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ORIGINAL RESEARCH
ARTIFICIAL INTELLIGENCE

A Deep Learning Approach to Predict Recanalization First-
Pass Effect following Mechanical Thrombectomy in Patients

with Acute Ischemic Stroke
Haoyue Zhang, Jennifer S. Polson, Zichen Wang, Kambiz Nael, Neal M. Rao, William F. Speier, and

Corey W. Arnold

ABSTRACT

BACKGROUND AND PURPOSE: Following endovascular thrombectomy in patients with large-vessel occlusion stroke, successful re-
canalization from 1 attempt, known as the first-pass effect, has correlated favorably with long-term outcomes. Pretreatment imag-
ing may contain information that can be used to predict the first-pass effect. Recently, applications of machine learning models
have shown promising results in predicting recanalization outcomes, albeit requiring manual segmentation. In this study, we sought to
construct completely automated methods using deep learning to predict the first-pass effect from pretreatment CT and MR imaging.

MATERIALS AND METHODS: Our models were developed and evaluated using a cohort of 326 patients who underwent endovascular
thrombectomy at UCLA Ronald Reagan Medical Center from 2014 to 2021. We designed a hybrid transformer model with nonlocal
and cross-attention modules to predict the first-pass effect on MR imaging and CT series.

RESULTS: The proposed method achieved a mean 0.8506 (SD, 0.0712) for cross-validation receiver operating characteristic area
under the curve (ROC-AUC) on MR imaging and 0.8719 (SD, 0.0831) for cross-validation ROC-AUC on CT. When evaluated on the
prospective test sets, our proposed model achieved a mean ROC-AUC of 0.7967 (SD, 0.0335) with a mean sensitivity of 0.7286 (SD,
0.1849) and specificity of 0.8462 (SD, 0.1216) for MR imaging and a mean ROC-AUC of 0.8051 (SD, 0.0377) with a mean sensitivity of
0.8615 (SD, 0.1131) and specificity 0.7500 (SD, 0.1054) for CT, respectively, representing the first classification of the first-pass effect
from MR imaging alone and the first automated first-pass effect classification method in CT.

CONCLUSIONS: Results illustrate that both nonperfusion MR imaging and CT from admission contain signals that can predict a suc-
cessful first-pass effect following endovascular thrombectomy using our deep learning methods without requiring time-intensive
manual segmentation.

ABBREVIATIONS: AIS ¼ acute ischemic stroke; DL ¼ deep learning; EVT ¼ endovascular thrombectomy; FPE ¼ first-pass effect; IQR ¼ interquartile range;
LVO ¼ large-vessel occlusion; ML ¼ machine learning; MNT-DL ¼ multisequence neighborhood transformer model; mTICI ¼ modified TICI; ROC-AUC ¼ receiver
operating characteristic area under the curve; SSL ¼ self-supervised learning

In patients with anterior circulation large-vessel occlusion (LVO)
stroke, endovascular thrombectomy (EVT) has been approved

as an effective therapy. It is now recommended for patients up to
24hours from stroke onset.1,2

EVT is considered successful if blood flow is deemed com-
pletely or near-completely restored to the brain region affected by
the stroke. This restoration is quantified by the modified TICI
(mTICI) score, which is assessed both during the EVT procedure

and on completion.3-5 Clinical trials have illustrated that patients
who experience near-total or total recanalization of the blood vessels
typically have better outcomes, particularly if recanalization is
achieved on the first attempt, known as the first-pass effect (FPE).6-9

Successful recanalization of EVT among patients with stroke
varies despite shared and common clinical presentations and pro-
cedural factors. This issue has been the target of several investiga-
tions to elucidate the mechanisms underlying a patient’s likelihood
of successful recanalization.10-12 Some underlying factors include
onset-to-EVT time14 and identification of penumbral tissue via
MR imaging or CT, which can inform treatment outcomes.
Additionally, compensatory flow from the pial collateral circulation
strongly correlates with prognosis post-EVT.13,15,16 The current
American Heart Association/American Stroke Asso-ciation stroke
guidelines weakly recommend advanced imaging to assess a
patient’s collateral status.17
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Machine learning (ML) and regression models have been
used to predict successful recanalization with variable prediction
performances.18–24 These prediction models required manual
segmentation of the clot by an expert neuroradiologist.22,25–27

