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MR Imaging Findings in Anti-Leucine-Rich Glioma
Inactivated Protein 1 Encephalitis: A Systematic Review and

Meta-analysis
Francisco C. Almeida, Ana I. Pereira, Catarina Mendes-Pinto, Joana Lopes, João Moura, José Maria Sousa, Gonçalo Videira,

Raquel Samões, and Tiago Gil Oliveira

ABSTRACT

BACKGROUND: Antibodies against leucine-rich glioma inactivated protein 1 (LGI1) constitute a common form of autoimmune en-
cephalitis. On MR imaging, it may show T2 FLAIR hyperintensities of the medial temporal lobe (T2 FLAIR-MTL), involve the basal
ganglia, or be unremarkable.

PURPOSE: We performed a systematic review and meta-analysis to obtain prevalence estimates of abnormal findings on MR imaging
in anti-LGI1 encephalitis. A human brain map of the LGI1 microarray gene expression was derived from the Allen Human Brain Atlas.

DATA SOURCES: PubMed and Web of Science were searched with the terms “LGI1” and “encephalitis” from inception to April 7, 2022.

STUDY SELECTION: Thirty-one research publications, encompassing case series and retrospective cohort and case-control studies,
with .10 patients with anti-LGI1 encephalitis and MR imaging data were included.

DATA ANALYSIS: Pooled prevalence estimates were calculated using Freeman-Tukey double-arcsine transformation. Meta-analysis
used DerSimonian and Laird random effects models.

DATA SYNTHESIS: Of 1318 patients in 30 studies, T2 FLAIR-MTL hyperintensities were present in 54% (95% CI, 0.48–0.60; I2 ¼ 76%).
Of 394 patients in 13 studies, 27% showed bilateral (95% CI, 0.19–0.36; I2 ¼ 71%) and 24% unilateral T2 FLAIR-MTL abnormalities (95%
CI, 0.17–0.32; I2 ¼ 61%). Of 612 patients in 15 studies, basal ganglia abnormalities were present in 10% (95% CI, 0.06–0.15; I2 ¼ 67%).
LGI1 expression was highest in the amygdala, hippocampus, and caudate nucleus.

LIMITATIONS: Only part of the spectrum of MR imaging abnormalities in anti-LGI1 encephalitis could be included in a meta-analy-
sis. MR imaging findings were not the main outcomes in most studies, limiting available information. I2 values ranged from 62% to
76%, representing moderate-to-large heterogeneity.

CONCLUSIONS: T2 FLAIR-MTL hyperintensities were present in around one-half of patients with anti-LGI1. The prevalence of uni-
lateral and bilateral presentations was similar, suggesting unilaterality should raise the suspicion of this disease in the appropriate
clinical context. Around 10% of patients showed basal ganglia abnormalities, indicating that special attention should be given to
this region. LGI1 regional expression coincided with the most frequently reported abnormal findings on MR imaging. Regional speci-
ficity might be partially determined by expression levels of the target protein.

ABBREVIATIONS: ADAM ¼ a disintegrin and metalloprotease domain; AIE ¼ autoimmune encephalitis; AMPA ¼ a-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid; BG ¼ basal ganglia; CASPR2 ¼ contactin-associated protein-like 2; EEG ¼ electroencephalogram; FBDS ¼ faciobrachial dystonic seizures; LGI1 ¼
leucine-rich glioma inactivated protein 1; MTL ¼ medial temporal lobe

Antibodies against leucine-rich glioma inactivated protein 1
(LGI1) characterize the second most common form of

autoimmune encephalitis (AIE).1 These antibodies were first
described in 2010 and were previously clustered within voltage-
gated potassium channel antibodies, which included contactin-
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protein is widely expressed in the CNS and particularly in neu-
rons, where it forms a trans-synaptic protein complex that regu-
lates ion channel and synaptic activity.3,4

