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 ABSTRACT 

BACKGROUND AND PURPOSE: Recently, AI tools have been deployed with increasing speed in educational and clinical settings. 

However, the use of AI by trainees across different levels of experience has not been well studied. This study investigates the impact 

of AI assistance on diagnostic accuracy for intracranial hemorrhage (ICH) and large vessel occlusion (LVO) by medical students (MS) 

and resident trainees (RT). 

MATERIALS AND METHODS: This prospective study was conducted between March 2023 and October 2023. MS and RT were asked to 

identify ICH and LVO in 100 non-contrast head CTs and 100 head CTAs, respectively. One group received diagnostic aid simulating AI 

for ICH only (n = 26), the other for LVO only (n = 28). Primary outcomes included accuracy, sensitivity, and specificity for ICH / LVO 

detection without and with aid. Study interpretation time was a secondary outcome. Individual responses were pooled and analyzed 

with chi-square; differences in continuous variables were assessed with ANOVA. 

RESULTS: 48 participants completed the study, generating 10,779 ICH or LVO interpretations. With diagnostic aid, MS accuracy 

improved 11.0 points (P < .001) and RT accuracy showed no significant change. ICH interpretation time increased with diagnostic aid 

for both groups (P < .001) while LVO interpretation time decreased for MS (P < .001). Despite worse performance in detection of the 

smallest vs. the largest hemorrhages at baseline, MS were not more likely to accept a true positive AI result for these more difficult 

tasks. Both groups were considerably less accurate when disagreeing with the AI or when supplied with an incorrect AI result. 

CONCLUSIONS: This study demonstrated greater improvement in diagnostic accuracy with AI for MS compared to RT. However, MS 

were less likely than RT to overrule incorrect AI interpretations and were less accurate, even with diagnostic aid, than the AI was by 

itself. 

 
ABBREVIATIONS: ICH = intracranial hemorrhage; LVO ＝ large vessel occlusion; MS ＝ medical students; RT = resident trainees. 
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 SUMMARY SECTION 

PREVIOUS LITERATURE: Prior work suggests that physicians with less experience in radiology benefit the most from AI-assistance, 

while a recent large-scale study found that experience-based factors do not reliably predict the impact of AI assistance. The factors 

influencing use and trust across different levels of interpreter expertise remain poorly understood. 

KEY FINDINGS: Diagnostic aid simulating AI demonstrated improvement in ICH and LVO detection for medical students, but not for 

resident trainees. Furthermore, MS were less likely than RT to overrule incorrect aid interpretations and were less accurate than the 

simulated AI alone. 

KNOWLEDGE ADVANCEMENT: AI may provide a greater benefit for non-experts; however, a threshold level of experience may be 

necessary for the safe and effective use of deep learning tools. 

 

INTRODUCTION 

Over the last several decades, the volume of medical imaging has dramatically increased within the United States healthcare system.1,2 

Drivers of high volume include increasing population size and age, growing emphasis on cross-sectional studies, and a lack of widespread 

adoption of evidence-based guidelines for imaging utilization.3 Although imaging is intended to improve medical decision making, 

increased imaging volume demands increased throughput from radiologists, which increases the risk of diagnostic error; this may have 

devastating consequences for patient care.4,5 Moreover, medical error is expensive, accounting for an estimated $17 billion to $29 billion 

in annual excess spending in the United States.6 
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More recently, there has been an exponential increase in the number of available artificial intelligence (AI) products, which represent 

one solution for managing high study volumes. Several studies have demonstrated that these tools enhance physician performance and 

may prevent burnout by reducing reading time and improving diagnostic accuracy.7–11 AI is increasingly used to support clinical decision 

making and to triage acute findings. In a recent randomized clinical trial of 443 participants across four comprehensive stroke centers, 

Gutierrez et al. showed significantly reduced time to endovascular thrombectomy for patients with large vessel occlusion (LVO) using an 

