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ABSTRACT 

BACKGROUND AND PURPOSE: Distal medium vessel occlusions (DMVOs) are estimated to cause acute ischemic stroke (AIS) in 25-40% 
of cases. Prognostic models can inform patient counseling and research by enabling outcome predictions. However, models designed 
specifically for DMVOs are lacking. 

MATERIALS AND METHODS: This retrospective study developed a machine learning model to predict 90-day unfavorable outcome 
[defined as a modified Rankin Scale (mRS) score of 3-6] in 164 primary DMVO patients. A model developed with the TabPFN algorithm 
utilized selected clinical, laboratory, imaging, and treatment data with the Least Absolute Shrinkage and Selection Operator feature 
selection. Performance was evaluated via 5-repeat 5-fold cross-validation. Model discrimination and calibration were evaluated. 
SHapley Additive Explanations (SHAP) identified influential features. A web application deployed the model for individualized 
predictions. 

RESULTS: The model achieved an area under the receiver operating characteristic curve of 0.815 (95% CI: 0.79-0.841) for predicting 
unfavorable outcome, demonstrating good discrimination, and a Brier score of 0.19 (95% CI: 0.177-0.202), demonstrating good 
calibration. SHAP analysis ranked admission National Institutes of Health Stroke Scale (NIHSS) score, premorbid mRS, type of 
thrombectomy, modified thrombolysis in cerebral infarction score, and history of malignancy as top predictors. The web application 
enables individualized prognostication. 

CONCLUSIONS: Our machine learning model demonstrated good discrimination and calibration for predicting 90-day unfavorable 
outcomes in primary DMVO strokes. This study demonstrates the potential for personalized prognostic counseling and research to 
support precision medicine in stroke care and recovery. 

ABBREVIATIONS: ABC ＝ definition; XYZ ＝ definition. DMVO = Distal medium vessel occlusion; AIS = acute ischemic stroke; mRS = 
modified Rankin Scale; SHAP = SHapley Additive Explanations; NIHSS = National Institutes of Health Stroke Scale; ST = stroke 
thrombectomy; TRIPOD = Transparent Reporting of Multivariable Prediction Models for Individual Prognosis or Diagnosis; CT = 
computed tomography; CTP = CT perfusion; MRI = magnetic resonance imaging; CTA = CT angiography; DVT = deep vein thrombosis; 
PE = pulmonary emboli; TIA = transient ischemic attack; BMI = body mass index; ALP = alkaline phosphatase; ALT = alanine 
transaminase; AST = aspartate aminotransferase; NCCT-ASPECTS = Alberta Stroke Program Early CT Score; IVT = intravenous 
thrombolysis; mTICI = modified thrombolysis in cerebral infarction; ER = emergency room; kNN = k-nearest neighbor; LASSO = Least 
Absolute Shrinkage and Selection Operator; PDPs = partial dependence plots; ROC = receiver operating characteristic; PRC = 
precision-recall curve; AUROC = area under the ROC curve; AUPRC = area under the PRC; CI = confidence interval. 
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 SUMMARY SECTION 

PREVIOUS LITERATURE: Distal medium vessel occlusions (DMVOs) account for a significant portion of acute ischemic strokes. While 
prognostic models for large vessel occlusion stroke outcomes exist, those specifically designed for DMVOs are lacking. Previous studies 
have explored machine learning approaches for predicting outcomes in acute ischemic stroke, but these models are not tailored to 
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the unique characteristics of DMVOs. One prior study developed machine learning models to predict NIHSS shift in DMVO patients, 
but did not address longer-term functional outcomes measured by the modified Rankin Scale (mRS). 

KEY FINDINGS: Our machine learning model, utilizing the TabPFN algorithm, achieved good discrimination with an area under the 
receiver operating characteristic curve of 0.815 (95% CI: 0.79-0.841) and calibration with a Brier score of 0.19 (95% CI: 0.177-0.202) 
in predicting 90-day unfavorable outcomes in DMVO patients. The model identified admission NIHSS score, premorbid mRS, 
thrombectomy type, mTICI score, and malignancy history as top predictors. 

KNOWLEDGE ADVANCEMENT: This study presents the first prognostic machine learning model specifically designed for predicting 
mRS outcomes in DMVO patients. By integrating clinical, laboratory, imaging, and treatment data, our model provides a tool for 
personalized prognostication in this important stroke subtype, potentially informing clinical decision-making and research strategies. 

