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ORIGINAL RESEARCH
NEUROIMAGING PHYSICS/FUNCTIONAL NEUROIMAGING/CT AND MRI TECHNOLOGY

Disconnection-Based Prediction of Poststroke Dysphagia
Kyung Jae Yoon, Chul-Hyun Park, Myung-Ho Rho, and Minchul Kim

ABSTRACT

BACKGROUND AND PURPOSE: Dysphagia is a common deficit after a stroke and is associated with serious complications. It is not
yet fully clear which brain regions are directly related to swallowing. Previous lesion symptom mapping studies may have over-
looked structural disconnections that could be responsible for poststroke dysphagia. Here, we aimed to predict and explain the
relationship between poststroke dysphagia and the topologic distribution of structural disconnection via a multivariate predictive
framework.

MATERIALS AND METHODS: We enrolled first-ever ischemic stroke patients classified as full per-oral nutrition (71 patients) and
nonoral nutrition necessary (43 patients). After propensity score matching, 43 patients for each group were enrolled (full per-oral
nutrition group with 17 women, 68 6 15 years; nonoral nutrition necessary group with 13 women, 75 6 11 years). The structural dis-
connectome was estimated by using the lesion segmented from acute phase diffusion-weighted images. The prediction of post-
stroke dysphagia by using the structural disconnectome and demographics was performed in a leave-one-out manner.

RESULTS: Using both direct and indirect disconnection matrices of the motor network, the disconnectome-based prediction model
could predict poststroke dysphagia above the level of chance (accuracy ¼ 68.6%, permutation P ¼ .001). When combined with de-
mographic data, the classification accuracy reached 72.1%. The edges connecting the right insula and left motor strip were the
most informative in prediction.

CONCLUSIONS: Poststroke dysphagia could be predicted by using the structural disconnectome derived from acute phase diffu-
sion-weighted images. Specifically, the direct and indirect disconnection within the motor network was the most informative in
predicting poststroke dysphagia.

ABBREVIATIONS: CPM ¼ connectome-based predictive modeling; DOSS ¼ Dysphagia Outcome and Severity Scale; FA ¼ fractional anisotropy; HCP ¼
Human Connectome Project; LOOCV ¼ leave-one subject-out cross-validation; MNI ¼ Montreal Neurological Institute; SSPL ¼ shortest structural path length;
SVM ¼ support vector machine; VFSS ¼ videofluoroscopic swallowing study

Oropharyngeal dysphagia is a frequent symptom in stroke
patients. More than 50% of patients with stroke have had swal-

lowing difficulty.1 Poststroke dysphagia is associated with complica-
tions, such as malnutrition, dehydration, or aspiration pneumonia.
In particular, aspiration pneumonia can cause longer hospitalization,
higher disability, or even death,2 making early diagnosis of post-
stroke dysphagia critical to prevent these worse outcomes.

Poststroke dysphagia is diagnosed with various instrumental
methods, such as videofluoroscopic swallowing study (VFSS) or
fiberoptic endoscopic evaluation of swallowing.3 However, these
tests can be performed only for patients who have sitting balance
or good cooperation, which makes it difficult to effect early detec-
tion of poststroke dysphagia. The bedside swallowing test can be
applied for those who cannot comply with VFSS for fiberoptic
endoscopic evaluation of swallowing but still have the risk of
aspiration pneumonia. Very early detection of poststroke dyspha-
gia to avoid complications is essential and beneficial for the man-
agement of acute stroke since dysphagia improves significantly
during the early days; after 2 weeks, most patients swallow safely.3

However, recent guidelines for dysphagia screening strategies for
acute ischemic stroke have not yet provided reliable evidence,4

with one recent study reporting several patient characteristics
predictive of poststroke dysphagia.5 In addition, the current body
of evidence does not allow an exact relationship between acute
focal brain lesions and related poststroke dysphagia, with some
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recent studies suggesting that white matter tract rather than focal
cortical lesion involvement is crucial.6,7

