6
3 

42 F 60 Siemens Avanto* 0.75 × 0.75 2.5 0 0 TN  

43 F 62 Philips Ingenia 0.3 × 0.3 1 
4 4 TP 

0.1
3 

44 M 21 Siemens VIDA 0.57 × 0.57 2 0 0 TN  

45 F 31 Philips Ingenia CX 0.42 × 0.42 1 0 0 TN  

46 F 35 Siemens Sempra* 0.4 × 0.4 2 0 2 FP  

47 M 65 Siemens Verio 0.57 × 0.57 2 0 0 TN  

48 F 81 Siemens VIDA 0.31 × 0.31 1 0 0 TN  

49 F 31 Philips Ingenia CX 0.29 × 0.29 1 0 1 FP  

Note.—CMB = cerebral microbleed, DSC = dice similarity coefficient, FN = false negative, FP = false positive, TN = true negative, TP = true positive 

*1.5-Tesla  

†Accuracy = 75.0% (63.6–83.8%), Sensitivity = 70.0% (48.1–85.5%), Specificity = 77.1% (63.5–86.7%) 

‡Calculated for cases with ground truth CMB masks 
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Figure S1. Example images of false positive segmentation of pineal gland calcification (left) and false negative detection of CMB (right) 
in the external validation dataset. The MR scanner model names and spatial resolutions are displayed at the top.  

 

 

 

Figure S2. Relationship between MMSE scores and log-transformed CMB number/WMH burden. Solid blue lines indicate the lines of 
best fit for linear regression, while the shaded areas indicate the 95% confidence intervals. The R2 values are the linear regression 
coefficients of determination. 

 


