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Asymmetry of the Frontal Aslant Tract Depends on
Handedness

Mohammad Taghvaei, Craig K. Jones, Licia P. Luna, Sachin K. Gujar, and Haris I. Sair

ABSTRACT

BACKGROUND AND PURPOSE: The human brain displays structural and functional disparities between its hemispheres, with such
asymmetry extending to the frontal aslant tract. This plays a role in a variety of cognitive functions, including speech production,
language processing, and executive functions. However, the factors influencing the laterality of the frontal aslant tract remain
incompletely understood. Handedness is hypothesized to impact frontal aslant tract laterality, given its involvement in both lan-
guage and motor control. In this study, we aimed to investigate the relationship between handedness and frontal aslant tract later-
alization, providing insight into this aspect of brain organization.

MATERIALS ANDMETHODS: The Automated Tractography Pipeline was used to generate the frontal aslant tract for both right and
left hemispheres in a cohort of 720 subjects sourced from the publicly available Human Connectome Project in Aging database.
Subsequently, macrostructural and microstructural parameters of the right and left frontal aslant tract were extracted for each
individual in the study population. The Edinburgh Handedness Inventory scores were used for the classification of handedness, and
a comparative analysis across various handedness groups was performed.

RESULTS: An age-related decline in both macrostructural parameters and microstructural integrity was noted within the studied popula-
tion. The frontal aslant tract demonstrated a greater volume and larger diameter in male subjects compared with female participants.
Additionally, a left-side laterality of the frontal aslant tract was observed within the general population. In the right-handed group, the
volume (P, .001), length (P, .001), and diameter (P¼ .004) of the left frontal aslant tract were found to be higher than those of the
right frontal aslant tract. Conversely, in the left-handed group, the volume (P¼ .040) and diameter (P¼ .032) of the left frontal aslant
tract were lower than those of the right frontal aslant tract. Furthermore, in the right-handed group, the volume and diameter of the
frontal aslant tract showed left-sided lateralization, while in the left-handed group, a right-sided lateralization was evident.

CONCLUSIONS: The laterality of the frontal aslant tract appears to differ with handedness. This finding highlights the complex
interaction between brain lateralization and handedness, emphasizing the importance of considering handedness as a factor in eval-
uating brain structure and function.

ABBREVIATIONS: AD ¼ axial diffusivity; EHI ¼ Edinburgh Handedness Inventory; FA ¼ fractional anisotropy; FAT ¼ frontal aslant tract; FDR ¼ false discov-
ery rate; HCP ¼ Human Connectome Project; HCP-A ¼ HCP Lifespan in Aging; ICV ¼ intracranial volume; LH ¼ left-handed; LI ¼ lateralization index; MD ¼
mean diffusivity; RD ¼ radial diffusivity; RH ¼ right-handed

The frontal aslant tract (FAT) is a recently identified white
matter bundle that connects the pars opercularis and pars tri-

angularis of the inferior frontal gyrus to the supplementary motor

area and presupplementary motor area.1 The FAT plays a role in
a variety of cognitive functions, including speech production, lan-
guage processing, and executive functions. Specifically, the left
FAT is highly involved in language production, particularly in
speech initiation and sequencing,2-4 and the right FAT is associated
with inhibitory control in executive function tasks.5,6
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The human brain displays both structural and functional
asymmetry across its hemispheres,7,8 a characteristic that also
extends to the FAT. The laterality of the FAT refers to the
degree to which it is more developed on one side of the brain
compared with the other. Some studies have found that the
FAT is more lateralized on the left side.1,9-11 The underlying
reasons for the laterality of the FAT remain incompletely under-
stood. However, one hypothesis suggests that this asymmetry
could be associated with the distinct functions of the hemi-
spheres of the brain. The right hemisphere is commonly linked
to visuospatial processing, whereas the left hemisphere is often
associated with language processing.12

Handedness, the preference for using one hand over the
other, has long interested scientists due to its potential impli-
cations for brain organization and function. Studies suggest a
correlation between brain structural and functional asymme-
tries and handedness. More than 95% of right-handed (RH)
individuals and approximately 76% of left-handed (LH) indi-
viduals exhibit left-hemisphere dominance for language func-
tion.13,14 This phenomenon prompts inquiries into whether
and how handedness relates to the lateralization of neural
structures involved in both language and motor control, such
as the FAT.