Previous voxel-based lesion symptom mapping studies
reported poststroke dysphagia to be caused by distributed
lesions in the swallowing network comprising the primary sen-
sorimotor cortex, frontal operculum, insula, and associated
white matter tracts.8,9 Recent data indicate that white matter
disconnection might be a better predictor of brain dysfunction
and recovery than the location of the lesion itself.10 Thus, we
hypothesized that, rather than a focal lesion, a group of brain
areas that is interconnected by the structural brain network is
conjointly responsible for poststroke dysphagia. To investigate
this possibility, we adapted a multivariate connectome-based
symptom mapping approach combined with indirect estimation
of structural disconnection to detect brain networks supporting
swallowing.11,12 Multivariate predictive modeling aims to de-
velop brain models that are tightly coupled with target outcomes
by using pattern recognition techniques (or “machine learn-
ing”).13 In contrast to the mass-univariate approach, which
focuses on permitting the inference that disconnection C is re-
sponsible, conditional on symptom S (ie, poststroke dysphagia),
and assesses the probability P(CjS), a new trend of predictive
modeling has recently emerged to address the reverse inference
that symptom S must have occurred given disconnection C
being related to P(SjC).13 Further, the indirect estimation of
structural disconnection is a recently developed method that
combines a patient’s structural lesion information and norma-
tive connectome data to estimate lesion-induced structural dis-
connection. This method involves embedding the patient’s
lesion mask into normative connectome data obtained from
healthy individuals to model the expected impact of a lesion on
the typical white matter connectome, namely, the disconnec-
tome (ie, the disruption of the network architecture of the brain)
after a brain lesion.14

In this study, we aimed to achieve 2 objectives: 1) to develop

an early prediction model of dysphagia in patients with ische-

mic stroke with clinically plausible acute phase diffusion-

weighted brain MRI; and 2) to disclose the pattern of network

disconnections responsible for post-

stroke dysphagia, thereby deepening our

understanding of pathophysiology.

MATERIALS AND METHODS
Patient Selection
We retrospectively reviewed the medical
records of patients with ischemic stroke
who underwent inpatient rehabilitation
between August 2017 and May 2021.
The inclusion criteria were 1) first-ever
stroke confirmed by DWI within 7 days
of symptom onset (because apparent
diffusion coefficient maps may depict
persistent darkening for �7–10days)15

and 2) Dysphagia Outcome and Severity
Scale (DOSS) evaluation by using VFSS
performed within 1 month after stroke

onset. The exclusion criteria were as follows: 1) prior imaging
evidence of stroke and 2) other neurologic disorders causing
oropharyngeal dysphagia, such as parkinsonism and dementia.
The Institutional Review Board of Kangbuk Samsung Hospital
approved the study protocols, which were in accordance with
the Declaration of Helsinki, and informed consent was waived
for retrospective study based on medical records. Among 180
patients with stroke with available DOSS scores, we enrolled
those that received full per-oral nutrition (71 patients with DOSS
scores 6 and 7) and others that received nonoral nutrition (43
patients with DOSS scores 1 and 2), based on DOSS scores.16

Because diabetes mellitus and hypertension were reported to
be associated with dysphagia in ischemic patients,17 we used
propensity score matching analysis to minimize the effects of
these confounding factors.18 Propensity scores were matched by
selecting the cases in the 2 groups, and the variables listed above
were used as matching parameters by using the MatchIt R pack-
age (R Core Team, R Foundation for Statistical Computing).19,20

Figure 1 shows a flowchart of the participants included.

Image Acquisition
MRI data were acquired by using 1.5T and 3T scanners from
Philips Healthcare (Intera, Ingenia, and Achieva), each with a
standard head coil. The acute strokeMRI protocol for each patient
included 6-direction DWI and FLAIR sequences. Fractional ani-
sotropy (FA) and ADC maps were automatically created from
DWI scans by using built-in software. DWI was acquired with a
single-shot spin–echo echo-planar imaging sequence in alignment
with the horizontal plane with the following parameters: diffu-
sion-sensitizing gradients applied along 6 noncolinear directions
with a b-value of 1000 seconds/mm2, together with acquisition
without diffusion weighting (b ¼ 0 s/mm2); section thickness, 4
mm with no gap; repetition time, 5300ms; echo time, 74ms;
number of averages, 2; flip angle, 90°; matrix size, 128� 128.