INTRODUCTION 

Introduction should be placed here. Please write a brief introduction to the paper that outlines the Background/Purpose in further detail. 
Distal medium vessel occlusions (DMVOs), also known as medium vessel occlusions, are estimated to cause acute ischemic stroke (AIS) 
in 25-40% of cases.1 They are most commonly defined as occlusions in non-co-dominant M2, M3, or M4 segments of the middle cerebral 
artery (MCA), anterior cerebral artery, posterior cerebral artery, posterior inferior cerebellar artery, superior cerebellar artery, or anterior 
inferior cerebellar artery.2 The clinical manifestations of DMVOs are heterogeneous, and the optimal imaging modality for diagnosis has 
yet to be defined.3,4 DMVOs represent an emerging application for stroke thrombectomy (ST), thus it is an active area of research.1,5 While 
ST has started to be employed for DMVOs in clinical practice, a better understanding of ST's efficacy and safety in DMVOs is necessary, 
as findings from retrospective studies and meta-analyses have been conflicting.6  

These challenges underscore the need for accurate prognostic models to anticipate disease progression and outcomes in patients with 
DMVOs, regardless of whether they receive ST, medical therapy, or both. While prognostic scales, nomograms, and machine learning 
approaches have been extensively studied for predicting outcomes in AIS, models tailored specifically for DMVOs are lacking in the 
literature.7–9 Machine learning models to predict the National Institutes of Health Stroke Scale (NIHSS) shift of patients with DMVOs 
were developed in a previously published study.10 In the current study, we aimed to address the need for accurate individual-level 
predictions of longer-term functional outcomes in primary DMVO patients. To do so, we developed a novel model based on a modified 
Prior-Data Fitted Network architecture that leverages clinical, laboratory, imaging, and treatment variables to predict unfavorable outcome, 
defined as a modified Rankin Scale (mRS) score of 3-6—a standard measure in clinical trials.11 

MATERIALS AND METHODS 

This was a retrospective cohort study using machine learning to predict unfavorable functional outcome, defined as an mRS score of 3-6 
at 90 days, in primary DMVO patients. Patients were dichotomized into two outcome groups [favorable (mRS 0-2) versus unfavorable 
(mRS 3-6)], and a binary classifier was developed to predict the outcome of interest.11 The study adhered to the Transparent Reporting of 
Multivariable Prediction Models for Individual Prognosis or Diagnosis-Artificial Intelligence (TRIPOD+AI).12 The data processing 
pipeline is depicted in Figure 1 as a summary of our methodology. 
 

 

FIG 1. Data processing pipeline (LASSO: Least Absolute Shrinkage and Selection Operator, ROC: receiver operating characteristic, 
PR: precision-recall, AUROC: area under the receiver operating characteristic curve, AUPRC:  area under the precision-recall 
curve, MCC: Matthews Correlation Coefficient). 
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Ethical Approval 

This study was carried out in accordance with the Helsinki Declaration (as revised in 2013). The Johns Hopkins Hospital Institutional 
Review Board approved the study. The requirement for individual informed consent was waived due to the retrospective nature of the 
study. 
 
Study Population 

We utilized data from two comprehensive stroke centers, Johns Hopkins Hospital and Johns Hopkins Bayview Medical Center. 
Consecutive patients admitted between January 1, 2017, and October 16, 2022, were screened for eligibility. A DMVO was defined as an 
arterial occlusion involving anterior cerebral artery, M2-M4 MCA, posterior cerebral artery, posterior inferior cerebellar artery, anterior 
inferior cerebellar artery, or superior cerebellar artery.2 The diagnosis of AIS was made based on clinical examination and confirmed with 
computed tomography (CT) or magnetic resonance imaging (MRI) of the brain. Patients were included if they met the following criteria: 
(I) admission within 24 hours of symptom onset; (II) age ≥18 years; (III) confirmed primary diagnosis of DMVO using CT angiography 
(CTA) or CT perfusion (CTP). Locations of the vessel occlusions found on either CTA or CTP were indeed further confirmed by digital 
subtraction angiography (DSA) in patients who underwent thrombectomy. Patients were excluded if outcome data were incomplete or if 
the DMVO was secondary to an iatrogenic embolus from the endovascular treatment of a different occlusion. 
 
Demographic and Clinical Data 

Demographic and clinical data were retrospectively extracted from electronic medical records. The following variables were collected: 
age, sex, race, smoking status, comorbidities (diabetes, dyslipidemia, hypertension, heart disease, atrial fibrillation, chronic kidney disease, 
sleep apnea, peripheral vascular disease), prior deep vein thrombosis (DVT) or pulmonary emboli (PE), prior stroke or transient ischemic 
attack (TIA), history of malignancy, antiplatelet use, body mass index (BMI), admission vitals (systolic blood pressure, diastolic blood 
pressure, heart rate, respiratory rate, and oxygen saturation), admission NIHSS score, premorbid (pre-stroke) mRS score, stroke etiology, 
and 90-day mRS score. 
 
Laboratory Data 

Peripheral venous blood samples were collected from all patients upon arrival at the emergency department per institutional standard stroke 
protocol. Samples were processed and analyzed uniformly using the same methods at the clinical laboratories of the two hospitals. The 
following admission laboratory parameters were retrospectively retrieved: electrolytes (sodium, potassium, chloride, calcium, phosphorus, 
magnesium), carbon dioxide,  glucose, blood urea nitrogen (BUN), creatinine, albumin, total protein, liver tests [total bilirubin, alkaline 
phosphatase (ALP), alanine transaminase (ALT), aspartate aminotransferase (AST)], complete blood count (hematocrit, hemoglobin, white 
blood cell count, platelet count), and coagulation studies (partial thromboplastin time, international normalized ratio). 
 