Recent advancements in neuroimaging techniques, such as
DTI-based streamline tractography, have contributed substantially
to unraveling the complexity of brain structures and lateralization
of the white matter tract.15 While most diffusion asymmetry
investigations have predominantly concentrated on RH subjects,16

there is evidence supporting the hypothesis that LH individuals
exhibit atypical structural asymmetries.17,18 However, the influ-
ence of handedness on FAT laterality remains relatively underex-
plored, highlighting the need for further investigation to clarify
the exact nature of these relationships and enhance our under-
standing of the mechanisms underlying brain lateralization. Such
insights could offer potential clinical applications in neurosurgical
planning and intervention.

Motivated by the gaps in current understanding, we aimed
to investigate the effect of handedness on FAT laterality. We

hypothesized that handedness will modulate the asymmetry of
the FAT, with a greater laterality toward the left hemisphere in
RH individuals compared with LH individuals, analogous to
the asymmetry observed in language functional activation. We
leveraged the Human Connectome Project (HCP) Lifespan
data to investigate the laterality of the FAT and conducted a
comparative analysis among different handedness groups.
Furthermore, we explored potential age-related and sex-
related differences in this specific white matter tract.

MATERIALS AND METHODS
Subjects
We obtained neuroimaging data of 720 participants from the
publicly available HCP in Aging (HCP-A) Lifespan 2.0 release
(https://www.humanconnectome.org/study/hcp-lifespan-aging/
article/lifespan-20-release-hcp-aging-hcp-development-data).19

The mean (SD) age of participants was 60.4 (15.7) years, ranging
between 36 and 100 years, and 56.1% were women. HCP aging
collect MRI data from multiple institutes including: Washington
University, University of Minnesota, Massachusetts General
Hospital, Harvard University, University of California Los Angeles,
Oxford University.

Handedness
The Edinburgh Handedness Inventory (EHI) scores of each
participant were obtained from the HCP behavioral database
to evaluate handedness.20 The EHI is a questionnaire assessing
the preferred hand for performing various tasks. The scores
range from �100 to 100, in which negative values indicate left-
handedness and positive values indicate right-handedness.
These EHI scores were used to categorize handedness as follows:
Scores below �40 indicated left-handedness, scores between �40
and 40 indicated ambidexterity, and scores exceeding 140 indi-
cated right-handedness.21-23

MR Imaging Acquisition
The diffusion MR imaging data in HCP-A Projects were obtained
using a Magnetom Prisma 3T scanner (Siemens) equipped with a
32-channel Prisma head coil (Siemens).19 Spin-echo EPI sequences

SUMMARY

PREVIOUS LITERATURE: Several studies demonstrated a left-side laterality of FAT and other language-related tracts, such as the
arcuate fasciculus. Handedness is proposed to influence brain asymmetries, though findings on handedness-related asymmetry
within brain structures have been contradictory. Studies have shown a leftward white matter asymmetry within the inferior
frontal and precentral gyrus, which connect with FAT, in right-handed individuals, while no asymmetry was observed in left-
handed individuals. Handedness-dependent laterality has also been observed in the dorsal component of the superior longitudi-
nal fasciculus. However, the impact of handedness on FAT laterality, considering its roles in both language and motor control,
remains unexplored.

KEY FINDINGS: The laterality of the FAT appears to vary among different handedness groups, with left-handed individuals dem-
onstrating dominance in both the volume and diameter of the tract toward the right hemisphere, while right-handed individuals
exhibit dominance toward the left hemisphere.