Lesion Segmentation and Normalization
A schematic diagram of the procedure for lesion segmentation
and normalization is shown in Figure 2A. The infarct cores were
automatically segmented by using ADC maps and DWI by

FIG 1. Flow chart of participants with poststroke dysphagia recruited for disconnectome analysis.
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applying normalized absolute threshold-
ing21 and minimally corrected by a
board-certified neuroradiologist (M.K.,
code available at https://github.com/
HyunnaLee/StrokeOnset/tree/master/1_
InfarctSegmentation). We defined the
infarct core as a lesion because the infarct
core is considered irreversible tissue
damage that cannot be recovered with
treatment.22 Three patients had short-
term follow-up imaging due to hyper-
acute infarction, and we used the image
with a larger extent of infarct core.

After lesion segmentation, we per-
formed FA map normalization to the
Montreal Neurological Institute (MNI)
template brain image by using the tract-
based spatial statistics commands
(‘tbss_1_preproc’ and ‘tbss_2_reg’) in
the FMRIB Software Library toolbox
(http://www.fmrib.ox.ac.uk/fsl), involv-
ing an established, carefully tuned non-
linear registration of FA maps.23 Then,
the infarct core masks in the DWI space
were transformed to the MNI space by
using the ‘applywarp’ command, which
is also a part of the FMRIB Software
Library toolbox.24

Estimating the Structural
Disconnectome Using the Lesion
Quantification Toolkit
A schematic diagram of the procedure for
acquiring the disconnectome is shown in
Figure 2B. The Lesion Quantification
Toolkit, a publicly available MATLAB
software package for quantifying the
structural impacts of focal brain lesions
implemented in MATLAB 2020b
(MathWorks), was used to estimate the
white matter disconnections.25 In brief,
the toolkit uses atlas-based approaches
to estimate parcel-wise disconnection
matrices. To estimate the degree of
disconnection by using the Lesion
Quantification Toolkit, 2 inputs are
needed: 1) a binary lesion segmentation
that is registered to the MNI template
(ie, the infarction core in our case); and
2) a regional gray matter parcellation (ie,
atlas) that is also registered to the MNI
brain template space. We used the Shen
268-node atlas (available at https://www.
nitrc.org/frs/?group_id¼51), which has
8 specific functional networks (for
details, see Online Supplemental Data),
to test the hypothesis that certain brain

FIG 2. Schematic of using a CPM-SVM to predict poststroke dysphagia from the structural disconnec-
tome. A, Processing scheme of a patient with internal capsule posterior limb infarction (red arrow). We
segmented the infarct core using ADC maps and DWI. To normalize the lesion mask to the MNI space,
we used warping results derived from the patient’s FA map normalized to the FA template. In the end,
we get the segmented lesion normalized in MNI space (pink in the image on the right). B, The lesion
Quantification Toolkit uses the lesion segmentation in A to estimate the structural disconnection using
the HCP-842 population-averaged streamline tractography atlas. The blue tractography on the left is the
tracts disconnected by the internal capsule posterior limb infarction, and the brain plotted on the right
shows the distribution of direct and indirect disconnection due to infarction. The patient had poststroke
dysphagia probably owing to disruption in the motor network. C, Using the disconnection derived from
B as prediction features, we adopted the CPM-SVMmodel and LOOCV to predict poststroke dysphagia.
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networks contribute more to poststroke dysphagia than others.26

The toolkit outputs several estimations based on the provided
lesion and parcellation, including parcel-wise disconnection
matrices and parcel-wise increases in shortest structural path
length (SSPL) matrices (Fig 2B, brain images on the right).
Parcel-wise disconnection matrices are estimated by using the
Human Connectome Project (HCP)-842 population-averaged
streamline tractography atlas.27,28 First, an atlas structural con-
nectivity matrix is created by using the HCP-842 streamline
tractography atlas and the provided Shen atlas. The structural
connections between a parcel pair are defined as the number of
atlas streamlines that bilaterally terminate within both parcels.
Then, the lesion is embedded into the HCP-842 streamline trac-
tography atlas, and the atlas is filtered to retain only the subset
of streamlines whose trajectories intersect the volume occupied
by the lesion (ie, disconnected streamlines, Fig 2B, tract image
on the left) and terminate bilaterally within a parcel pair, creat-
ing a disconnection matrix. Finally, this raw disconnection ma-
trix is converted to a “percent disconnection severity matrix”
relative to the atlas structural connectivity matrix. The values
for each cell (ie, parcel pair) in the final percent disconnection
severity matrix correspond to the estimated disconnection
severities for each pair of parcels.25 Parcel-wise SSPL increases
are also computed according to the same procedure used in a
previous study.28 The rationale for obtaining the matrix is that
the white matter disconnections caused by focal brain lesions
can disrupt communication between brain regions that are
“indirectly” connected via a series of intermediary regions.29