LVO detection AI algorithm that automatically alerts clinicians and radiologists.12 Although machine learning has demonstrated impressive 

performance in detecting specific imaging abnormalities, current technology is limited to simple tasks, lacks clinical decision-making 

capabilities, and continues to require physician oversight.13 

The increasing prevalence of AI in radiology raises questions about its role in medical education and resident training. As many as 40% 

of imaging studies from teaching institutions are cosigned by radiology trainees.14,15 Although several studies have reported improved 

trainee performance with deep learning tools, the factors influencing use and trust across different levels of interpreter expertise remain 

poorly understood.16  

The purpose of this randomized, controlled trial is to investigate how having an AI result available at the time of interpretation 

influences accuracy and interpretation time across different levels of medical training and task complexity. We hypothesize that such 

diagnostic aid will increase accuracy and decrease interpretation time for all trainees, but that the effect will be greater for less experienced 

readers. Similarly, we expect the benefit to be greater for tasks of greater complexity. The study will also investigate whether level of 

training influences how trainees deal with incorrect diagnostic aid. This article follows the CONSORT reporting guidelines. 

MATERIALS AND METHODS 
Study Design 

This prospective study was conducted at the University of California, Irvine and approved by our institutional review board.  After 

providing written informed consent, medical students (MS) and resident trainees (RT) were randomized to one of two groups: (A) ICH 

detection without diagnostic aid and LVO detection with diagnostic aid or (B) ICH detection with diagnostic aid and LVO detection 

without diagnostic aid. The primary interpretation target of LVO detection was identification of occlusions in the M1 segment of the 

middle cerebral artery (MCA). Randomization and intervention assignment were performed following a 1:1 allocation ratio. To limit the 

potential for study participants to assess the fixed accuracy of the provided diagnostic aid, positive and negative cases were presented in a 

random sequence and false positive / false negative diagnostic aid responses were randomly distributed. All medical students attended a 

60-minute lecture on to the fundamentals of recognizing ICH and LVO in CT scans through neuroanatomy and case examples. 

 

Participants 

The MS group consisted of first- and second-year medical students from the University of California. RT consisted of U.C. Irvine radiology 

residents in their third to fifth post-graduate year. Recruitment occurred between January 2023 and October 2023. Participants who did 

not complete both assigned tasks were excluded. Participants did not know the accuracy of the AI beforehand. 

 

Viewer 

Participants were tasked with completing two reading sessions: (1) 100 non-contrast head CTs and (2) 100 CT angiographies of the head. 

Both sets were balanced (50:50) between normal and abnormal (presence / absence of ICH or LVO). Diagnostic aid was shown to 

participants as a binary yes / no for the presence of ICH or LVO. Tasks were completed on participants’ devices using an established, 

research-grade viewing platform offering standard functionality such as zoom and adjustable window / level. Responses were collected in 

a separate browser window. To ensure a robust set of false positive / false negative aid responses, diagnostic aid was calibrated to have 

both sensitivity and specificity of 80%. 

 

Dataset 

The dataset used for this study included 200 total de-identified CT scans: 50 CT angiographies with LVO, 50 non-contrast head CTs with 

ICH, and 100 CT angiographies and non-contrast head CT scans with no pathology. The same scans were used for sessions in which 

participants had or did not have access to diagnostic aid. 200 patients were included in the dataset. 

 

Ground Truth Definition 

Ground truth was established by an experienced neuroradiologist (D.C., 12 years of experience). 

 

Outcome Measures 

The primary outcome measures included reader accuracy, sensitivity, and specificity without or with diagnostic aid. These were determined 

according to whether the participant’s answer (“yes” or “no” to the presence of ICH or LVO) agreed with the ground truth. The secondary 

outcome measure was interpretation time, which was calculated automatically for each case using Qualtrics survey software. 