This disease typically presents with subacute cognitive
impairment and epilepsy, but faciobrachial dystonic seizures
(FBDS) are the most distinctive clinical feature. Although pre-
senting across a wide variety of ages, it is thought to be most
common in those older than 60 years of age.3 The clinical pre-
sentation thus leads to a vast differential diagnosis, in which
clinical suspicion plays an important role.5,6 MR imaging is rele-
vant in supporting the diagnosis of AIE and excluding alterna-
tive diagnoses. Characteristically, it involves medial temporal lobe
(MTL) hyperintensities on T2 FLAIR sequences, which represent
a criterion for a definite diagnosis of AIE when observed bilater-
ally (Fig 1A).7,8 This laterality issue is because in the absence of
antibody confirmation, unilateral hippocampal/MTL abnormal-
ities have a wider radiologic differential diagnosis.7,9 The main
diagnostic considerations in this imaging presentation include
seizure-related MR imaging abnormalities;10 viral encephalitis,
particularly herpes simplex virus 1 and 2 and human herpesvi-
rus 6;11 neurosyphilis;12 Whipple disease,13 temporal lobe gli-
oma,14 and acute posterior circulation ischemic infarction.15

However, not all cases of anti-LGI1 encephalitis present with
MTL abnormalities at the time of MR imaging. MR imaging can
also be unremarkable or show basal ganglia (BG) involvement
(Fig 1B).16 Moreover, given the relatively recent description of
the wide range of antibodies causing AIE, MR imaging findings
are not yet thoroughly described for each antibody group.8,17 It
is, therefore, important to provide prevalence estimates of MR
imaging abnormalities in the literature for each type of anti-
body-mediated encephalitis. Indeed, given the wide clinical and
brain imaging differential diagnoses involved in these cases,
detailing the prevalence of specific patterns of abnormal find-
ings on MR imaging for each encephalitis might aid the radiol-
ogist in providing a narrower differential while waiting for
laboratory results.

Furthermore, abnormalities on MR
imaging are likely reflective of patho-
physiologic mechanisms. Characterizing
the topography of the most frequently
reported abnormalities may shed light
on the underlying causative pathology.
Although most studies have focused on
LGI1 expression in rodent models
derived from immunohistochemistry or
patient-derived antibodies,3,4 a human
brain map of the LGI1 gene might
reveal why selective brain areas are
impacted in this disease.

In this study, we performed a sys-
tematic review and meta-analysis of
the proportion of MTL and BG MR
imaging signal abnormalities in LGI1
encephalitis. Moreover, we used the
publicly accessible Allen Human Brain
Atlas (https://human.brain-map.org)
to derive a LGI1 gene expression map

of the human brain, which can provide potential hints as to why
LGI1 encephalitis preferentially affects certain brain regions.

MATERIALS AND METHODS
This systematic review and meta-analysis was conducted in ac-
cordance with the PRISMA guidelines.18

Search Strategy and Selection Criteria
We searched PubMed and the Web of Science from inception to
April 7, 2022, using the search terms “LGI1” and “encephalitis.”
PubMed had 511 publications and the Web of Science had 646
publications. Bibliographic sources from selected articles were
also used to assess research publications for eligibility. Original
research articles, including case series, retrospective or prospec-
tive cohort studies, and case-control studies were considered for
selection. Case reports, systematic reviews, meta-analyses, review
articles, and other nonoriginal research publications were
excluded during screening. Only studies conducted with human
participants and published in English were considered. The num-
ber of each article type found during screening is provided in the
Online Supplemental Data.

Inclusion and Exclusion Criteria
Research publications were eligible if they included a clinical pop-
ulation of LGI1 encephalitis and reported .10 cases, when
revealed in the abstract. The clinical definition of LGI1 encephali-
tis was then confirmed on inspection of the publications to com-
ply with definite autoimmune encephalitis, requiring detection of
anti-LGI1 antibodies on CSF and/or serum.7 Exclusion criteria
after retrieval were the following: the study did not present MR
imaging data, did not clearly specify the MR imaging abnormal-
ities/brain location/MR imaging sequence used, did not use T2-
FLAIR sequences or used other types of MR imaging data not
widely used in clinical practice, had #10 patients with LGI1
encephalitis, did not separate LGI1 from CASPR2 encephalitis
or from other autoantibodies; and the data were previously

FIG 1. Illustrative examples of signal abnormalities in 2 cases of confirmed anti-LGI1 encephalitis,
one with medial temporal lobe T2-FLAIR hyperintensities (A) and another with right BG T2-FLAIR
hyperintensity (B).
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published in other research publications, there was no accessi-
bility of the full text, or the article had low manuscript quality.