Disconnectome-Based Predictive Modeling
A schematic diagram of the procedure for predictive modeling
is shown in Figure 2C. The code and data for replicating the
predictive model are available at https://osf.io/u4m5j/. To pre-
dict poststroke dysphagia by using structural disconnection,
we used connectome-based predictive modeling (CPM), a data-
driven protocol for developing predictive models of brain-
behavior relationships.12 We modified the CPM approach by
replacing its core learning algorithm with a support vector
machine (SVM).30

First, we separated the subjects into the 85-person training set
and 1 test set in each iteration, implementing a leave-one-subject-

out cross-validation (LOOCV) process.
LOOCV was performed to protect
against overfitting.12 Then, across all
subjects in the training set, each edge
in the disconnection matrices and
SSPL increase matrices was correlated
to the subjects’ group label (ie, whether
1 subject had poststroke dysphagia or
not) as behavioral data by using the
Spearman correlation.30 Those edges
that significantly correlated (below the
threshold value of 0.05, which means
severe disconnection in patients with
severe dysphagia) were selected. Next,
for each subject, the selected edges
were summed into 2 predictive varia-

bles (ie, disconnection matrix and SSPL increase matrix), and 3
SVMmodels (see Models 1–3 below) were trained and tested31:

• Model 1, Predicted group label¼ disconnection matrix
• Model 2, Predicted group label¼ SSPL increase matrix
• Model 3, Predicted group label ¼ disconnection matrix 1

SSPL increase matrix

From the perspective of functional integration and segrega-
tion, whole-brain and 8 functional system analyses were con-
ducted separately. Model performance (ie, correspondence
between predicted and actual values) was assessed mainly by
using classification accuracy, and we performed a permutation
test to examine the significance of our model. For interpretation
purposes, we identified those edges that appeared in every itera-
tion of the leave-one-out process to yield “consensus edges”
(edges appearing in 100% of the LOOCV iterations across all
subjects).32

In addition, for exploratory purposes, we calculated the diag-
nostic performance of the combined model incorporating the
disconnection and demographic variables (age, sex, and lesion
volume).

RESULTS
Demographics
The characteristics of the study samples are displayed in the
Table. Contingency x 2 tests and paired t-tests were used to
examine group differences in demographics across the 2
groups. The statistical analyses were conducted in MATLAB
2020b. Using propensity matching, the incidence of diabetes
mellitus and hypertension between the groups showed no sig-
nificant difference (x 2 ¼ 0. 073, P ¼ .786 and x 2 ¼ 0.778, P ¼
.377, respectively), though the full per-oral nutrition group
showed a younger age (P ¼ .029). There was no significant dif-
ference between the MRI scanners used between the 2 groups
(x 2 ¼ 0.367, P ¼ .832).

Disconnection-Based Prediction of Poststroke Dysphagia
Figure 3A summarizes the model performance of individual
classification from whole-brain and network-based analyses.
Notably, the best prediction model was the one that took the
disconnection matrix and SSPL increase matrix of the motor

Clinical characteristics of the study population
Full Per-Oral
Nutrition

(n= 43, 17 Women)

Nonoral Nutrition
Necessary

(n= 43, 13 Women) P Value
Age (yr) 68.83 6 15.69 75.09 6 11.38 t ¼ 2.264,

P ¼ .029a

HTN 35 34 x 2 ¼ 0.073,
P ¼ .786

DM 15 19 x 2 ¼ 0.778,
P ¼ .377

Onset to VFSS interval
(days)