The time-intensive task of manual segmentation across a volume
may not be compatible with current clinical guidelines such as
the Target: Stroke Phase III campaign, which recommends a
door-to-needle time for EVT within 90minutes of direct admis-
sion and 60minutes of patient transfer.28,29

In this study, we aimed to construct models that can auto-
matically predict successful recanalization, particularly the FPE.
We adopted 2 new strategies to add to the current body of litera-
ture: 1) We hypothesize that deep learning (DL) may extract
helpful information from pretreatment imaging that can predict
FPE without the need for manual segmentation, commonly used
in other ML approach models. 2) Almost all previous models pre-
dicting FPE from pretreatment imaging have used NCCT and/or
CTA. Given the multidimensional and multimodal nature of MR
imaging, we explored the potential existing rich information in
MR imaging that may be relevant to the success of recanalization.

We report performance metrics for 2 cohorts of patients:
those who underwent CT and those with pretreatment MR imag-
ing. We designed a framework tailored to the small sample size
and the thick-section nature of pretreatment stroke imaging. We
incorporated contrastive learning to pretrain the model by lever-
aging a larger imaging dataset of patients with acute ischemic
stroke (AIS) who do not satisfy our study criteria, thus enabling
the model to better generalize on a small data set. To the best of
our knowledge, this is the first study to apply DL algorithms with
pretreatment MR imaging and CT to predict the FPE.

MATERIALS AND METHODS
Ethical Compliance
This study was approved by the UCLA Health institutional
review board No. 3 under IRB#18–000329. Patient records were
collected following institutional review board and Health Insurance
Portability and Accountability Act compliance standards. Informed
consent was waived under Exemption 4 for retrospective data.
The internal institutional data set used in this study is not pub-
licly available due to limits set by our study institutional review
board. We are willing to validate other models internally on our
data as part of collaborations. The program code (preprocessing

and modeling) is available at https://github.com/zhanghaoyue/
DeepLearningFirstPassEffect, and derived data (eg, model weights)
will be available on reasonable request.

Data Set
In this retrospective study, we reviewed consecutive patients with
AIS who were treated at UCLA Ronald ReaganMedical Center from
2014 to 2021. Patients were included if they had the following: 1) a
diagnosis of anterior circulation LVO AIS, 2) an adequate-quality
pretreatment MR imaging or CT under stroke imaging protocol,
and 3) EVT. Exclusion criteria were as follows: the presence of
significant hemorrhage and image-registration errors resulting
from significant midline shift or motion artifacts. The patient
inclusion workflow diagram is shown in Fig 1.

Baseline demographic and clinical data, including age, sex,
NIHSS score at admission, time from stroke onset, performance
of IV thrombolysis, and grade of mTICI, were recorded for each
patient in our stroke registry by board-certified neurologists and
neurointerventionalists who were treating the patients with
stroke. EVT was performed by our neurointerventionalists using
FDA-approved thrombectomy devices at their discretion and in
accordance with current technical standards. As part of the EVT
protocol at UCLA Ronald Reagan Medical Center, mTICI was
assessed during the procedure after each clot retrieval pass by the

FIG 1. Patient flow chart illustrating the inclusion criteria for this
study.

SUMMARY SECTION

PREVIOUS LITERATURE: Many studies have shown that the first-pass effect is associated with positive long-term outcomes for
patients with acute ischemic stroke who underwent endovascular thrombectomy. Recently, a few studies tried to predict FPE
by using baseline imaging and clot segmentation and achieved moderate performance.

KEY FINDINGS: Deep learning models developed in this study show promising performance in predicting FPE by using both pre-
treatment baseline CT and MR imaging. Clot segmentation is not necessary to restrict the input, thus saving labor costs and
reducing variance from manual segmentation by different readers.

KNOWLEDGE ADVANCEMENT: Fully automated end-to-end deep learning models can accurately model the relationship
between pretreatment imaging and FPE in patients with AIS. If fully validated externally on a larger cohort, the model can pro-
vide physicians with extra information regarding outcomes before EVT for better procedure planning.

2 Zhang � 2024 www.ajnr.org

https://github.com/zhanghaoyue/DeepLearningFirstPassEffect
https://github.com/zhanghaoyue/DeepLearningFirstPassEffect


performing neurointerventionalist. Successful recanalization was
defined as mTICI of 2b, 2c, or 3.