Data Extraction
Two authors independently screened titles and abstracts and
assessed the full text for eligibility (F.C.A., A.I.P). Discrepancies
were solved after discussion between the 2 authors. Clinical data
(J.L., J.M.), electroencephalogram (EEG) data (G.V., F.C.A.), and
neuroimaging data (F.C.A., C.M.-P.) were extracted independ-
ently by 2 authors. When necessary, discrepancies were solved by
a third party (clinical: R.S.; neuroimaging: T.G.O.). The quality of
the studies was assessed independently by 2 authors (F.C.A. and
A.I.P.) on the basis of a previously published tool for prevalence
studies.19 This tool consists of 10 items consisting of 4 external
validity and 6 internal validity items, the sum score of which pro-
vides a summary assessment of the risk of bias.

Data Analysis
Pooled prevalence estimates of neuroimaging findings were calcu-
lated using Freeman-Tukey double-arcsine transformation. Meta-
analysis was conducted using DerSimonian and Laird random-
effects models. Heterogeneity was calculated using I2 statistics,
and the Cochran Q test was used to assess statistical significance.
The metaprop package in R (https://www.rdocumentation.org/
packages/meta/versions/6.2-1/topics/metaprop) was used for this
analysis.

Metaregression analysis was conducted to assess modifiers of
prevalence. Clinical symptoms and CSF antibody positivity were
used in univariate models to assess the effects on the prevalence of
both T2 MTL hyperintensities and BG signal abnormalities (T2
hyperintensities and T1 hypo- and hyperintensities). Studies with
missing data on modifier variables were excluded. R2 was used to
assess the proportion of the heterogeneity explained by the modi-
fier, the P value of the Quantitative Methods statistics was used
for statistical significance, and I2, for residual heterogeneity left
unexplained. The Meta package in R was used for this analysis
(https://cran.r-project.org/web/packages/meta/index.html).

Publication bias was assessed with visual inspection of funnel
plots and assessed for statistical significance using the Egger
weighted linear regression test. The meta package in R was used
for this analysis.

LGI1 Gene Brain-Expression Map
Regional microarray expression data were obtained from 6 post-
mortem brains (1 woman; age range, 24.0–57.0 years; mean age,
42.50 [SD, 13.38] years) provided by the Allen Human Brain
Atlas.20 Data were processed with the abagen toolbox (version
0.1.3; https://github.com/rmarkello/abagen) using an 83-region
volumetric atlas in Montreal Neurological Institute space. First,
microarray probes were reannotated using data provided by
Arnatkeviciute et al.21 Probes not matched to a valid Entrez ID
were discarded. Next, probes were filtered on the basis of their
expression intensity relative to background noise22 so that probes
with intensity less than the background in $50% of samples
across donors were discarded, yielding 31,569 probes. When mul-
tiple probes indexed the expression of the same gene, we selected
and used the probe with the most consistent pattern of regional

variation across donors (ie, differential stability23). Here, regions
correspond to the structural designations provided in the on-
tology from the Allen Human Brain Atlas. The Montreal
Neurological Institute coordinates of tissue samples were
updated to those generated via nonlinear registration using the
Advanced Normalization Tools (ANTs; http://stnava.github.
io/ANTs/). Samples were assigned to brain regions in the pro-
vided atlas if their Montreal Neurological Institute coordinates
were within 2mm of a given parcel.

To reduce the potential for misassignment, sample-to-region
matching was constrained by hemisphere and gross structural
divisions (ie, cortex, subcortex/brainstem, and cerebellum, such
that for example, a sample in the left cortex could only be
assigned to an atlas parcel in the left cortex21). All tissue samples
not assigned to a brain region in the provided atlas were dis-
carded. Intersubject variation was addressed by normalizing tis-
sue sample expression values across genes using a robust sigmoid
function.24 Normalized expression values were then rescaled to
the unit interval. Gene expression values were then normalized
across tissue samples using an identical procedure. Samples
assigned to the same brain region were averaged separately for
each donor and then across donors, yielding a regional expres-
sion matrix with 83 rows corresponding to brain regions and
15,633 columns corresponding to the retained genes. Normalized
gene expression values were then plotted in a brain map using
the ggseg R package (https://cran.r-project.org/web/packages/
ggseg/index.html)25 with a Desikan-Killiany atlas.