 

Subgroup Evaluation 

Primary outcomes were evaluated in several subgroups: within tasks (ICH and LVO); according to whether the user agreed or disagreed 

with the diagnostic aid interpretation; and according to whether the supplied aid interpretation was accurate. After being segmented with 



 3 

 

a previously validated algorithm, positive ICH cases were split into quintiles according to hemorrhage size and primary outcome measures 

were assessed within these quintiles. 

 

Statistical Analysis 

Based on an anticipated diagnostic accuracy of 70% for MS and 75% for RT, a desired power of 80%, and expected higher enrollment 

rate for MS participants, we estimated that a total of at least 4,000 responses, or 20 participants, would be required in each arm. Statistical 

analyses were performed using software (Python version 3.10, the Python Software Foundation; Pandas version 2.1.0, The Pandas 

Development Team). De-identified user and response information was stored as raw data within Microsoft Excel. Answers with response 

times greater than 4 standard deviations above the mean were discarded. Mean accuracy, sensitivity, and specificity were computed for 

each participant and used as data points. Mean accuracy, sensitivity, and specificity were computed for each group and compared using a 

t-test. A t-test was also used to compare median response times. ANOVA was used for comparison of accuracy across different hemorrhage 

sizes in the ICH task. 

RESULTS 
Participants 

A total of 93 participants expressed interest in the study and began the consent process. 68 participants provided written informed consent 

and were enrolled. Ultimately, 48 participants completed the study (Figure 1). This group included 37 MS and 11 RT. The final MS group 

included first and second year medical students recruited from University of California Irvine and Riverside medical schools. The RT 

group included 11 UCI radiology residents. Given that sample size, the minimum difference in accuracy for RT without and with diagnostic 

aid that could have been detected at 80% power was 8.5 percent.  

 

 

FIG 1. Participant enrollment flowchart. 

 

Primary Analysis 

With diagnostic aid, MS accuracy improved 11.0 points (62.6% to 73.6%, P < .001, Figure 2), while RT accuracy showed no significant 

change. MS sensitivity improved from 48.0% to 68.6% with aid (P < .001, Table 1), while specificity was not significantly different. For 

RT, sensitivity improved from 74.0% to 86.0% (P = .025). Specificity was not significantly different. 
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FIG 2. (A) Overall accuracy for MS and RT without and with diagnostic aid. (B – D) Accuracy, sensitivity, and specificity changes 

within each task without and with diagnostic aid. MS: medical students; RT: resident trainees; ICH: intracranial hemorrhage; LVO: 

large vessel occlusion. 

 

Task Analysis 

Next, we assessed differences in benefit of diagnostic aid across different tasks. For the ICH task, MS accuracy improved from 62.0% to 

70.4% (P < .001, Table 1) with aid. On the LVO task, MS accuracy improved from 63.2% to 76.7% (P < .001).  

 
Table 1: Accuracy, sensitivity, and specificity overall and for each individual task, without and with diagnostic aid. 