11.67 6 7.50 12.24 6 7.64 t ¼ 0.327,
P ¼ .745

MRI scanner Intera ¼ 35
Ingenia ¼ 5
Achieva ¼ 3

Intera ¼ 37
Ingenia ¼ 4
Achieva ¼ 2

x 2 ¼ 0.367,
P ¼ .832

Note:—DM indicates diabetes mellitus; HTN, hypertension.
a P , .05.
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network into account (Model 3). The model accurately and rela-
tively evenly identified individuals with dysphagia after stroke
(accuracy ¼ 68.6%, permutation testing, 1000 times, P ¼ .001;
sensitivity¼ 76.7%, specificity ¼ 60.4%; Fig 3B). It is notable that
disruption in the motor network contributes to the prediction of

developing poststroke dysphagia. When we included the patient’s
demographic variables of age and sex in the prediction model,

the prediction accuracy rose to 72.1% (sensitivity ¼ 72.1%, speci-
ficity ¼ 72.1%; Fig 3C-, D), while the demographics could sub-

stantially predict poststroke dysphagia (eg, combination of “age

1 sex” achieved 70.9%).

The “consensus edges” of the disconnection matrix included
40 edges in which the highest-degree node (ie, the node with the
most connections) was located in the left parietal lobe. The “con-
sensus edges” in an SSPL increase matrix included 241 edges, and
the highest-degree node in the SSPL increase matrix was located
in the right insula, with the left motor strip being the location of
the next highest (Fig 4).

DISCUSSION
In this study, we used a multivariate CPM to predict poststroke
dysphagia and identify disconnections that are predictive of

FIG 3. Leave-one-out classification result. A, Classification results in which, by using both the disconnection and SSPL, increased matrix of the
motor network (red arrow) presented the highest accuracy. B, Confusion matrix of the motor network–based model, where the vertical axis is
the true label of all patients. Blue boxes represent individuals correctly identified by the model. Orange boxes represent incorrect identification.
Percentages in each box correspond to the proportions of subjects in the subgroup relative to the total subjects. C and D, Classification result
when combined with demographic variables, indicating that the model, by using both disconnection and demographic features, shows the best
prediction accuracy of 72.1%.
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the disease. Across classification analyses, the motor network
combining the information from both direct and indirect dis-
connections emerged as being the most informative in
prediction.

There are 2 main advantages in our findings that we want to
emphasize. First, we showed the potential of predicting post-
stroke dysphagia based only on clinically plausible acute-phase
diffusion-weighted brain MRI. This is an advantage because no
other advanced sequences, such as diffusion tractography, are
needed. In addition, we conducted our study based on publicly
available toolboxes, and we make our data and analysis code
available to increase transparency and allow future researchers to
replicate our findings (https://osf.io/u4m5j/). Clinically, our
results can be utilized to predict whether a patient with stroke is
at high risk of poststroke dysphagia at the time of symptom onset.
If one is predicted to have a high risk of dysphagia, clinicians can
postpone oral nutrition without any swallowing test, thus lower-
ing the chance of aspiration in the acute phase.

Another important result is that the motor network emerged
as being the most informative in predicting poststroke dysphagia.
Figure 5 shows a representative case of infarction in the middle
cerebellar peduncle without disconnection in the motor network,
and the patient did not have poststroke dysphagia. This is in line
with previous reports, which revealed that dysphagia secondary
to stroke is associated with disruptive functional and structural
integrity in the large-scale brain networks involved in motor con-
trol.33 Specifically, the connection between the motor cortex and
bulbar areas (corticobulbar tract) has been shown to be a potent
neural pathway involved in swallowing, and any lesions disrupt-
ing this pathway can lead to dysphagia.9 Several recent studies
utilizing advanced neuroimaging techniques support this by
emphasizing the role of motor cortex connections to the bulbar
area.34,35 In addition, our study is the first to point out that not
only direct but also indirect disconnection (ie, SSPL increase) in
the motor network is responsible for poststroke dysphagia. The
increase in the shortest path length results in a decrease in net-
work efficiency. It has also been reported that structural discon-
nections along the shortest structural paths linking indirectly

connected regions represent a general mechanism of stroke-
induced functional connectivity disruptions.28 On the contrary,
some other networks, such as frontoparietal, reached similar pre-
diction accuracy (65.1%), and the direct disconnection of the
motor network had poor prediction (36.0%). This result implies
networks other than the motor have a role in poststroke dyspha-
gia. Together, we suggest that not only direct disconnection
within the motor but also insufficient, including decreased, func-
tional connectivity, may underlie the occurrence of poststroke
dysphagia. In addition, our exploratory analysis by using the de-
mographic variable as an additional predictor showed increased
prediction accuracy with a decreased number of false-positives
(17! 12 in Fig 3B, D), giving the potential of a prediction model
by using both brain-based and clinical features, and may be
promising (Fig 6).