Data Availability
Data used in this meta-analysis will be provided at request.

RESULTS
Study and Clinical Characteristics
In this study, we included 31 research publications (Fig 2).5,16,26-54

Two studies reported partially on the same patients but focused
on different neuroimaging findings.16,50 For summary statistics
regarding each of the clinical and neuroimaging findings, we
excluded the publication with fewer patients. In total, the sample
was composed of 1409 patients with anti-LGI1 encephalitis. The
mean quality-assessment score of the research publications was 3,
indicating overall good quality (Online Supplemental Data).

Most of the studies were retrospective and based on clinical
cohorts, with some studies drawing their sample from EEG or
PET cohorts. Case definition was mostly based on criteria for def-
inite AIE,7 with 3 studies basing their definition on FBDS and
LGI1 antibody positivity.16,43,49

Table 1 reports summary statistics for the whole study popu-
lation. The mean age was 61.4 years, and 64% of patients were
men. Seventy-eight percent of the patients presented with cogni-
tive impairment (1095 of 1409). For FBDS, 27 studies presented
data, totaling 1252 patients, among whom 639 (51%) had FBDS
at any point in time. Twenty-eight studies reported seizures other
than FBDS, totaling 1368 patients, of whom 989 (72%) were
affected. Twenty-four studies, encompassing 1146 patients
included data on hyponatremia, among whom 512 (45%) patients
presented with low serum sodium. Consciousness impairment
was evaluated in 12 studies with 574 patients and was present in
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180 (31%). Autonomic dysfunction was present in 155 patients of
812 (19%) in 15 studies. Sleep disorder was present in 417 patients
of 1166 (36%) in the 21 studies that reported data on this symp-
tom. Of 1203 patients, 612 in 25 studies presented with psychiatric
symptoms (51%). Hallucinations were present in 80 of 493 patients
(16%) in 9 studies. Personality changes and psychosis (unspecified)
were among other symptoms reported in the included literature.
In 14 studies with 713 patients, CSF antibody positivity was found
in 457 (64%). In 19 studies with data on EEG, 508 of 698 patients
(73%) presented with abnormal findings.

Neuroimaging Findings
Of the whole sample of 1409 patients, 1318 had reported data on
MR imaging. Thirty studies reported data on T2 or T2 FLAIR-
MTL hyperintensities. Meta-analysis of the proportion of patients
with T2 FLAIR-MTL revealed that this finding was present in
54% of patients (Fig 3; 95% CI, 0.48–0.60; I2 ¼ 76%). Thirteen

studies reported T2 FLAIR-MTL later-
ality with a total of 394 patients. Meta-
analysis revealed 27% with bilateral
T2-MTL findings (Fig 4A; 95% CI,
0.19–0.36; I2 ¼ 71%) and 24% with
unilateral abnormalities (Fig 4B; 95%
CI, 0.17–0.32; I2 ¼ 61%) of the whole
population (ie, with and without T2-
MTL abnormalities).

Fifteen studies encompassing 612
patients reported data on BG MR imag-
ing signal abnormalities, which included
T2 hyperintensities and T1 hypo- and
hyperintensities. Altogether, meta-analy-
sis of proportions revealed these signal
abnormalities to be present in 10% of
patients (Fig 5; 95% CI, 0.06–0.15; I2 ¼
67%).

Inspection of funnel plots and linear
regression testing for funnel asymmetry
did not reveal a significant potential for
publication bias (Online Supplemental
Data).