Imaging Data 

Both centers employed helical scanners from the Siemens SOMATOM Flash and/or Drive (Siemens Healthineers, Erlangen, Germany) to 
perform comprehensive baseline CT imaging. The imaging parameters applied in this study aligned with those detailed in an earlier 
published study.13 

All patients' non-contrast CTs, CTAs, and CTPs were evaluated by a board-certified neuroradiologist (VSR, with nine years of 
experience in neuroradiology), and imaging notes were used to collect imaging data. RapidAI (iSchemaView, Menlo Park, CA) was 
utilized to assist in the interpretation of CTP findings. This assessment was carried out in tandem with examining all available imaging 
and clinical data. The same neuroradiologist also confirmed and gathered the presence of any DMVO, the baseline non-contrast computed 
tomography Alberta Stroke Program Early CT Score (NCCT-ASPECTS), the occluded vessel, the laterality of the occlusion, MCA dot 
sign, and the occurrence of hemorrhagic transformation. 
 
Treatment Data 

All thrombectomy procedures were performed by one of four credentialed interventional neuroradiologists or endovascular neurosurgeons. 
Device selection was at the discretion of the operator and limited to Food and Drug Administration-cleared options. The following 
treatment variables were collected: intravenous thrombolysis (IVT) administration, stroke thrombectomy performance, thrombectomy 
modality utilized, final reperfusion grade per modified thrombolysis in cerebral infarction (mTICI) score as assessed by the interventionist, 
and the number of thrombectomy passes. Additionally, the following time intervals (measured in minutes) were recorded: from groin 
puncture to first pass, groin puncture to recanalization, first pass to recanalization, last known well to emergency room (ER) arrival, 
symptom onset to ER arrival, ER to CT scan, last known well to CT, ER to groin puncture, ER to IVT bolus, and ER to final recanalization. 
 
Data Preprocessing and Feature Selection 

To prevent exclusion bias, imputation methods were used for missing data. Of the continuous variables, 25 had at least one missing value. 
After excluding one variable missing in > 25% of patients (symptom onset to arrival at the ER), the k-nearest neighbor (kNN) algorithm 
(k = 5) imputed missing values by leveraging data from the whole dataset.14 The kNN approach fills in missing data using values from the 
5 most similar cases. For categorical variables, 7 had missing values. No variable was excluded because no variable was missing in > 25% 
of patients, and the missing values were imputed using the mode. 

Feature selection was performed to determine the variables most relevant for predicting outcomes from the preprocessed dataset. The 
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Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm (alpha=0.01) was used for this purpose.15 LASSO 
performs both variable selection and regularization to improve prediction accuracy. It adds a penalty proportional to the absolute size of 
the model coefficients. The degree of penalization is controlled by a tuning parameter lambda. As lambda increases, more coefficients are 
shrunk toward zero, effectively removing less predictive features. 

We implemented LASSO feature selection within each cross-validation fold of which the details are given below. First, the training 
data in each fold was min-max scaled to normalize features.  A LASSO model was then fitted to the scaled training data in each fold to 
select impactful features with non-zero model coefficients. The selected features were recorded per fold. Finally, features chosen in >50% 
of folds were selected as the final input variables in order to reduce variability. 
 
Model Development and Evaluation 

We utilized TabPFN, a modified Prior-Data Fitted Network architecture, for model development. TabPFN employs a meta-learning 
framework to enable adaption to new, unseen data by learning from diverse datasets.16 Prior-data fitted networks like TabPFN are pre-
trained on synthetic data to approximate Bayesian inference on real-world data.16 The pre-training enables TabPFN to capture complex 
patterns in tabular data and transition smoothly to new datasets. 

Model performance was evaluated using a 5-repeat 5-fold stratified cross-validation framework. In each repeat, the data was split into 
5 roughly equal folds with a different random split, balancing outcome class ratios (stratification) to guarantee class balance across folds. 
The use of 5 repeats in this framework serves to increase the robustness of our performance estimates, reduce the impact of any particular 
random data split, mitigate potential overfitting to a single partition, and provide a more comprehensive assessment of model stability. 
This approach allows for more reliable estimation of confidence intervals for our performance metrics. Within each fold during every 
repeat, the initial training set (80% of data) was further segmented into a final training subset (70% of full data) and a validation subset 
(10% of full data). This resulted in a final 70:10:20 ratio for training to validation to hold-out testing. The validation subsets allowed for 
sigmoid calibration to align predicted risks with observed outcomes. Model discrimination, calibration, and accuracy were then evaluated 
on the held-out test folds. 