KNOWLEDGE ADVANCEMENT: Our study demonstrates that asymmetry in the FAT depends on individual handedness, enhanc-
ing our understanding of the mechanisms underlying brain lateralization. Recognizing this is crucial in research involving white
matter tract structures and holds clinical implications, particularly in neurosurgical planning and intervention.
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were acquired with the following parameters: TR/TE¼ 3230/
89.20ms, flip angle¼ 78°, 1.5-mm isotropic resolution, field of
view ¼ 210 � 180, matrix ¼ 140 � 120, 92 slices, and a multi-
band acceleration factor of 4. A total of 185 diffusion-weighting
directions were acquired, including 2 shells with b-values of
1500 and 3000 s/mm2, along with 28 images with b¼0 s/mm2.
The scanning time for the DTI acquisition was approximately
21 minutes.24

Tractography
The Automated Tractography Pipeline provided by DSI studio
(http://dsi-studio.labsolver.org), which has demonstrated good
levels of reproducibility in previous research,9 was used to generate
the right and left FAT in each subject. In summary, a multishell
diffusion scheme was used with b-values of 1500 and 3000 s/mm2.
The number of diffusion sampling directions was 93 and 92,
respectively. The in-plane resolution and section thickness were
both 1.5mm. The diffusion MR imaging data underwent prepro-
cessing, including eddy current and motion correction, as well as
phase distortion correction, and then were reconstructed in the
Montreal Neurological Institute space using q-space diffeomor-
phic reconstruction25 to obtain the spin distribution function
with a diffusion sampling length ratio of 1.25. Subsequently, seeds
were placed in the HCP tractography atlas tract volume,26 and
a deterministic fiber-tracking algorithm27 was used to generate
streamlines, followed by topology-informed pruning with 48 itera-
tions to eliminate false connections.28 Shape analysis was then con-
ducted to derive shape metrics for tractography.9 Macrostructural
properties of each tract, such as the number of streamlines, vol-
ume, length, and diameter as well as microstructural integrity pa-
rameters including fractional anisotropy (FA), mean diffusivity
(MD), axial diffusivity (AD), and radial diffusivity (RD), were
investigated. To assess the asymmetry of the tracts, we calculated a
lateralization index (LI) for each parameter using the following
formula: LI ¼ (right – left) / (right1 left) � 100.29 Consequently,
positive LI values indicate rightward lateralization, while negative
values indicate leftward lateralization.

Statistical Analyses
All statistical analyses were conducted using SPSS (Version 28;
IBM). Partial correlation analysis was conducted to investigate
the association between age and FAT parameters, while control-
ling for sex and intracranial volume (ICV). Brain-extracted re-
stricted diffusion imaging was used to generate a brain mask, and

ICV was computed using FSL software (Version 6.0.5; http://
www.fmrib.ox.ac.uk/fsl) for all subjects. Univariate generalized
linear models were used to compare macrostructural and micro-
structural parameters of the FAT between sexes, considering age
and ICV as covariates. To compare the right and left FAT in the
general population and each handedness group, we used paired
t tests. To compare LIs between RH and LH subjects, we used
univariate generalized linear models, controlling for sex, age, and
ICV. False discovery rate (FDR) correction was applied to adjust
the significance level in multiple comparisons. A P value , .05
was considered statistically significant.

RESULTS
Age-Related Change in FAT
After controlling for sex and ICV, we observed a negative correla-
tion among the number of streamlines (left FAT: P¼ .004 and
right FAT: P¼ .037), volume (left FAT: P, .001 and right FAT:
P¼ .042), and diameter (left FAT: P, .001 and right FAT:
P¼ .016) with age in the left and right FAT. Additionally, FA val-
ues demonstrated a decrease (left and right FAT: P, .001), while
diffusivity values (MD, AD, and RD) exhibited an increase with
aging (left and right FAT: P, .001) (Online Supplemental Data).

Sex-Related Difference in FAT
The cohort consisted of 404 (56.1%) women and 316 (43.9%)
men. Table 1 illustrates that among male subjects, the left FAT
demonstrated greater volume (P¼ .002) and a larger diameter
(P¼ .003) compared with female subjects, while controlling for
age and ICV. Similarly, the right FAT exhibited higher volume
(P¼ .001) and a larger diameter (P¼ .004) in male subjects com-
pared with female subjects. However, there were no significant
differences in the microstructural integrity parameters between
male and female subjects.