Although not reported frequently
enough to undergo meta-analysis, stud-
ies showed anti-LGI1 encephalitis with
other regional and MR abnormal-
ities.26-38,40,41,43,45-48,51,54 Amygdala,
insula, and other neocortical T2-FLAIR
hyperintensities were found in around
10%, 8%, and 18% of patients, respec-
tively (Table 2). Two patients presented
with cortical diffusion restriction (2%).
Leptomeningeal gadolinium enhance-
ment was described in 3 patients
(5%). MTL swelling was reported in
18 patients (15%), and atrophy, in 55
patients (16%), whereas gadolinium
enhancement was found in 5 patients
(3%). In the studies with available

longitudinal follow-up, 46% of patients of 154 in 6 studies
developed atrophy or mesial temporal sclerosis. BG atrophy
was reported in 3 patients (3%). Neocortical and cerebellum
gadolinium enhancement was described in 1 patient each in 1
study.27 Diffusion restriction in the basal ganglia was reported
in 1 study.16

Given the high heterogeneity found in the meta-analysis of
these neuroimaging findings, we performed meta-regression
analysis for T2-MTL and BG signal abnormalities with clinical
predictors (Online Supplemental Data). We did not find any stat-
istically significant modifiers of the proportion of MR imaging
signal abnormalities.

LGI1 Gene Expression Map of the Human Brain
To assess whether the LGI1 gene is differentially expressed in the
selective regions affected on MR imaging, we next used publicly
available data from the Allen Human Brain Atlas to create a

Table 1: Summary statistics for the whole study population
Studies
(No.)

Total Subjects
(No.)

Summary
Statistic

Mean age (yr) 30 1409 61.4
Male sex (No.) (%) 30 1409 895 (64%)
Cognitive impairment (No.) (%) 30 1409 1095 (78%)
FBDS (No.) (%) 27 1252 639 (51%)
Other seizures (No.) (%) 28 1368 989 (72%)
Psychiatric symptoms (No.) (%) 25 1203 612 (51%)
Hallucinations (No.) (%) 9 493 80 (16%)
Hyponatremia (No.) (%) 24 1146 512 (45%)
Sleep disorder (No.) (%) 21 1166 417 (36%)
Consciousness impairment (No.) (%) 12 574 180 (31%)
Autonomic dysfunction (No.) (%) 15 812 155 (19%)
Abnormal EEG findings (No.) (%) 19 698 508 (73%)
CSF antibody positivity (No.) (%) 14 713 457 (64%)

FIG 2. Study selection flow chart.18 PubMed and Web of Science were searched for the terms
“LGI1” and “encephalitis.” Of 665 records screened, 133 were assessed for eligibility, resulting in 31
included publications.
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gene-expression brain map. We found that LGI1 is expressed
widely across the cortex but is particularly predominant in sub-
cortical regions, namely, the amygdala, hippocampus, and cau-
date nucleus (Fig 6A,-B; and Online Supplemental Data).

DISCUSSION
In this systematic review and meta-analysis, we focused on neu-
roimaging findings of anti-LGI1 encephalitis. We included 31
studies and 1409 patients. Our studied population had a mean
age of 61.4 years and a mild predominance of male patients
(64%). The most frequently reported symptoms were cognitive
impairment, seizures other than FBDS, followed by FBDS and
psychiatric symptoms. These clinical and demographic character-
istics are in agreement with those in previous studies.55

We found that 54% of patients presented with T2-FLAIR
hyperintensities of the MTL (Fig 3). This finding reinforces the
idea that a negative MR imaging in anti-LGI1 encephalitis is fre-
quent. In a subgroup analysis, unilateral and bilateral presenta-
tions were similar, with a prevalence of 24% and 27%, respectively
(Fig 4A, -B). This finding suggests that in the appropriate clinical
context, the presence of unilateral MTL abnormalities on MR
imaging should raise the possibility of AIE, namely anti-LGI1
encephalitis, and may aid in therapeutic decisions while awaiting
antibody confirmation. A common imaging differential diagnosis
for T2 FLAIR-MTL hyperintensities frequently associated with
volume expansion includes other autoimmune/paraneoplastic

encephalitis cases, among which the
neuronal-surface antigen group includes
NMDAR,56 CASPR2,57,58 GABA-B,59,60