The calibrated TabPFN model generated predictions and probability estimates on each test fold across the 5 cross-validation repeats. 
Overall performance was evaluated by aggregating results across all folds and repeats. Cross-validation enabled reliable assessment of 
generalizable predictive performance. To improve interpretability, SHapley Additive ExPlanations (SHAP) were utilized to determine 
relative feature importance. The SHAP plot displayed selected features hierarchically, with the most influential at the top. Additionally, 
partial dependence plots (PDPs) showed the isolated effect of individual features on predicted outcomes. PDPs illustrate the isolated effect 
of a single feature on the model's predicted output, revealing the extent to which individual features influence the predictions. The model 
code is available in the study GitHub repository (https://github.com/mertkarabacak/DMVO-mRS) for full transparency. 

Model performance was evaluated graphically using a receiver operating characteristic (ROC) curve, which displays a binary classifier's 
ability to discriminate between positive and negative classes; a precision-recall curve (PRC) illustrating the tradeoff between precision and 
recall; a calibration plot for visually assessing the agreement between predicted probabilities and observed outcomes; and a confusion 
matrix that aggregates predictions across all folds and repeats to show the number of true positives, true negatives, false positives, and 
false negatives. Numerically, we computed precision, recall, F1-score, Matthews Correlation Coefficient, the area under the ROC curve 
(AUROC), the area under the PRC (AUPRC), and Brier score. A 95% confidence interval (CI) for each metric was calculated using a 
bootstrap approach with 1000 resampled datasets. This involved sampling with replacement from the original dataset to generate 1000 
new samples. The CI was determined by finding the 2.5th and 97.5th percentiles of the bootstrapped metric mean values. 
 
Web Application 

We developed a web application to enable healthcare professionals and researchers to generate individualized predictions using our model. 
The application was deployed via Hugging Face, a platform for sharing machine learning models. Our implementation code is publicly 
available on the same platform for full transparency. The web application’s functionality is demonstrated in Supplementary Video 1. It 
can be accessed at the following URL: https://huggingface.co/spaces/MSHS-Neurosurgery-Research/DMVO-mRS. 

RESULTS 

Initially, 212 patients who met all the inclusion criteria were identified. Forty-eight were excluded due to missing 90-day mRS data, leaving 
164 patients for analysis. The group with a favorable outcome (90-day mRS 0-2) included 90 patients, while the unfavorable outcome 
group (90-day mRS 3-6) comprised 74 patients. The median age was 71 years. ST was performed in 43 (47.8%) and 41 (55.4%) patients 
in the favorable and unfavorable outcome groups, respectively. IVT was administered to 34 (37.8%) patients and 22 (29.7%) patients in 
favorable and unfavorable outcome groups, respectively. Online Supplemental Data summarizes key cohort characteristics, including 
demographics and selected variables. Supplementary Table 1 provides full details on all baseline clinical, laboratory, and imaging 
parameters. 
 

Upon executing the LASSO regression algorithm, the following features (n = 16) were determined to be the most pertinent features to 
predict the outcome of interest and used for model development from the initial feature set (n = 64): age, current or former smoker, diabetes, 
hypertension, DVT or PE, history of malignancy, antiplatelet use, admission hemoglobin, admission BMI, admission NIHSS, premorbid 
mRS, MCA dot sign, occlusion laterality, IVT, type of thrombectomy, and mTICI. 

The model achieved strong predictive performance with a precision of 0.711 (95% CI: 0.634-0.765), recall of 0.628 (95% CI: 0.553-
0.765), F1-score of 0.656 (95% CI: 0.585-0.708), accuracy of 0.724 (95% CI: 0.696-0.752), MCC of 0.45 (95% CI: 0.39-0.503), and Brier 
score of 0.19 (95% CI: 0.177-0.202). The AUROC was 0.815 (95% CI: 0.79-0.841), indicating good discrimination. The AUPRC of 0.808 
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(95% CI: 0.781-0.832) also demonstrated strong precision-recall performance (Table 1). The model ROC curve, PRC, calibration curve, 
and confusion matrix are displayed in Figures 2A-D, respectively. Figure 3 shows relative feature importance by SHAP values. The top 
five predictors were admission NIHSS score, premorbid mRS score, type of thrombectomy, mTICI score, and history of malignancy. To 
demonstrate the isolated impact of key variables, PDPs (Supplementary Figure 1) displayed effects for the nine most influential features. 
 

Performance Metric Metric Value (95% CI) 

Precision 0.711 (0.634, 0.765) 

Recall 0.628 (0.553, 0.694) 

F1 Score 0.656 (0.585, 0.708) 

Accuracy 0.724 (0.696, 0.752) 

Matthew's Correlation 
Coefficient 

0.45 (0.390, 0.503) 

AUROC 0.815 (0.790, 0.841) 

AUPRC 0.808 (0.781, 0.832) 

Brier Score 0.19 (0.177, 0.202) 

Table 1: Model performance (CI: confidence interval, AUROC: area under the receiver operating characteristic curve, AUPRC: area 
under the precision-recall curve). 