Comparative analysis was performed between patients who
did or did not achieve FPE using the x 2 test, Student t test, and
Wilcoxon rank-sum test as appropriate. All statistical analysis was
performed using R software 4.1.3 (https://www.r-project.org).

MR Imaging Acquisition and Preprocessing
MR imaging was acquired on 1.5T (Avanto, Siemens, Erlangen,
Germany) and 3T (Trio, Siemens, Erlangen, Germany) echo-pla-
nar MR imaging scanners with 12-channel head coils (Siemens).
In the stroke MR imaging of the brain admission protocol, the
DWI and FLAIR sequences were acquired using the following pa-
rameters: DWI: TR ¼ 4000–9000 ms, TE ¼ 78–122 ms, corre-
sponding pixel dimensions ¼ 0.859 � 0.859 � 6.000 to 1.850 �
1.850 � 6.500mm; FLAIR: TR ¼ 8000–9000 ms, TE ¼ 88–134
ms, corresponding pixel dimensions 0.688 � 0.688� 6.000 to
0.938 � 0.938� 6.500mm. ADC maps were calculated from
DWI B0 and DWI b¼1000 using the following formula:

ADC ¼ � lnðSb1000Sb0
Þ

1000
;

where Sb1000 and Sb0 are the intensity values of DWI b¼1000 and
DWI B0 images.

FromMR imaging, the series used included DWI, FLAIR, and
ADC sequences. Automated preprocessing steps described in

Zhang et al30 were performed to segment vascular regions for
stroke. Briefly, all sequences were subjected to N4-bias field correc-
tion using the Advanced Normalization Tools (ANTs) library
(http://stnava.github.io/ANTs/),22,31 intensity normalization, and
histogram matching. Finally, registration to Montreal Neurological
Institute space enabled the use of a vascular territory atlas for
stroke-region localization.

CT Acquisition and Preprocessing
Two CT scanners, a Lightspeed VCT (GE Healthcare) and a
Somatom Definition (Siemens), were used for CT. After adminis-
tering 50mL of contrast agent IV at 5mL/s, a single-phase CTA
was obtained (120 kV, 120 reference mAs, 0.3-second rotation
time, 0.6 pitch, effective dose of about 3 mSv). Both NCCT and
CTA series were included as input for the imaging-based models.
The preprocessing protocol for CT images included field-of-view
removal, skull-stripping, and registration to Montreal Neurological
Institute space. Sample CT and MR imaging original images and
the processed input are shown in Fig 2.

DL Model Architecture
The proposed DL model is an end-to-end trainable network con-
sisting of both convolutional and attention-based components,
namely the multisequence neighborhood transformer model
(MNT-DL). The MNT-DL is a hybrid transformer architecture
incorporating modifications and enhancements to the widely
used ResNet34 backbone. Each convolutional block is modeled

FIG 2. A, Examples of CT images, preprocessing, and final regional input section. B, Examples of MR images, preprocessing, and final regional
input section.
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after ResNet residual blocks, consisting of the following sequences:
convolutional kernel, batch normalization, rectified linear unit acti-
vation function, second convolutional kernel, and second batch
normalization. The first component is a global feature extractor
using the first stage of ResNet, which leverages residual convolu-
tional blocks to extract low-level features from each section. These
section-level features are fed into 5 local networks from the top to
bottom of the brain, which learn representations of adjacent slices
and share weights during training, therefore learning regional in-
formation during training. Within this local network, a self-atten-
tion module is added to determine the salient regions within each
section. The nonlocal self-attention module uses a 1 � 1 convolu-
tion on the intermediate features to generate single-head attention
for each image patch, computing attention with respect to all
other patches. These are aggregated using matrix multiplication and

SoftMax activation. The self-attentionmodule was included in the net-
work for its self-contained nature, meaning that it can be inserted into
existing architectures without a substantial increase in computation.