Neurexin-3a,61 AMPAR,62,63 mGluR5,64

GlyR,65,66 AK5,67 and DPPX6,68 and in
the intracellular antigen group includes
GAD65,69 Hu,8 amphiphysin,70 and
Ma2.71 Viral encephalitis,11 neurosyphi-
lis,12 Whipple disease,13 glioma,14 ictal
changes,9 and posterior circulation
stroke15 are among other important
diagnostic considerations. Depending
on the time of imaging, anti-LGI1 en-
cephalitis might already have presented
with hippocampal atrophy, in which
case neurodegenerative diseases, includ-
ing Alzheimer disease,72,73 frontotempo-
ral dementia,74 and limbic-predominant
age-related TDP-43 encephalopathy,75

as well as medial temporal sclerosis of
other causes, are to be included in the
differential diagnosis. Other causes to
consider, depending on clinical pre-
sentation and other associated signal
changes, include metabolic and mito-
chondrial disorders.76

Notably, BG signal abnormalities,
encompassing both T2 and T1 hyper-
intensities and T1 hypointensities,
were reported in around 10% of

patients (Fig 5). The available number of studies providing in-
formation regarding the BG was substantially smaller than that
for the MTL. However, these changes can be the sole signal
alteration observed on MR imaging and might be unilateral16

(Fig 1B), suggesting that this brain region deserves detailed
attention when suspecting AIE. In fact, LGI1 expression is high
in the BG in humans (Fig 6B), and [18F] fluorodeoxyglucose
PET studies have repeatedly shown metabolic alterations in
these regions.27,39,41 Most important, these lesions can present
with diffusion restriction,16 the cause of which is unknown.
Ischemic infarction is thus an important differential diagnosis,
and attention to clinical presentation is crucial.

The nature of T1 hyperintensities of the BG is also not yet
understood. Underlying causes of T1 relaxation time shortening
included blood, fat, high paramagnetic substances such as iron,
and high protein content. In anti-LGI1 encephalitis, BG T1-
hyperintensities are sometimes preceded by T2-hyperintensities
and have been shown to remain for a longer time than the latter
before resolving.16 A putative explanation might be the accumu-
lation of proteins at the site of antibody engagement, which per-
sists after initial inflammatory changes. A parallel explanation
has been drawn for T1 pallidal hyperintensities in Creutzfeldt-
Jakob disease, where accumulation of prion protein, confirmed at
neuropathology, was correlated with this MR imaging signal ab-
normality.77 Signal alterations in the BG have a vast differential
diagnosis, which includes toxic and metabolic disorders,78 among
which hepatic failure and Wilson disease are important

FIG 3. Forest plot showing the prevalence of T2 FLAIR-MTL hyperintensities. Of 1318 patients in
30 studies, 54% presented with this signal abnormality.
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considerations, Creutzfledt-Jakob disease,79 other autoimmune
encephalitis (eg, CV2/collapsin response mediated protein 5),80

viral encephalitis,11 and arterial and venous infarction, among
others.81

Other brain regions were found to
be altered in LGI1 encephalitis,
namely, the amygdala, insula, cerebel-
lum, and different regions of the neo-
cortex, with signal abnormalities
across T1 with gadolinium enhance-
ment, T2 and diffusion MR imaging,
as well as leptomeningeal gadolinium
enhancement. This finding suggests
that LGI1 AIE can present with a
widespread variety of signal abnor-
malities across multiple brain regions
and multiple MR imaging sequences.
Moreover, the under-reporting of
altered signal beyond the MTL indi-
cates that there is a need for further
research in systematizing MR imaging
signal abnormalities in LGI1 encepha-
litis across the whole brain.

In the studies that included a fol-
low-up period, 46% of patients went on
to develop hippocampal atrophy or
mesial temporal sclerosis (Table 2).
These results support the concept that
anti-LGI1 encephalitis might induce a
neurodegenerative process in a large
proportion of patients, which might be
associated with remaining cognitive
deficits.82 Detection of these imaging
findings by the radiologist in serial
scans provides useful information for
the clinician.