 

FIG 2. The model’s A) receiver operating characteristic curve, B) precision-recall curve, C) calibration curve, and D) confusion 
matrix (AUROC: area under the receiver operating characteristics curve, AUPRC: area under the precision-recall curve, mRS: 
modified Rankin scale). 
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FIG 3. SHapley Additive ExPlanations (SHAP) plot of the model sorting features by their relative importance (NIHSS: National Institutes of 
Health Stroke Scale, mRS: modified Rankin scale, ST: Stroke thrombectomy, mTICI: modified thrombolysis in cerebral infarction, MCA: 
middle cerebral artery, DVT: deep vein thrombosis, PE: pulmonary embolism, BMI: body mass index, IVT: intravenous thrombolysis). 

DISCUSSION 

While results from ongoing trials will be critical for determining the efficacy of ST for DMVOs, ST is already being utilized clinically for 
many DMVO patients.1 Reliable prognostication tools may be especially valuable given the current lack of consensus around optimal 
DMVO treatment approaches. These tools facilitate several applications: enabling informed discussions around likely prognosis, serving 
as a quality check to prompt protocol reassessment when outcomes are worse than expected, and streamlining patient stratification for 
research and clinical trials. 

This study demonstrates the potential of machine learning models to improve prognostic predictions for DMVO patients by developing 
a practical tool to forecast unfavorable functional outcomes at 90 days. A unique aspect was integrating the model into a user-friendly web 
application to provide clinicians with personalized prognostic assessments. Our model achieved an AUROC of 0.815 for predicting 
unfavorable outcome (mRS score of 3-6) regardless of treatment approach. Additionally, the model demonstrated good calibration, with a 
Brier score of 0.19 and a near-ideal calibration curve (Figure 2C). With these promising discrimination and calibration results, our study 
showed machine learning could enable valuable individualized prognostication for DMVOs using key clinical and imaging parameters. 
Moreover, to our knowledge based on the literature review, this represents the first prognostic model specifically designed for predicting 
mRS outcomes in a DMVO population. 

Our methodology enables precise outcome predictions for DMVO patients while also improving the interpretability of those forecasts. 
The SHAP feature importance plot (Figure 3) provides a global explanation of overall model behavior by revealing general patterns in 
how key variables relate to outcomes across the full dataset. Additionally, the SHAP plots integrated into our web application deliver local 
explanations that give granular insights into how unique predictions are impacted by certain variables in specific cases. This functionality 
allows for a personalized understanding of an individual prediction's drivers, which has not been readily accessible in most prior models. 
The local SHAP visualizations not only enhance interpretability but also bolster our model's credibility when combined with clinical 
judgment. By enabling clinicians to review the variables influencing each prediction, SHAP plots facilitate expert evaluation of model 
behavior and outputs. This synergy between data-driven insights and human expertise can improve the acceptance of model-based 
predictions, underscoring the approach's potential to meaningfully inform prognostication. 

In our study, we used LASSO feature selection within each cross-validation fold, effectively reducing the number of covariates by 
keeping only those with high predictive power. This rigorous selection process resulted in fewer covariates, emphasizing model accuracy 
and stability over complexity. According to the global explanations provided by the SHAP analysis, the admission NIHSS score was the 
most important feature of our model. The NIHSS is a quantitative assessment of neurological deficits associated with stroke that has been 
shown to be reliable within and between raters and to have significant predictive power for functional outcomes.17 Prior research indicates 
patients with very high or very low NIHSS scores often have predictable trajectories, with low scores suggesting probable good recovery 
and high scores indicating likely poor outcomes. Patients at the extreme ends are also less likely to exhibit a large observable treatment 
effect.18,19 Though some prognostic scales utilize the NIHSS score as a predictor, none have been designed specifically for DMVOs.7,8 
Aligning with prior work, we found the admission NIHSS score informative for predicting 90-day functional status in our DMVO cohort. 
As DMVOs represent an AIS subtype, this logical association is consistent and emphasizes potential generalizability. Pre-stroke functional 
status, assessed by premorbid mRS score, also strongly contributed to predictions. Previous research suggests higher premorbid disability 
levels are associated with worse outcomes and mortality, even for patients receiving ST.20–23 Similarly, in our cohort, 6 of 7 patients with 
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premorbid mRS scores >3, indicating significant prior disability, had died by the 90-day follow-up, versus only 30 deaths among 156 
patients with premorbid mRS scores ≤3. Therefore, the baseline functionality level provided a useful predictive signal regarding the 
probability of favorable recovery in our study. 

