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ABSTRACT 

BACKGROUND AND PURPOSE: Midline shift is an intracranial pathology characterized by the displacement of brain parenchyma 
across the skull’s midsagittal axis, typically caused by mass effect from space-occupying lesions or traumatic brain injuries. Prompt 
detection of midline shift is crucial, as delays in identification and intervention can negatively impact patient outcomes. The gap 
we have addressed in this work is the development of a deep learning algorithm that encompasses the full severity range from mild 
to severe cases of midline shift. Notably, in more severe cases, the mass effect often effaces the septum pellucidum, rendering it 
unusable as a fiducial point of reference.  

MATERIALS AND METHODS: We sought to enable rapid and accurate detection of midline shift by leveraging advances in artificial 
intelligence.  Using a cohort of 981 patient CT scans with a breadth of cerebral pathologies from our institution, we manually chose 
an individual slice from each CT scan primarily based on the presence of the lateral ventricles and annotated 400 of these scans for 
the lateral ventricles and skull-axis midline using Roboflow. Finally, we trained an artificial intelligence model based on the You 
Only Look Once object detection system to identify midline shifts in the individual slices of the remaining 581 CT scans.   

RESULTS: When comparing normal and mild cases to moderate and severe cases of midline shift detection, our model yielded an 
AUC of 0.79 with a sensitivity of 0.73 and specificity of 0.72 indicating our model is sensitive enough to capture moderate and severe 
midline shifts and specific enough to differentiate them from mild and normal cases.   

CONCLUSIONS: We developed an artificial intelligence model that reliably identifies the lateral ventricles and the cerebral midline 
across various pathologies in patient CT scans. Most importantly, our model accurately identifies and stratifies clinically significant 
and emergent midline shifts from non-emergent cases.  This could serve as a foundational element for a future clinically integrated 
approach that flags urgent studies for expedited review, potentially facilitating more timely treatment when necessary. 

ABBREVIATIONS: CT ＝Computed Tomography; AUC ＝ Area Under the Curve; MLS = Midline Shift; IML = Ideal Midline. 
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 SUMMARY SECTION 

PREVIOUS LITERATURE: Previous studies implementing Artificial Intelligence (AI) models to measure Midline Shift (MLS) have utilized 
either deviations from symmetry or the septum pellucidum as a landmark for downstream measurements. These methods limit 
generalizability for a range of MLS pathologies that may have complex symmetry patterns or effacement of the septum pellucidum. 
Additionally, previous work utilized complex in-house AI models raising the barrier to entry for radiologists and scientists trying to 
incorporate AI into their workflow.   

KEY FINDINGS: Our lightweight AI model based on the publicly available You Only Look Once (YOLO) library rapidly measures and 
detects MLS in single-slice patient CT scans. Our model accurately differentiates between normal-to-mild and moderate-to-severe 
cases of MLS potentially setting the groundwork for future AI integration in radiology workflows.   

KNOWLEDGE ADVANCEMENT: The use of a publicly available AI library as the core of our workflow allows the broader medical and 
scientific community to rapidly modify and enhance the model’s usability and accuracy in detecting MLS in patient scans. 
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INTRODUCTION 

Midline shift (MLS) is a critical indicator of intracranial pathology, often associated with traumatic brain injury, hemorrhage, 
and space-occupying lesions. The presence and severity of MLS are crucial prognostic factors that reflect asymmetrically increased 
intracranial pressure and correlate with poor neurological outcomes and elevated mortality rates [1].  As such, prompt and accurate 
detection of MLS is paramount in emergency settings, where timely intervention can significantly impact patient outcomes. Like other 
acute abnormalities on imaging, re-prioritization on busy worklists or automatically notifying clinicians [2] can decrease the time to 
diagnosis [3, 4]. Having a prompt diagnosis expedites treatment, leading to better average outcomes [5, 6, 7]. Traditionally, MLS 
assessment relies on manual measurements by radiologists, a process that is subject to interobserver variability and potentially delayed in 
busy clinical environments. These limitations have spurred research into automated MLS detection methods, with the field evolving 
from classical machine learning approaches [8, 9, 10, 11] to more sophisticated deep learning [1, 12, 13, 14, 15] techniques. These can 
fall into one of two common algorithm categories, symmetry-based and localization-based [3, 16, 17, 18, 19, 20, 8, 9].  