Although the prediction accuracy (Fig 3, 72.1%) we reported
may seem modest, we suggest several reasons. To our knowledge,
there is one paper investigated to predict acute stage poststroke
dysphagia by using only clinical variables and can be a bench-
mark.5 The reported area under the receiver operating character-
istic curve value was 0.86; however, this is a simple logistic
regression result without cross-validation and thus cannot be
directly compared with our LOOCV prediction accuracy, which
provides a more conservative estimate.12 It should also be men-
tioned that the combination of several demographic variables
could substantially predict poststroke dysphagia. For example,
“age 1 sex” alone had higher accuracy than the disconnection-
based model (68.9%), and adding the disconnection to the “age
1 sex,” the accuracy only increased by 1.9%. It makes the discon-
nection seem somewhat trivial and the disconnection-model only
was not very helpful. Interestingly, age and sex are included in
our result and the prediction model of Zhang et al.5 As our study
discovered that structural disconnection in the motor network
has predictive information about poststroke dysphagia, future
research could benefit from integrating larger demographic data.

Our study has a prominent limitation that the age was signifi-
cantly younger in the full per-oral nutrition group, which may be
a confounder. To see how much of the results were explained by

FIG 4. Spatial network anatomy of the motor network-based model. A, Spatial extent of the “consensus edges” from the disconnection net-
work. In the circular plot, regions are organized according to their anatomic locations, with more anterior regions at the top and more ventral
and posterior regions displayed toward the bottom. Node size in the brain represents the degree of the node (ie, the number of connections
with the node). B, Summarization of “consensus edges” from the disconnection network. The nodes were filtered to have at least 20 edges for
visualization purposes.
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FIG 5. Representative case of a 62-year-old man with left middle cerebellar peduncle ischemic infarction. He did not have poststroke dysphagia,
and the model also predicted negative results. A, Substantial infarction volume in DWI. B, Disconnected tract attenuation map (red) due to in-
farction. Nonetheless, the disconnection is mostly distributed in the cerebellar network, with no disconnection within the motor network (C,
red square; D), which may be preventing the patient from poststroke dysphagia.

FIG 6. Representative case of a 39-year-old woman with left corona radiata ischemic infarction. The patient did not have poststroke dys-
phagia. She had disconnection in the motor network and not predicted correctly only by disconnection matrix (C, red square). However,
the model incorporating both demographic variable and disconnection predicted correctly, maybe owing to the patient’s relatively young
age of 39. A, Left corona radiata infarction in DWI. B, Disconnected tract attenuation map (red) due to infarction. Substantial amount of the
disconnection distributed in the motor network (C, red square); however, the prediction model incorporating both disconnection and age,
sex could predict correctly.

AJNR Am J Neuroradiol �:� � 2024 www.ajnr.org 7



age, we classified the groups only by using age and the result was
66.2% (Fig 3C). Age is indeed a protective factor for poststroke
dysphagia as displayed in Figure 6.5 In addition, we tried to add
age as a matching variable in the propensity score matching, and
the significant difference remained, regardless of our effort.
However, we showed that disconnection has additional informa-
tion in the prediction of poststroke dysphagia.

There are several other limitations in this study. First, 3 differ-
ent MRI scanners were used in our data set, which may bias the
estimation of lesions. Second, this is a single-center retrospective
study, which may limit the generalizability of the results. To com-
pensate, we made our processed data and code available to increase
reproducibility. Third, we did not include the cortical lesion in the
analysis procedure because we wanted to focus on structural dis-
connection and reduce redundancy. Fourth, 3 patients with hyper-
acute infarction had follow-up MRI, and this may affect the
generalizability of the study. Last, we used 6-direction DWI data to
estimate the FA map in the normalization process. Although there
are clear advantages in acquiring higher angular resolution data,
several studies showed that 6-direction data provide diffusion
measures with comparable robustness.36

CONCLUSIONS
Although trivial, we show that structural disconnection as derived
from acute phase stroke imaging is predictive of poststroke dys-
phagia. In addition, we suggest that not only direct but also indi-
rect disconnection in the motor network is important in the
prediction.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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