The type of ST technique utilized ranked as the third most important predictor in our model. A recent systematic review found 
heterogeneity amongst ongoing DMVO trials regarding the thrombectomy approach - some mandated stent retrievers while others allowed 
operator discretion across techniques.5 These studies may reveal insights into how and why the specific thrombectomy modality impacts 
outcomes and contributes significant predictive signal, as seen in our model's feature importance ranking. Final reperfusion grade, as 
assessed by the mTICI score, also featured prominently as the fourth most influential factor. The mTICI scale represents an enhancement 
from the original TICI system designed specifically for cerebral circulation.24 It is the primary scale recommended for evaluating 
reperfusion therapy in patients undergoing ST, as it is tailored for cerebral circulation, has high inter-rater reliability, and is a strong 
predictor of clinical outcomes.25 Regarding the prognostic impact of the mTICI score in patients with DMVOs treated with ST, some 
studies have shown its positive effect on favorable outcomes, enlightening the importance of the mTICI score as a critical variable in our 
model.26,27 This helps contextualize why the mTICI score would logically serve as an informative predictor. The history of malignancy 
and diabetes mellitus were other important features revealed by SHAP analysis. It has been shown that systemic malignancy is linked to 
an increased risk of ischemic stroke, and patients with a history of cancer are more likely to have recurrent strokes and die from 
cardiovascular disease.28,29 Furthermore, diabetes has long been recognized as a risk factor for stroke mortality.30 These provide further 
context as to why a history of malignancy and diabetes would logically be an informative predictor. 

Our study has several limitations that should be considered when interpreting the results. The retrospective design and modest cohort 
size (n=164) inherently limit the generalizability of our findings. While we rigorously evaluated model performance using a 5-repeat, 5-
fold stratified cross-validation methodology, this approach does not replace the value of external validation in entirely separate populations. 
The absence of an independent test set further limits our ability to fully assess the model's generalizability. Future studies should aim for 
larger, multi-center, prospective cohorts with independent test sets for more robust validation. Data was drawn from two high-volume 
comprehensive stroke centers, which may not represent the full spectrum of clinical settings where DMVOs are treated. Outcomes may 
depend substantially on facility volume, operator experience, and other institutional factors. The evaluation of imaging data by a single 
neuroradiologist and the involvement of only four neurointerventionalists introduce potential bias, particularly given the importance of 
thrombectomy technique as a predictive factor. We acknowledge limitations in our input variables. The NIHSS may not fully capture 
stroke symptoms, especially in posterior circulation strokes. The mTICI score, designed for anterior circulation large vessel occlusions, 
may not be optimal for all vessels involved in DMVOs. The mRS, our outcome measure, has known variability within each category. The 
use of kNN for imputing missing data has limitations in dealing with non-random missingness, potentially introducing bias. Additionally, 
a substantial number of patients were excluded due to missing 90-day mRS scores, which could affect the model's generalizability. Lastly, 
while certain variables demonstrate prognostic relationships with outcomes, these associations should not be inferred as causal without 
further analysis. The model predicts outcomes based on patterns and correlations without determining causality. Model outputs should be 
viewed as prognostic forecasts rather than endorsements of causal mechanisms or treatment effectiveness. 

Future studies should aim to address these limitations through larger, prospective, multi-center designs with more diverse patient 
populations and clinical settings. Incorporating more granular details, including but not limited to discharge disposition, discharge mRS, 
use of other functional neurorehabilitation scales, and readmissions within 30 days, may provide even more predictive models in the future. 
No clinical decisions or interventions should be actively guided by this model without further validation, as its current function is 
exclusively prognostic rather than prescriptive. 

CONCLUSIONS 

Identifying outcome risks and engaging in shared decision-making is crucial for patient care in DMVOs. Our machine learning approach, 
utilizing the TabPFN algorithm, achieved good discrimination and calibration in predicting 90-day functional outcomes in DMVO patients. 
By translating predictive modeling into accessible and interpretable risk estimates, our methodology exemplifies how precision medicine 
tools can empower granular prognosis for stroke variants like DMVOs. External validation with larger multicenter datasets is needed to 
confirm generalizability before integrating such tools into routine practice. 
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SUPPLEMENTAL FILES 

 

Variable n (%) or  
median (Q1-Q3) 

Missing Data (%) 

Age 71 (62.8-80) - 

Sex Female 91 (55.5%) - 

Male 73 (44.5%) 

Race White 87 (53.1%) - 

Asian 3 (1.8%) 

Black 72 (43.9%) 

Other 2 (1.2%) 

Current or Former Smoker No 84 (51.2%) - 

Yes 80 (48.8%) 

Diabetes No 125 (76.2%) - 

Yes 39 (23.8%) 

Hypertension No 26 (15.9%) - 

Yes 138 (84.2%) 

Heart Disease No 84 (51.2%) - 
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Yes 80 (48.8%) 

History of Malignancy No 134 (81.7%) - 

Yes 30 (18.3%) 

Antiplatelet Use No 109 (66.5%) - 

Yes 55 (33.5%) 

DVT or PE No 141 (86%) - 

Yes 23 (14%) 