 Metric Without aid (mean [95% CI]) With aid P-value 

MS Overall Accuracy 62.6 [59.9 - 65.3] 73.6 [70.8 - 76.5] < .001 

 Sensitivity 48.0 [43.9 - 52.0] 68.6 [63.0 - 74.2] < .001 

 Specificity 77.2 [72.2 - 82.2] 78.7 [74.0 - 83.3] 0.65 

RT Overall Accuracy 80.7 [71.5 - 90.0] 85.4 [81.6 - 89.1] 0.32 

 Sensitivity 74.0 [64.7 - 83.3] 86.0 [80.1 - 91.9] 0.025 

 Specificity 87.5 [75.8 - 99.2] 84.7 [79.5 - 89.9] 0.63 

MS-ICH Accuracy 62.0 [59.0 - 64.9] 70.4 [67.3 - 73.5] < .001 

 Sensitivity 43.7 [38.2 - 49.2] 59.1 [50.9 - 67.3] 0.002 

 Specificity 80.2 [72.5 - 87.9] 81.7 [76.8 - 86.5] 0.74 

MS-LVO Accuracy 63.2 [58.3 - 68.1] 76.7 [72.2 - 81.2] < .001 

 Sensitivity 52.5 [46.7 - 58.3] 77.6 [72.1 - 83.0] < .001 

 Specificity 73.9 [67.2 - 80.7] 75.9 [67.8 - 84.0] 0.70 

RT-ICH Accuracy 83.5 [80.6 - 86.4] 83.4 [76.5 - 90.3] 0.97 

 Sensitivity 75.0 [66.2 - 83.8] 85.2 [74.4 - 96.0] 0.079 

 Specificity 92.0 [85.5 - 98.5] 81.6 [71.3 - 91.9] 0.041 

RT-LVO Accuracy 77.4 [51.5 - 103.4] 87.0 [81.0 - 92.9] 0.31 

 Sensitivity 72.8 [48.4 - 97.2] 86.7 [76.5 - 96.8] 0.16 

 Specificity 82.1 [50.5 - 113.7] 87.3 [80.2 - 94.3] 0.64 

Note: MS: medical students; RT: resident trainees; ICH: intracranial hemorrhage; LVO: large vessel occlusion.  

 

For RT performing the ICH task, accuracy and sensitivity were not significantly changed with diagnostic aid. Specificity actually 

decreased, 92.0 to 81.6% (P = .041, Table 1). In the LVO task, RT accuracy, sensitivity, and specificity were not significantly changed. 

Within the ICH task, we hypothesized that diagnostic aid would be more helpful in the detection of smaller hemorrhages. To assess 

this, we segmented positive ICH cases and split hemorrhages into quintiles according to size. For MS, mean accuracies without aid were 

significantly different across hemorrhage sizes (ranging from 21.1% for the smallest hemorrhages to 75.8% for the largest hemorrhages, 

ANOVA P < .001; Figure 3). For all but the largest hemorrhages, accuracy improvement with aid was statistically significant (P < .05).  



 5 

 

 

 
FIG 3. Overall accuracy for (A) MS and (B) RT without and with diagnostic aid across different volumes of intracranial hemorrhage. 

MS: medical students; RT: resident trainees; ICH: intracranial hemorrhage; LVO: large vessel occlusion. 

 

For RT, mean accuracies without aid ranged from 33.3% for very small hemorrhages to 96.7% for the largest hemorrhages (ANOVA 

P < .001, Figure 3). The accuracy benefit conferred by diagnostic aid was not statistically significant within any quintile and did not vary 

significantly across hemorrhage sizes. 
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Interpretation Time 

No statistically significant differences were observed in interpretation time without or with diagnostic aid (Figure 4).  

 

 

FIG 4. Changes in median interpretation time for each task, without and with diagnostic aid. MS: medical students; RT: resident 

trainees; ICH: intracranial hemorrhage; LVO: large vessel occlusion. 

 

We further analyzed response times according to the truth value of the diagnostic aid response. For both MS and RT completing the 

ICH task, response times were significantly different and longest response times were observed in cases of false positive diagnostic aid 

(29.3 s for MS, 40.4 s for RT, Table 2). For MS completing the LVO task, although differences in response time for different aid response 

types were statistically significant, actual median response times varied only by about 3 seconds. For RT completing the LVO task, 

differences in response time were not statistically significant (Table 2). 

 
Table 2: Median interpretation time by AI response type. 

Level Task AI TP AI TN AI FP AI FN P-value 

MS ICH 23.5 23.2 29.3 21.2 0.04 

MS LVO 24.4 21.2 22.9 24.4 .007 

RT ICH 21.1 35.1 40.4 25.7 < .001 

RT LVO 31.8 33.4 43.2 33.3 0.69 

Note: MS: medical students; RT: resident trainees; ICH: intracranial hemorrhage; LVO: large vessel occlusion; TP: true positive; TN: true 

negative; FP: false positive; FN: false negative. 
 