Comparing Right and Left FAT
Table 2 demonstrates the comparative analysis of the right and
left FAT in all subjects. The mean left FAT volume was 16,614
(SD, 2992) mm3, with a mean length of 75.6 (SD, 3.7)mm. The
right mean FAT volume was 16,286 (SD, 3039) mm3, with a di-
ameter of 75.0 (SD, 3.6)mm. The volume (P¼ .003) and length
(P, .001) of the left-side FAT were significantly higher than those
of the right side. Furthermore, the FA values were significantly

Table 1: Comparing FAT parameters across sex groups, controlling for age and ICV

Left FAT Right FAT
Female, Mean
(SD) (n= 404)

Male, Mean (SD)
(n= 316) P Value

Female, Mean
(SD) (n= 404)

Male, Mean
(SD) (n= 316) P Value

No. of streamlines 15,891.4 (1959.0) 17,818.0 (2031.5) .003a,b 16,041.1 (1950.3) 17,854.4 (2199.8) .033a

Volume (mm3) 15,678.8 (2690.0) 17,808.7 (2934.8) .002b 15,374.0 (2692.0) 17,451.1 (3062.8) .001a,b

Length (mm) 74.26 (3.46) 77.40 (3.27) .386 73.55 (3.43) 76.75 (3.00) .073
Diameter (mm) 16.33 (1.33) 17.06 (1.33) .003a,b 16.24 (1.33) 16.94 (1.42) .004a,b

FA 0.413 (0.026) 0.413 (0.024) .902 0.402 (0.025) 0.403 (0.023) .287
MD 0.678 (0.033) 0.680 (0.035) .791 0.683 (0.034) 0.682 (0.033) .423
AD 0.995 (0.037) 0.995 (0.037) .697 0.992 (0.037) 0.991 (0.036) .435
RD 0.520 (0.035) 0.522 (0.036) .563 0.527 (0.035) 0.528 (0.034) .474

a Statistically significant results.
b Significant P value after FDR correction for multiple comparisons.
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higher (P, .001), whereas the MD and RD values were signifi-
cantly lower (P, .001) in the left FAT.

Comparing FAT across Different Handedness Groups
On the basis of EHI scores, 612 participants (57.7% women) were
categorized as right-handed; 55 participants (43.6% women), as
left-handed; and 53 participants (50.9% women), as ambidex-
trous. We compared the right and left FAT in each handedness
group, while controlling for age, sex, and ICV. In the RH group,
the left mean FAT volume (16,615 [SD, 2929] mm3), length (75.6
[SD, 3.7]mm), and diameter (16.7 [SD. 1.3]mm) were observed
to be higher compared with the mean right FAT volume (16,153
[SD, 3006] mm3), length (74.9 [SD, 3.6]mm), and diameter (16.5
[SD, 1.4]mm). In contrast, in the LH group, the mean left FAT
volume (16,331 [SD, 3654] mm3) and diameter (16.4 [SD,
1.8]mm) were lower compared with the right FAT volume
(17,200 [SD, 2958] mm3) and diameter (16.9 [SD, 1.3]mm).
These differences in the LH group did not remain statistically sig-
nificant after applying the FDR correction for multiple compari-
sons. FA values were higher in the left FAT in both RH
(P, .001) and LH (P, .001) groups compared with the right
FAT. In contrast, MD and RD values of left FAT were lower in
both RH (MD: P, .001, RD: ,.001) and LH (MD: P, .006,
RD: P, .001) groups compared with the right FAT (Table 3
and Fig 1). Subsequently, we compared the LI of different FAT
parameters across each group. In the RH group, the mean LI of
FAT volume and diameter was negative (lateralized to the left).
While in the LH group, the mean LI of FAT volume and diameter
was positive (lateralized to the right). LIs of volume (P¼ .001)
and diameter (P, .001) were significantly different across hand-
edness groups (Table 4 and Figs 2 and 3). Additionally, the EHI

scores correlated negatively with the volume LI (P¼ .001) and
diameter LI (P¼ .001), after controlling for age, sex, and ICV
(Online Supplemental Data).