Admission BMI 27.4 (23.1-32.1) 3 (1.8%) 

Admission Hemoglobin 13 (11.9-14.3) - 

Admission NIHSS Score 0 5 (3.1%) 1 (0.6%) 

1-4 37 (22.7%) 

5-15 74 (45.4%) 

16-20 29 (17.8%) 

21-42 18 (11%) 

Premorbid mRS Score 0 94 (57.7%) 1 (0.6%) 

1 33 (20.3%) 

2 13 (8%) 

3 16 (9.8%) 

4 4 (2.5%) 

5 3 (1.8%) 

Occlusion Site MCA 142 (18.6%) - 

PCA 17 (10.4%) 

ACA 5 (3.1%) 

Occlusion Laterality Left 99 (60.4%) - 

Right 65 (39.6%) 

MCA Dot Sign No 108 (67.5%) 4 (2.4%) 

Yes 52 (32.5%) 

Intravenous Thrombolysis No 108 (65.9%) - 

Yes 56 (34.2%) 

ST - Type of Thrombectomy ST not attempted 80 (51%) 7 (4.3%) 

Direct aspiration 38 (24.2%) 

Stent retriever 12 (7.6%) 

Combined 27 (17.2%) 

ST - mTICI ST not attempted 80 (50%) 4 (2.4%) 

0 8 (5%) 

1 3 (1.9%) 

2a 4 (2.5%) 

2b 15 (9.4%) 

2c 7 (4.4%) 

3 43 (26.9%) 

90-Day mRS Score 0 31 (18.9%) - 

1 37 (22.6%) 

2 22 (13.4%) 

3 17 (10.4%) 

4 17 (10.4%) 
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5 4 (2.4%) 

6 36 (22%) 

Online Supplemental Data: Patient characteristics (n: number, Q1: quartile 1, Q2: quartile 3, BMI: body mass index, NIHSS: 
National Institutes of Health Stroke Scale, mRS: modified Rankin scale, MCA: middle cerebral artery, PCA: posterior cerebral 
artery, ACA: anterior cerebral artery, ST: stroke thrombectomy, mTICI: modified thrombolysis in cerebral infarction). 

 

 
 

Variable n (%) or  
median (Q1-Q3) 

Missing Data (%) 

Age 71 (62.8-80) - 

Sex Female 91 (55.5%) - 

Male 73 (44.5%) 

Race White 87 (53.1%) - 

Asian 3 (1.8%) 

Black 72 (43.9%) 

Other 2 (1.2%) 

Current or Former Smoker No 84 (51.2%) - 

Yes 80 (48.8%) 

Diabetes No 125 (76.2%) - 

Yes 39 (23.8%) 

Dyslipidemia No 64 (39%) - 

Yes 100 (61%) 

Hypertension No 26 (15.9%) - 

Yes 138 (84.2%) 

Heart Disease No 84 (51.2%) - 

Yes 80 (48.8%) 

Atrial Fibrillation No 105 (64%) - 

Yes 59 (36%) 

Peripheral Vascular Disease No 152 (92.7%) - 

Yes 12 (7.3%) 

Prior DVT or PE No 141 (86%) - 

Yes 23 (14%) 

Prior Stroke or TIA No 136 (82.9%) - 

Yes 28 (17.1%) 

Chronic Kidney Disease No 137 (83.5%) - 

Yes 27 (16.5%) 

History of Malignancy No 134 (81.7%) - 

Yes 30 (18.3%) 

Antiplatelet Use No 109 (66.5%) - 

Yes 55 (33.5%) 

Admission BMI 27.4 (23.1-32.1) 3 (1.8%) 

Admission SBP 150 (133-174) - 

Admission DBP 83 (73.5-97.5) 1 (0.6%) 
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Admission HR 83.5 (71.8-98) - 

Admission RR 18 (16-19.8) 2 (1.2%) 

Admission Saturation 98 (96-100) - 

Admission Carbon Dioxide 24 (22-26) 3 (1.8%) 

Admission Sodium 139 (137-141) - 

Admission Potassium 4.1 (3.7-4.4) 2 (1.2%) 

Admission Chloride 103 (100-107) 2 (1.2%) 

Admission Calcium 9.1 (8.7-9.5) - 

Admission Magnesium 1.9 (1.7-2.1) 37 (22.6%) 

Admission Phosphorous 3.2 (2.9-3.9) 46 (28.0%) 

Admission Glucose 117.5 (101.8-137.3) - 

Admission BUN 17 (14-23) - 

Admission Creatinine 1 (0.9-1.2) - 

Admission Albumin 3.9 (3.5-4.3) 7 (4.3%) 

Admission Total Protein 6.9 (6.4-7.3) 7 (4.3%) 

Admission Total Bilirubin 0.5 (0.4-0.7) 7 (4.3%) 

Admission ALP 80 (65-102) 7 (4.3%) 

Admission ALT 18 (14-27) 7 (4.3%) 