To assess qualitatively whether MR
imaging abnormalities tend to occur at
brain regions most enriched for LGI1
gene expression, we generated a brain
map using the publicly available Allen
Human Brain Atlas. Regions with the
highest expression were the amygdala,
hippocampus, and caudate (Fig 6), sug-
gesting that at least partially, the selec-
tive appearance of abnormalities on
MR imaging might be due to the rela-
tive expression of LGI1. The LGI1 pro-
tein is expressed at the synapse, where
binding presynaptic a disintegrin and
metalloprotease domain 23 (ADAM23)
and postsynaptic ADAM22 forms a
trans-synaptic tether that couples pre-
synaptic voltage-gated potassium chan-
nels and postsynaptic AMPA (a-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic
acid) receptors, thereby regulating syn-

aptic activity.3 Evidence from animal models has shown that
patient-derived anti-LGI1 antibodies induce important impair-
ment of synaptic plasticity,83,84 neuronal excitability85 and memory
in rodents.83,84 This evidence supports the pathogenicity of the

FIG 4. Forest plots showing the prevalence of bilateral T2 FLAIR-MTL hyperintensities (27% of
394 patients in 13 studies) (A) and unilateral MTL T2 FLAIR-MTL hyperintensities (24% of 394
patients in 13 studies) (B).

FIG 5. Forest plot showing the prevalence of BG signal abnormalities (T2-FLAIR hyperintensities
and T1 hypo- and hyperintensities with 10% of 612 patients having these abnormalities).

6 Almeida � 2024 www.ajnr.org



antibody and the hypothesis that higher expression of the target
antigen might be a contributing factor to explain brain regional
susceptibility in these diseases. The accessibility of the anti-
bodies to these brain regions is also a putative contributing

factor. Many patients presenting without
MR imaging signal abnormalities suggests
that only in certain cases is the underlying
pathophysiologic mechanism capable of
generating a detectable change on MR
imaging. The reasons are still to be
explored. PET imaging approaches might
unravel promising biologic markers of
disease activity in the acute phase.86

While these results provide the
first estimate of neuroimaging signal
abnormalities reported in the litera-
ture for LGI1 encephalitis, this study
has important limitations. Even though
MR imaging signal abnormality is likely
to be present at the time of symptom
onset, we were unable to report any
analysis on this parameter. Moreover,
neuroimaging findings were not the
main outcome in most studies. While
we did not find any clinical modifiers
on the prevalence of these neuroimag-
ing findings, not all studies provided
data for all subjects who underwent
MR imaging. More research is needed
to establish whether signal abnormal-
ities onMR imaging correlate with clin-
ical presentation or other auxiliary
tests. Finally, the specific MR imaging
sequence parameters and magnetic
field strength of the scanner were not
taken into account in the analyses.

Most important, a considerable num-
ber of studies were excluded due to
incomplete reporting on MR imaging
data (Fig 2). These results lead us to
highlight the need to include detailed
MR imaging descriptions in a disease
that can present with a variety of signal
abnormalities across various MR imag-
ing sequences.

CONCLUSIONS
This study presents a first approach to
estimate the main findings of anti-
LGI1 AIE on MR imaging and under-
lines the importance of considering
this diagnosis in the context of unilat-
eral signal abnormalities of the MTL,
while also calling for detailed attention
to the BG with suspicion of this dis-
ease. Most interesting, these regions

express the LGI1 gene at high levels, thus lending support to the
hypothesis that the regions affected by autoimmunity might be
at least partially determined by the expression levels of the tar-
get protein.

Table 2: Other MR imaging abnormalities associated with anti-LGI1 encephalitis

Studies (No.) Total Subjects (No.) Proportion
Amygdala T2 hyperintensity 3 94 9 (10%)
Insula T2 hyperintensity 5 153 12 (8%)
Cortical T2 FLAIR hyperintensitya 4 79 14 (18%)
Cortical with diffusion restrictiona 3 85 2 (2%)
Leptomeningeal gadolinium
enhancement

2 61 3 (5%)

MTL swelling 4 117 18 (15%)
MTL atrophyb 7 353 55 (16%)
MTL with gadolinium enhancement 2 151 5 (3%)
MTL atrophy or mesial temporal
sclerosis on follow-up

6 154 71 (46%)

BG atrophy 2 102 3 (3%)
a Excluding MTL and insula.
b The time of the MR imaging relative to symptom initiation was not available.

FIG 6. LGI1 gene expression in the cortical (A) and subcortical (B) regions derived from the Allen
Human Brain Atlas. In this figure, LGI1 gene expression is shown to be higher in the MTLs and BG,
concordant with the main MR imaging signal abnormality findings, suggesting that regional brain
susceptibility in anti-LGI1 encephalitis might be mediated by the relative levels of brain regional
expression of this gene.
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