If we followed the local networks, outputs are fed into the vol-
umetric classifier consisting of 2 modules. The first is a cross-
attention module using recent advances in vision transformers.
The low-level features from every section are fed into the module,
which uses multi-head attention operations from basic transformer
architecture to generate section-level importance. Resembling other
attention modules, including nonlocal attention, multi-head atten-
tion consists of a linear layer to generate attention across several
scales of the image volume. The attention operations are fused
using cross-attention, wherein the features from each scale are
exchanged via layer normalization and residual connection. The
use of this module in the network enables the model to weigh the

FIG 2. Continued
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slices more heavily for the final prediction while adding limited
computational complexity. This attention output and the output
from the local networks are fed into a linear layer that serves as the
final classifier, generating the volume-level prediction.

DWI-FLAIR-ADC or NCCT-CTA sequences are used as
channels to input into the MNT-DL for MR imaging or CT input.
Single-sequence inputs are also used to develop corresponding
models (ADC-DL, DWI-DL, FLAIR-DL, NCCT-DL, CTA-DL)
for ablation studies, in which the single sequences are stacked to
fit into the same channel requirement for corresponding models.

Contrastive Self-Supervised Learning
Although we use multiple model designs tailored for small
sample sizes in DL training, the DL training is still limited by
the labeled data for MR imaging and CT. Therefore, we adapted
a contrastive self-supervised learning (SSL) approach called
SimSiam (https://github.com/facebookresearch/simsiam)23 to
our proposed model. SimSiam does not require a large batch
size, negative sample pairs, or a momentum encoder. Under
this approach, we facilitate more imaging data from our institu-
tional stroke registry that do not meet the inclusion criteria of
this study and further improve the performance of the model.
The model architecture and SSL framework are shown in Fig 3.

Loss Function
The loss function used in this work was based on binary cross-en-
tropy, defined as

Total � Loss ¼ Lfusion þ g � Lsubnet1 þ Lsubnet2 þ Lsubnet3þð
Lsubnet4 þ Lsubnet5 Þ;

where L is binary cross-entropy loss. The fusion loss, Lfusion,
denotes the loss of the final output of the global network. In addi-
tion, the loss is computed for the intermediate output of each
local network Lsubnetx . The losses Lsubnet1 , Lsubnet2 , Lsubnet3 , Lsubnet4 ,

and Lsubnet5 are added and combined
with Lfusion using the weighting
factor g : In this study, the weighting
factor was set at 0.5 to give equal
weights between the final output loss
and the sum of local network losses.

Training and Evaluation
Models were evaluated for their ability
to predict a binarized label for each
patient. A patient was given a positive
label if he or she had an mTICI score of
2b, 2c, or 3 after 1 pass during EVT.
Patients who achieved recanalization in
several attempts or who did not achieve
successful recanalization were assigned
a negative label. The MR imaging and
CT cohorts were segmented into retro-
spective development and prospective
evaluation groups. Patient images were
included in the prospective cohort if
the patient underwent EVT in 2020 or

later. The development groups were each split into 5 folds for
cross-validation. The model was trained for 100 epochs in each
fold with early stopping using the AdamW optimizer (https://
keras.io/api/optimizers/adamw/).32 The learning rate was set to
0.0005, and the weight decay33 was set to 0.05. The training was
implemented using Pytorch 1.9.0 (https://pytorch.org/blog/pytorch-
1.9-released/) on an NVIDIA DGX-2 (https://en.wikipedia.org/
wiki/Nvidia_DGX). Following the development and hyperpara-
meter tuning, algorithms were evaluated on the corresponding
prospective evaluation cohort. Receiver operating characteristic
area under the curve (ROC-AUC) was reported accordingly.
Sensitivity, specificity, and accuracy were calculated using Youden
J statistics34 from the ROC curve.35 All metrics were reported as
mean (SD) on the evaluation set for each cohort.

RESULTS
Patient Characteristics
Among 408 patients who met the inclusion criteria, a total of 76
patients were excluded due to missing image series (n¼ 52) or
degraded image quality preventing preprocessing (n¼ 24). From
this final cohort of 332 patients, 152 underwent MR imaging and
180 underwent CT before EVT.

The cohort had an average age of 71.49 (SD, 15.94) years and
was 54.22% women. Of this cohort, 80 patients experienced a
stroke within 24 hours of the last-known-well time but had an
indeterminable onset time. Among patients with a known onset
time, 168 (50.60%) underwent imaging within the 4.5-hour win-
dow and 185 (55.72%) underwent contrast MR imaging or CT
within 6 hours. The median NIHSS score on admission was 16
(interquartile range [IQR], 10–20). Before EVT, 96 patients (28.92%)
received IV thrombolytic therapy.