Admission AST 21.5 (17-30) 18 (11.0%) 

Admission Hematocrit 40.5 (37-43.6) - 

Admission Hemoglobin 13 (11.9-14.3) - 

Admission WBC Count 8.1 (6.5-10.2) - 

Admission Platelet Count 233.5 (186-292.8) - 

Admission INR 1.1 (1-1.1) 17 (10.4%) 

Admission PTT 25.4 (23.6-27) 26 (15.9%) 

Admission NIHSS Score 0 5 (3.1%) 1 (0.6%) 

1-4 37 (22.7%) 

5-15 74 (45.4%) 

16-20 29 (17.8%) 

21-42 18 (11%) 

Premorbid mRS Score 0 94 (57.7%) 1 (0.6%) 

1 33 (20.3%) 

2 13 (8%) 

3 16 (9.8%) 

4 4 (2.5%) 

5 3 (1.8%) 

Stroke Etiology Cardioembolism 80 (48.8%) - 

Large artery 
atherosclerosis 

18 (11%) 

Small-vessel occlusion 2 (1.2%) 

Stroke of other 
determined etiology 

5 (3.1%) 

Stroke of undetermined 
etiology 

59 (36%) 
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Occlusion Site MCA 142 (86.6%) - 

PCA 17 (10.4%) 

ACA 5 (3.1%) 

Occlusion Laterality Left 99 (60.4%) - 

Right 65 (39.6%) 

NCCT-ASPECTS 10 90 (56.3%) 4 (2.4%) 

9 30 (18.8%) 

≤ 8 40 (25%) 

MCA Dot Sign No 108 (67.5%) 4 (2.4%) 

Yes 52 (32.5%) 

Intravenous Thrombolysis 

 

No 108 (65.9%) - 

Yes 56 (34.2%) 

ST - Type of Thrombectomy ST not attempted 80 (51%) 7 (4.3%) 

Direct aspiration 38 (24.2%) 

Stent retriever 12 (7.6%) 

Combined 27 (17.2%) 

ST – mTICI Score ST not attempted 80 (50%) 4 (2.4%) 

0 8 (5%) 

1 3 (1.9%) 

2a 4 (2.5%) 

2b 15 (9.4%) 

2c 7 (4.4%) 

3 43 (26.9%) 

ST - Number of Passes ST not attempted 80 (49.7%) 3 (1.8%) 

1 52 (31.1%) 

2 13 (8.1%) 

3 11 (6.8%) 

≥ 4 5 (3.1%) 

Symptom Onset to Door 71 (47-201) 93 (56.7%) 

Last Known Well to CT 290 (109-782) 7 (4.3%) 

Last Known Well to Door 262.5 (75.8-755) 8 (4.9%) 

Door to CT 28 (17.8-45.3) 4 (2.4%) 

Door to Groin Puncture 848 (152-854) 1 (0.6%) 

Door to Needle Time 180 (93.8-180) - 

Door to Recanalization 2444 (367.3-3035) 2 (1.2%) 

First Pass to Recanalization 92 (10.3-92) 26 (15.9%) 

Groin Puncture to First Pass Time 123 (27-123) 10 (6.1%) 

Groin Puncture to Recanalization 128 (37-128) 15 (9.1%) 
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90-Day mRS Score 0 31 (18.9%) - 

1 37 (22.6%) 

2 22 (13.4%) 

3 17 (10.4%) 

4 17 (10.4%) 

5 4 (2.4%) 

6 36 (22%) 

Supplemental Table 1: Detailed patient characteristics (n: number, Q1: quartile 1, Q2: quartile 3, DVT: deep vein thrombosis, 
PE: pulmonary embolism, TIA: transient ischemic attack, BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic blood 
pressure, HR: heart rate, RR: respiratory rate, BUN: blood urea nitrogen, ALP: alkaline phosphatase, ALT: alanine transaminase, 
AST: aspartate aminotransferase, WBC: white blood cell, INR: international normalized ratio, PTT: partial thromboplastin time, 
NIHSS: National Institutes of Health Stroke Scale, mRS: modified Rankin scale, MCA: middle cerebral artery, PCA: posterior cerebral 
artery, ACA: anterior cerebral artery, NCCT-ASPECTS: non-contrast computed tomography Alberta Stroke Program Early Computed 
Tomography Score, CT: computed tomography, ST: mechanical thrombectomy, mTICI: modified thrombolysis in cerebral 
infarction). 

 

 

 

 

SUP FIG 1. The partial dependency plot (PDP) for the 9 most important features of the model (NIHSS: National Institutes of Health 
Stroke Scale, mRS: modified Rankin scale, ST: stroke thrombectomy, mTICI: modified thrombolysis in cerebral infarction, MCA: 
middle cerebral artery, DVT: deep vein thrombosis, PE: pulmonary embolism). 
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SUP VIDEO 1. Demonstration of the web application. 