Interpreter Disagreement with AI  

Both groups were less accurate when disagreeing with the AI. For MS completing the ICH task, when disagreeing compared to agreeing 

with the AI, accuracy dropped from 83.9% to 31.9% (P < .001, Figure 5a), sensitivity from 77.1% to 18.7%, and specificity from 89.1% 

to 59.1% (both P < .001). On the LVO task, when disagreeing with the AI, accuracy dropped from 85.7% to 44.7%, sensitivity from 86.0% 

to 46.0%, and specificity from 84.3% to 44.6% (all P < .001). RT fared slightly better when disagreeing vs. agreeing with the AI: on the 

ICH task, accuracy dropped from 91.4% to 59.3%, sensitivity from 93.4% to 63.7%, and specificity from 89.2% to 56.5% (all P < .05). 

On the LVO task, accuracy dropped from 92.0% to 68.8%, sensitivity from 92.0% to 69.7%, and specificity from 92.0% to 70.0% (all P 

< .05). 

 

Effect of Incorrect AI Response on Interpreter Accuracy  

MS were considerably less accurate on both tasks when given incorrect diagnostic aid. For the ICH task, accuracy was 78.0% with a 

correct aid response and 40.0% with an incorrect response (P < .001, Figure 5b). For the LVO task, accuracy dropped from 85.2 to 42.9% 
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(P < .001). For RT performing the ICH task, accuracy dropped from 87.5% to 67.0% with incorrect aid response (P < .001). On the LVO 

task, accuracy dropped from 91.7% to 68.2% (P < .001).   

  

 

FIG 5. (A) Accuracy for each task when agreeing vs. disagreeing with the diagnostic aid. (B) Accuracy for each task when the 

diagnostic aid interpretation was accurate vs. inaccurate. All differences were statistically significant (P < .05). MS, medical 

student; RT, resident trainee; ICH, intracranial hemorrhage; LVO, large vessel occlusion. 
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DISCUSSION 

Prior work suggests that physicians with less experience in radiology benefit the most from AI-assistance, while a recent large-scale study 

found that experience-based factors do not reliably predict the impact of AI assistance. 17,18 Our study, using diagnostic aid to simulate AI, 

demonstrates significant increase in accuracy with diagnostic aid for MS but no significant increase for RT. When ICH evaluations were 

stratified by hemorrhage size, both MS and RT were less accurate at baseline in detecting the smallest vs. the largest hemorrhages (MS, 

21.1% vs. 75.8%; RT, 33.3% vs 96.7%, both P < .001). However, the benefit conferred by diagnostic aid did not vary significantly across 

hemorrhage sizes. Diagnostic aid had no statistically significant effects on interpretation time. Both groups were significantly less accurate 

when disagreeing with the aid interpretation and when supplied with an incorrect aid response. MS, but not RT, were less accurate, even 

with diagnostic aid, than the simulated AI was by itself. 

For both MS and RT, essentially all the benefit of diagnostic aid came from increased sensitivity. This is concordant with prior studies 

that have demonstrated a greater improvement in sensitivity with AI assistance among radiologists.19–21 It may be more difficult for AI 

assistance to increase specificity, as this would require users to abandon an initial positive read in favor of the true negative AI response, 

which by nature could not be supported by a discrete finding in the scan. On the other hand, a user considering a true positive AI result 

might, on second look, identify the finding that triggered the AI result and more readily change their initial response.  

We expected that baseline performance would be lower for more complex tasks and that diagnostic aid would offer greater benefit in 

these situations. Given that the difficulty of ICH detection depends on the size of the ICH, we split positive cases into quintiles by 

hemorrhage volume. As expected, both MS and RT demonstrated worse baseline performance in detecting smaller hemorrhages. However, 

the benefit of diagnostic aid for MS was similar across the smallest 4 quintiles of hemorrhage. This means that for the smallest hemorrhages, 

MS were more likely to disregard a true positive aid response. This may have been due to anchoring bias, where a participant remains 

fixed to an initial diagnostic interpretation despite being provided with new data suggesting an alternative; this has been shown to be a 

significant bias in radiology.22,23 One strategy for overcoming this bias might be to use diagnostic aids that explicitly identify the suspected 

abnormality. Currently, AI triage tools are prohibited by FDA regulations from annotating diagnostic images in any way, but annotation 

may be an important consideration in the implementation of future AI systems. 