The clinical, imaging, and procedural characteristics of the
cohort are listed in Table 1. Additional clinical variables and dif-
ferences between the MR imaging and CT cohorts are summar-
ized in Table 1. There are no statistical differences in sex and age

FIG 3. Overview of the DL framework. The upper part represents the contrastive self-supervised
learning framework. The lower part represents the proposed neighborhood transformer model
and the classification head. Conv indicates convolutional block; Concat, concatenation operation.
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between the MR imaging and CT groups, but there are differen-
ces in the NIHSS score and IV thrombolysis received before EVT.
Although the 2 groups have similar median IQRs for the NIHSS,
the distribution skewness caused a statistically significant differ-
ence. There are more patients who received IV thrombolysis
(33.89%) in the CT group than in the MR imaging group
(23.03%), partially due to more cases with an unknown onset
time in the MR imaging group (27.63% versus 21.11%). Higher
stroke-onset-to-imaging time is observed in the MR imaging
group, but the ratios of patients whose stroke-onset time is within
4.5 hours or 6 hours are similar in both the MR imaging and
CT groups. The EVT outcomes are similar in both the MR
imaging and CT groups, and the successful FPE to non-FPE is
close to balanced (44.08% in MR imaging and 40.56% in CT)
for model development.

For the self-supervised pretraining
stage, we collected 599 MR images
and 475 CT scans from the UCLA
Radiology Department stroke registry
that met image sequence and quality
requirements for the preprocessing
steps in our study but did not qualify
for the EVT study due to different
treatment triage, missing basic clini-
cal information, and so forth.

Model Performance
The 5-fold cross-validation perform-
ance of the DL models on MR imaging
is summarized in Table 2. The ROC-
AUC of the MNT-DL was higher than
those of single-sequence models (ADC-
DL, DWI-DL, FLAIR-DL), achieving a
mean ROC-AUC of 0.7505. Adding SSL
further improved the ROC-AUC to
0.8506. Similarly, as shown in Table 3,
the MNT-DL for CT images achieved
an ROC-AUC of 0.7801, higher than

both NCCT and CTA single-sequence models (NCCT-DL and
CTA-DL). SSL further improved the ROC-AUC of the MNT-DL
to 0.8719. The performance of the DL models on MR imaging and
CT for both prospective test sets is summarized in Table 4. When
applied to the MR imaging series, the DL model achieved an aver-
age ROC-AUC of 0.7967, with an accuracy of 0.7774 on the pro-
spective test set. The ROC curves are shown in Fig 4. The model
outperformed the previous method, notably achieving near-perfect
specificity across experimental replicates while maintaining high
sensitivity. In the prospective CT evaluation set, the DL method
performed similarly, yielding a mean ROC-AUC of 0.8051 and an
accuracy of 0.8080. Compared with the literature, this model
achieved slightly lower average accuracy, though with a substan-
tially smaller confidence interval. While the accuracy was margin-
ally lower, the model achieved a more balanced sensitivity and

Table 2: Ablation study on MR imaging cross-validation folds
Model ROC-AUC Accuracy Sensitivity Specificity

ADC-DL 0.7127 (0.0492) 0.7417 (0.0995) 0.8942 (0.1138) 0.6263 (0.1324)
DWI-DL 0.6887 (0.0405) 0.7083 (0.0659) 0.7058 (0.1084) 0.7715 (0.1544)
FLAIR-DL 0.6957 (0.5011) 0.7083 (0.0833) 0.7497 (0.2163) 0.7691 (0.1913)
MNT-DL 0.7505 (0.0438) 0.7875 (0.0342) 0.7326 (0.1717) 0.8366 (0.1363)
MNT-DL1SSL 0.8506 (0.0712)a 0.8625 (0.0280) 0.9350 (0.0929) 0.8057 (0.0944)

a Best performance.