DISCUSSION
In the present study, we investigated the variability of the FAT
across diverse age and sex groups and performed a comparative
analysis of the FAT laterality in relation to handedness in the
cohort of 720 participants of the HCP Lifespan study. The FAT
showed an age-related reduction in both the macrostructural and
microstructural properties. Notably, the macrostructural parame-
ters of the FAT were found to be more pronounced in the male
group, while no significant sex-related differences were observed
in the microstructural parameters. In general, the FAT was domi-
nant in the left hemisphere; however, our results suggest that this
laterality is dependent on handedness. Specifically, within the LH
group, we found a higher volume and diameter of the right FAT
in comparison with the left FAT.

Age-related alterations in white matter tracts were previously
reported in quantitative DTI tractography studies. A nonlinear
reduction in FA values and a concurrent elevation in diffusivity
values (MD, AD, and RD) were demonstrated in major projec-
tion, association, and commissural white matter pathways.30–32

Notably, the prefrontal white matter was found to be most vul-
nerable to the aging process.32 Our study aligns with these find-
ings, because we found a similar pattern of age-related changes in
the FAT in both cerebral hemispheres. This loss of macrostruc-
tural and microstructural organization with normal aging may be
related to white matter change, including tract atrophy, a decline
in myelinated fibers, and an increase in white matter hyperinten-
sity lesions.33–35

Table 3: Comparison of FAT parameters across handedness groups

Right-Handedness (n= 612) Left-Handedness (n= 55)
Left FAT
Mean (SD)

Right FAT
Mean (SD) P Value

Left FAT
Mean (SD)

Right FAT
Mean (SD) P Value

No. of streamlines 16,705.3 (2235.0) 16,777.4 (2218.3) .349 16,905.2 (1981.7) 17,279.1 (2363.9) .123
Volume (mm3) 16,614.8 (2928.6) 16,152.7 (3005.7) ,.001a,b 16,330.6 (3653.7) 17,200.4 (2957.5) .040a

Length (mm) 75.57 (3.72) 74.88 (3.61) ,.001a,b 76.36 (3.62) 75.97 (3.40) .293
Diameter (mm) 16.66 (1.34) 16.49 (1.41) .004a,b 16.38 (1.77) 16.87 (1.35) .032a

FA 0.413 (0.025) 0.403 (0.024) ,.001a,b 0.409 (0.023) 0.399 (0.021) ,.001a,b

MD 0.679 (0.034) 0.682 (0.033) ,.001a,b 0.688 (0.036) 0.693 (0.032) .006a,b

AD 0.995 (0.037) 0.991 (0.036) ,.001a,b 1.00 (0.041) 1.00 (0.036) .916
RD 0.521 (0.035) 0.528 (0.035) ,.001a,b 0.530 (0.036) 0.538 (0.033) ,.001a,b

a Statistically significant results.
b Significant P value after FDR correction for multiple comparisons.

Table 2: Macrostructural and microstructural differences between right- and left-sided FAT

Left FAT, Mean (SD) Right FAT, Mean (SD) P Value
No. of streamlines 16,736.9 (2207.8) 16,836.9 (2250.1) .157
Volume (mm3) 16,613.6 (2992.2) 16,285.6 (3039.0) .003a,b

Length (mm) 75.64 (3.72) 74.95 (3.62) ,.001a,b

Diameter (mm) 16.65 (1.37) 16.55 (1.41) .064
FA 0.413 (0.025) 0.403 (0.024) ,.001a,b

MD 0.679 (0.034) 0.682 (0.033) ,.001a,b

AD 0.995 (0.037) 0.991 (0.036) ,.001a,b

RD 0.521 (0.036) 0.528 (0.035) ,.001a,b

a Statistically significant results.
b Significant P value after FDR correction for multiple comparisons.
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The observed difference in FAT macrostructural parameters
between male and female subjects adds to our understanding of
brain sexual dimorphism. We observed a larger FAT volume and
diameter in men. Greater within-hemispheric structural connec-
tivity and a larger number of streamlines were demonstrated in
all supratentorial regions of male subjects.36,37 Eikenes et al38

investigated the sex differences in white matter tracts in the ICV-
matched group and found a greater tract volume of the uncinate
fasciculus in men compared with women. This discrepancy sug-
gests the influence of biologic and hormonal factors associated
with sex on shaping the development and maintenance of neural
pathways. Testosterone, which is typically more abundant in
males, has been implicated in brain development and connectiv-
ity,39 which could potentially contribute to the observed larger
FAT in men. Further research is needed to determine the exact
cause of the sex difference in FAT volume and diameters. In our
study, no sex-related difference was detected in the microstruc-
tural integrity of the FAT. This result aligns with the findings of
Kitamura et al,40 who also did not identify significant differences
in DTI parameters across sex groups for various other white mat-
ter tracts, including the cingulate fasciculus, superior longitudinal