We expected that interpretation time would decrease across all tasks when a diagnostic aid was available (as seen in a recent prospective 

study24), but the actual effects were mixed and not statistically significant. For the ICH task, read times were greatest when the diagnostic 

aid response was a false positive; this may reflect time spent searching the entire brain volume for a finding that might have triggered the 

response. This would be less of an issue on the LVO task, which focused on a small anatomic area around the proximal MCAs. Again, it 

is likely that an AI system highlighting a suspected abnormality, in addition to providing a categorical result, would show a more robust 

decrease in read times across tasks. 

A recent study by Yu et al.18 demonstrated that, contrary to what one might expect, less experienced board-certified radiologists did 

not benefit more from AI assistance than more experienced radiologists, and that overall AI benefit was small. Gaube et al.25 demonstrated 

a significant improvement in accuracy for non-expert physicians (internal or emergency medicine) but not for radiologists with AI 

assistance. Our study demonstrated a significant benefit from diagnostic aid for MS, but not RT. Although the study designs and specific 

diagnostic tasks investigated are different, these results suggest that, as the experience of the user increases, the relationship between AI 

assistance and accuracy becomes more complicated. However, in our study, despite clearly benefitting from diagnostic aid, MS were still 

less accurate, even with aid, than the simulated AI was by itself. This may be a manifestation of the Dunning-Krueger effect, a cognitive 

bias where subjects overestimate their ability to perform a task, despite having limited task-specific expertise.26  

Our results have several implications for the clinical implementation of AI, particularly in an educational setting. Although AI 

assistance appears to be of greater benefit to trainees, given that MS with diagnostic aid were less accurate than the simulated AI itself, 

there may be a minimum threshold of competency required to use radiology AI tools safely and effectively. Our results further 

demonstrated that the primary benefit of diagnostic aid to MS and RT was to increase sensitivity, without decreasing specificity. If trainees 

are more likely to be influenced by a true positive AI response than by a false negative one, future AI algorithms might be most beneficial 

if calibrated to have high sensitivity, even at the expense of decreased specificity. This would also accord with the perspective that, for 

example when interpreting ER studies overnight, it is more costly for trainees to miss a real positive finding than to imagine one that isn’t 

actually there. 

Our study had limitations. Different groups completed each task without or with diagnostic aid, and metrics to establish baseline 

proficiency were not available, so that individual user competence might have affected differences in accuracy. Our RT group was also 

relatively small, limiting the resolution of the study to detect differences in accuracy without and with diagnostic aid. The simulated 

diagnostic aid did not provide visual depictions of the suspected abnormalities, though we note that current FDA rules prohibit triage 

applications from marking up diagnostic images in any way. Additionally, the accuracy, specificity, and sensitivity of the simulated AI 

were fixed at 80%, which is low compared to currently available tools; however, our results may provide a baseline against which future 

studies can assess the impact of a more accurate AI. Finally, the study was not conducted during routine clinical practice using a standard 

PACS, which could affect the generalizability of the results. Future work is needed to study the integration of AI assistance into clinical 

workflow and to assess the effects of different baseline AI accuracies. 

CONCLUSIONS 

This study demonstrated improvement in ICH and LVO detection with simulated AI for MS, but not for RT, suggesting that AI may 

provide a greater benefit for non-experts. However, MS were less likely than RT to overrule incorrect aid interpretations, and in fact were 

less accurate than the simulated AI alone, suggesting that a threshold level of experience may be necessary for the safe and effective use 

of deep learning tools. To aid in optimal deployment of AI in the educational setting, future work should include additional participants 

from other institutions at different levels of experience as well as investigating different methods of reporting AI results. 
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