Table 3: Ablation study on CT cross-validation folds
Model ROC-AUC Accuracy Sensitivity Specificity

NCCT-DL 0.7404 (0.0560) 0.7813 (0.0221) 0.7882 (0.1377) 0.7629 (0.0819)
CTA-DL 0.7385 (0.0535) 0.7812 (0.0442) 0.7823 (0.1080) 0.8026 (0.1246)
MNT-DL 0.7801 (0.0320) 0.7979 (0.0592) 0.7923 (0.1303) 0.8066 (0.0947)
MNT-DL1SSL 0.8719 (0.0831)a 0.8688 (0.0640) 0.9381 (0.0852) 0.8058 (0.1202)

a Best performance.

Table 1: Demographics of patients included in model development. Table 1: Clinical characteristics of patient cohorta

Parameters Measure Total (N = 332) MRI (n = 152) CT (n = 180) P Value
Female No. (%) 180 (54.22%) 86 (56.58%) 96 (53.33%) .6303
Age (yr) Mean 71.49 (SD, 15.94) 70.72 (SD, 16.11) 72.13 (SD, 15.77) .4237
NIHSS score Median (IQR) 16 (10–20) 15 (8–19) 16 (11–21) .0496b

Received IV thrombolysis No. (%) 96 (28.92%) 35 (23.03%) 61 (33.89%) ,.0001b

Stroke onset time .6013
Stroke-onset to image time (min) Median (IQR) 150 (101–335) 167 (123–255) 113 (83–191) –

Unknown onset No. (%) 80 (24.10%) 42 (27.63%) 38 (21.11%) –

Onset,4.5 hr No. (%) 168 (50.60%) 71 (46.71%) 97 (53.89%) –

Onset ,6 hr No. (%) 185 (55.72%) 77 (50.66%) 108 (60.00%) –

Thrombectomy outcome .5191
Unsuccessful No. (%) 59 (17.78%) 28 (18.42%) 31 (17.22%)
mTICI 0, 1, 2a n, n, N 20, 4, 34 11, 2, 15 9, 2, 20
Successful, 21 passes No. (%) 133 (40.06%) 57 (37.50%) 76 (42.22%)
mTICI 2b, 2c, 3 n, n, N 73, 31, 25 37, 12, 8 37, 20, 19
Successful, first pass No. (%) 140 (42.17%) 67 (44.08%) 73 (40.56%)
mTICI 2b, 2c, 3 n, n, N 59, 34, 43 31, 14, 22 31, 21, 21

Note:—The en dash indicates the interquartile (IQR) range.
a Statistical testing compares differences between MR imaging and CT groups.
b Statistically significant.

Table 4: DL model performance on prospective MR imaging and CT test set
Model ROC-AUC Accuracy Sensitivity Specificity

MR imaging 0.7967 (0.0335) 0.7774 (0.0367) 0.7286 (0.1849) 0.8462 (0.1216)
CT 0.8051 (0.0377) 0.8080 (0.0299) 0.8615 (0.1131) 0.7500 (0.1054)
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specificity of 0.8615 and 0.7500, respectively, compared with the
previous model that achieved high specificity at the expense of
very low sensitivity.

DISCUSSION
The FPE has been shown to correlate with improved functional
outcomes for patients with AIS.9,36–41 Establishing a reliable pre-
dictive relationship between pretreatment imaging and FPE
is crucial for better EVT strategy planning. In this study, we
explored the capacity of pretreatment imaging to predict the like-
lihood of a FPE during EVT. This study presents the first algo-
rithm to predict a FPE using MR imaging or CT obtained from
patient pretreatment imaging by applying DL approaches.

Important information from standard diffusion MR images
and CT scans before treatment is related to EVT recanalization,
leading to a potential new path of investigation in pretreatment
imaging and thrombectomy outcome. The use of DL algorithms
in this study provides several advantages over traditional ML
methods. First, our approach does not require manual segmenta-
tion of the clot, which is a time-consuming process and can delay
valuable treatment time. Instead, our model automatically learns
to identify relevant features from the input images without
requiring manual intervention. Second, our adaptation of con-
trastive SSL demonstrates the high effectiveness of SSL when the
training data are limited, providing helpful evidence for medical
imaging training for studies under similar settings. Third, our
models do not require advanced imaging techniques, such as per-
fusion imaging, to achieve high performance in predicting suc-
cessful recanalization. Perfusion imaging is less widely available
than routine NCCT, DWI, or FLAIR images, perfusion imaging
often require more advanced CT or MR imaging scanners and
may not be available in many stroke triage settings.