fasciculus, inferior longitudinal fascicu-
lus, and the inferior occipitofrontal fas-
ciculus. However, they did observe sex
differences in the FA values for the
right uncinate fasciculus. Additionally,
in a separate study, Szeszko et al41 dem-
onstrated higher FA values in the left
frontal lobe white matter of women
compared with men, though they did
not specifically assess the different fron-
tal lobe white matter tracts as distinct
entities. These combined findings enhance
our understanding of sex-related neurode-

velopmental disparities in the macrostructural parameters of white
matter tracts, highlighting the importance of incorporating sex as a
crucial variable in research focused on brain structure and function.

Several studies demonstrated the left-side laterality of the FAT
in terms of macrostructural parameters.1,9–11 The same lateraliza-
tion has also been observed for other language-related tracts,
including the arcuate fasciculus.9,42 In line with previous work,
we found a larger volume and length of the left FAT as well as a
higher FA value and lower MD on the left side. Furthermore, we
now demonstrate that this asymmetry is contingent on individual
handedness, in which the volume and diameter of the FAT is lat-
eralized to the right side in LH subjects. In RH subjects, the left
FAT exhibited higher volume, diameter, and FA values compared
with the right FAT, while MD and RD values were lower on the
left side. These observations suggest structural asymmetries
favoring the left hemisphere in RH subjects, potentially indicative
of increased axonal density or myelination with greater structural
integrity and organization of the left FAT. These findings align
with existing literature indicating structural dominance of lan-
guage-related regions and pathways in the left hemisphere of
RH individuals.43 In the LH group, the right FAT had a higher

FIG 1. Comparing left and right FAT parameters in each handedness group. Significant differences (FDR-corrected P, .05), after controlling for
age, sex, and ICV, are indicated with asterisks. The error bars represent 95% CIs.

Table 4: Comparison LI across handedness groups

LI
Right-Handedness

(n= 612)a
Left-Handedness

(n= 55)a P Value
No. of streamlines 10.51 (5.78) 11.27 (5.20) .273
Volume (mm3) –1.50 (8.96) 13.19 (10.55) .001b,c

Length (mm) –0.46 (1.82) –0.25 (1.79) .414
Diameter (mm) –0.53 (4.40) 11.59 (5.24) ,.001b,c

FA –1.27 (1.83) –1.21 (1.86) .844
MD 10.24 (0.93) 10.38 (0.95) .231
AD –0.20 (1.01) –0.00 (0.093) .137
RD 10.66 (1.43) 10.74 (1.47) .531

a Data are presented as mean (SD).
b Statistically significant results.
c Significant P value after FDR correction for multiple comparisons.
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volume and diameter compared with left FAT. However, similar
to the findings in the RH group, the right FAT demonstrated
lower FA values and higher MD and RD values.

These results suggest a trend wherein the right FAT tends to
be larger but exhibits lower structural integrity compared with
the left side in the LH group. However, confirmation of this trend
would benefit from a study with a larger sample size of LH sub-
jects. The more pronounced statistical differences seen when
comparing the volume and diameter of the left FAT with those of
the right FAT within the RH group compared with the LH group

may be due to differences in the sample
size. Additionally, the notable reduc-
tions in AD observed in the right FAT
among RH subjects, not evident in the
LH group, could also be linked to sam-
ple size disparities between the groups.
The current findings warrant validation
through larger sample sizes in future
studies. Previous studies using voxel-
based morphometry techniques have
had controversial findings on handed-
ness-related asymmetry within brain
structures. Several investigations have
reported an absence of asymmetry in
both gray and white matter associated

with handedness.44–46 However, Hervé et al18 identified leftward
white matter asymmetry within the inferior frontal gyrus and
precentral gyrus, which connect with the FAT among RH sub-
jects, whereas neither asymmetry nor rightward asymmetry was
observed in the LH group. Similar handedness-dependent laterality
that we found for the FAT volume was previously reported for the
dorsal component of the superior longitudinal fasciculus, which
connects the superior parietal lobule and the superior frontal gyrus.
The volume of the superior longitudinal fasciculus was lateralized
to the left in RH subjects and to the right in LH subjects.47

FIG 2. Comparing the LI of macrostructural parameters across handedness groups. Significant differences (FDR-corrected P, .05), after control-
ling for age, sex, and ICV, are indicated with asterisks. The error bars represent 95% CIs.