Prediction of successful recanalization following EVT has
been a target of several investigations. Prior methods achieved
moderate performance using clinical variables,19,20 while others
relied on handcrafted or statistical features extracted from man-
ually-segmented regions on CT.19,21,42 For example, Hofmeister et
al25 used radiomics features in a ML model to predict FPE from
CT, achieving high specificity but low sensitivity. Our proposed
DL-based method, in contrast, requires no manual segmentation
and achieves balanced sensitivity and specificity with comparable
accuracy. In a prior study using pretreatment CT images, DL
showed promising results for predicting EVT recanalization.43 In
a recent study by Zhang et al,21 an MR imaging–based radiomics
model was developed to predict final recanalization scores with
moderate performance. The DL algorithm proposed in our work
was developed and evaluated on cohorts who underwent either
MR imaging or CT before treatment that required no manual
ROI segmentation, thereby providing a path for clinical transla-
tion if its potential is realized. Specifically, one potential clinical
application is to use the predictive success at the time of consent
or when consoling patients’ families to help and engage them in
the treatment-decision process. Moreover, this information can
help treating physicians plan the treatment accordingly and devise
ways to include other treatment options such as thrombolysis,
neuroprotection, and blood pressure management if they know
the possible outcome of thrombectomy. If the proposed method
can be broadly validated, it may help with improved patient triage
and proper resource allocation.

Limitations of this study include its retrospective nature, single-
center data collection, and relatively small sample size. Because
patients were only included in the cohort if they underwent
EVT as part of the study design, this model may be subject to
treatment bias introduced during treatment decision-making.
An additional source of bias is that the target variables are solely

FIG 4. Mean ROC curve for both the MR imaging and the CT prospective test set.
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dependent on the assessment of the neurointerventionalist per-
forming the procedure. The experiences of different neurointer-
ventionalists during the study period varied and could potentially
be a confounding factor. Moreover, there is substantial discourse
surrounding the use of mTICI scores and correlations with
outcomes, undoubtedly introducing variability in the experts’
assessments, depending on their training and expertise. This
cohort was assessed using the mTICI score. This evaluation is
inherently subjective; while there is a high degree of reliability
for patients who scored mTICI 2c and 3, there is high inter-
reader variability for patients who scored mTICI 2b.44 This
finding is likely due to the extensive range of patients within a
score class, because patients with 2b can experience anywhere
from 50% to 89% recanalization. This scoring metric has
undergone several augmentations45 since its proposal in 2005,
because of both this variability and poor correlation with func-
tional outcomes.46

Finally, this is a proof-of-concept study from 1 institution,
and the architecture has many parameters. Although effort has
been made to improve the generalizability of the model by self-
supervised learning, the sample size directly related to FPE is still
relatively small for DL training. Registration-based preprocessing,
though proved to be effective in reducing the heterogeneity of
data in a cohort and letting the model focus on the inside of the
brain, inevitably created population bias. Furthermore, for imag-
ing modeling, cases with bad-quality imaging were excluded,
inevitably introducing bias in the population. In future studies,
imaging-enhancement algorithms should be applied to minimize
the cases excluded due to quality issues. The improvement of
the clot retrieval techniques during this study period could be
a confounding factor that should be further investigated.
Different techniques, such as stent retriever versus contact
aspiration versus combined approach, could be another con-
founding factor. Due to the limitation of the DL model that
requires a large data set, modeling against multiple confound-
ing factors requires a larger data set to provide statistically reli-
able results. External validation is required to determine the
applicability of these models to other hospitals and institu-
tions. Other future directions include investigating the features
in advanced imaging such as CT perfusion or MR perfusion
and vessel imaging.

CONCLUSIONS
We have presented a fully automatic, end-to-end DL framework
to predict FPE following EVT by using pretreatment imaging. By
analyzing MR imaging or CT scans of patients with AIS before
treatment, our volume-based DL network can accurately deter-
mine whether a patient will achieve successful recanalization in
one attempt. These results suggest that baseline imaging, whether
MR imaging or CT, contains valuable information regarding the
FPE. Notably, our method outperforms existing approaches and
does not require manual thrombus segmentation, highlighting
the power of DL algorithms in informing treatment strategies for
patients with AIS.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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