FIG 3. A, The right and left FAT in a sample RH subject (EHI:1100) demonstrating left-side domi-
nance in FAT volume. B, Right and left FAT in a sample LH subject (EHI: �70) demonstrating right-
side dominance in FAT volume. L indicates left; R, right.
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The relationship between human handedness and the struc-
ture of white matter tracts is not yet fully understood. One hy-
pothesis proposes that tract lateralization is contingent on its
functional roles. Although several studies have suggested asym-
metry in the FAT function, with the left FAT being implicated in
the speech and language domain and the right FAT being associ-
ated with executive and inhibitory control,48 recent research indi-
cates that both the left and right FAT play a role in both language
and executive functions.49 For instance, there is evidence of the
right FAT being involved in language function; the integrity of the
right FAT has been linked to speech fluency in children with au-
tism and the severity of stuttering in adults.50,51 Most interesting,
intraoperative electrical stimulation of the right FAT induced para-
phasia and speech arrest.52

Understanding how handedness interacts with FAT laterality
not only contributes to our knowledge of the mechanisms under-
lying brain lateralization but also holds clinical implications, par-
ticularly in neurosurgical planning and intervention. Recognizing
the asymmetry between RH and LH subjects during presurgical
planning for procedures involving the frontal lobe, such as tumor
resections or epilepsy surgeries, enables surgeons to customize
approaches on the basis of the laterality of the FAT relative to the
patient’s handedness. This customization helps minimize the risk
of intraoperative unintended damage and preserves functional in-
tegrity, ultimately improving surgical outcomes and patient care.

Furthermore, understanding the baseline anatomic properties
such as hemispheric dominance could be important in cases of
potential damage, analogous to task functional dominance. While
in individual subjects, FAT laterality correlates with handedness
(much like language activation), there may be cases in which
bilaterally equal representation of the FAT may confer greater re-
sistance to tract-induced functional deficits. Future studies can
thus explore the relationship between FAT laterality and outcome
in cases of tract injury.

On the basis of these findings, further task-dependent fMRI
studies involving RH and LH subjects are needed to explain the
mechanism underlying the different laterality of the FAT observed
in this study. This study provides us with insight into how the FAT
varies across different handedness profiles and presents an oppor-
tunity for further exploration into the mechanisms regulating the
interplay between neural architecture and handedness.

This study has several limitations. The number of LH partici-
pants in the sample was smaller than the number of RH partici-
pants. However, this study included a greater number of LH
participants compared with prior studies focused on this group.16

Additionally, the deterministic fiber-tracking technique used in
this study is more prone to generating false-negative results. It is pos-
sible that minor branches may have gone undetected.17 Furthermore,
the tract recognition algorithm in DSI Studio used a tractography
atlas as the sole reference, without using cortical regions as ROIs.
The developer’s rationale was to avoid concerns associated with
cortical parcellations. Further investigation is required to determine
whether this approach yields superior or inferior performance.

Another limitation is the absence of functional imaging in this
study to enable a comparison of the functional asymmetry of the
FAT between the 2 groups of handedness. Finally, while the
results show statistical significance, caution must be exercised in

individual analysis due to the range of overlap among distinct
groups of comparison.

CONCLUSIONS
The laterality of the FAT appears to vary between different hand-
edness groups, with LH individuals demonstrating dominance in
both the volume and diameter of the tract toward the right side.
This comparative analysis highlights the significance of consider-
ing handedness when studying the structure of white matter
tracts. Future studies that combine structural and functional
imaging are essential to enhance our understanding of the rela-
tionship between the laterality of the FAT and handedness.
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