Symmetry-based methods analyze asymmetries in the intracranial contents, operating under the assumption that deviations 
from symmetry can indicate MLS. While this approach helps assess mass effect, asymmetry can also be present in a wide range of 
asymptomatic and normal anatomical variations, as well as numerous pathological states, many of which are not associated with midline 
shift. Hence, it could result in false-positive MLS predictions [21, 11]. Localization-based methods estimate MLS by analyzing the 
relative positions of key cerebral landmarks, notably the septum pellucidum. However, this approach has limitations, as the septum 
pellucidum may be obscured or effaced by adjacent brain parenchyma, lesions, or blood products, particularly in cases of more 
pronounced MLS. Hence, we were motivated to develop a convolutional neural network (CNN)-based method to identify and quantify 
MLS in a manner that remains valid across severities, including those that obscure the septum pellucidum. We believe this provides a 
step toward clinical applicability since the approach maintains fidelity across the degrees of MLS that can present on imaging.   

In this study, we have combined the strengths of deep learning, symmetry-based, and landmark-based approaches for 
predicting midline shift within a single, efficient model. Specifically, we focused on tracking the lateral ventricular bodies to represent 
the symmetry-based component. From the landmark perspective, we employed the stable anatomical features of the anterior and 
posterior falx, defined previously as part of the “skull axis” [22]. To decrease false predictions, we chose to forgo the septum pellucidum 
as a reference point, as it is commonly obscured by brain parenchyma in severe MLS cases. Our localization approach leveraged the You 
Only Look Once (YOLO) [23] model to identify ventricles and key anatomical landmarks. YOLO, a state-of-the-art convolutional neural 
network (CNN), offers exceptional speed, accuracy, and flexibility while benefiting from ongoing refinements by the open-source 
community [24]. Its streamlined architecture and computational efficiency facilitate parameter tuning, allowing for precise localization 
tailored to specific image datasets. The model’s ability to perform real-time object detection with high accuracy and its adaptability to 
various applications made it particularly suitable for our research objectives, enabling efficient medical image analysis without 
compromising precision.  

To address the clinical use case of differentiating normal or near-normal cases from those requiring urgent attention due to 
moderate or severe midline shift, we hypothesized that our model would consistently and accurately make these distinctions across the 
range of severities seen at our institution. This approach has the potential to serve as a prototype for tools that highlight pronounced 
midline shift to radiologists, aiding in the prioritization of critical cases within work lists.  

 

MATERIALS AND METHODS 

Data Acquisition and Preprocessing 
Anonymized non-contrast head CT scans were obtained from the institutional database using the Extensible Neuroimaging 

Archive Toolkit (XNAT) system. Scans were categorized based on the severity of midline shift (MLS) as reported in radiological 
assessments: normal (no appreciable MLS), mild (2-4.9 mm), moderate (5-9.9 mm), and severe (≥ 10 mm). The dataset comprised 215 
normal, 244 mild, 349 moderate, and 173 severe cases. For each scan, we selected a single slice at the level of the largest lateral ventricular 
body volume for analysis.  
 
Image Annotation 

In designing our approach, we followed the definition of midline shift based on the ideal midline (IML), a hypothetical line 
segment that represents the brain's midline in a normal, symmetrical state. [25, 26]. The actual midline shift (MLS) can then be measured 
or defined as the deviation of brain structures from the IML. Our method used the location of the lateral ventricles as a surrogate for the 
current location of brain structures, either midline in the normal state or shifted due to mass effect, if present. For each CT exam, we 
manually selected the 2D slice on which the lateral ventricles were most prominent and of highest volume. We defined the IML primarily 
via skull axis keypoints at the interface of the calvarial inner table and the falx cerebri. Since this area is rigid, it establishes a midline and 
one immune to pressure imbalances within the cerebrum. We also included a midsagittal point situated midway in the anteroposterior dimension 
between the anterior and posterior falx. Figure 1 shows how we measureed MLS as the distance between the centroid of the ventricular 
bounding box and the nearest point on the IML. 

To create the training set, we randomly selected 100 CT scans from each of the four MLS severity categories (normal, mild, 
moderate, and severe) from the total pool of 981, based on radiology reports. This resulted in a balanced training set of 400 samples, 
ensuring equal representation across the different severity levels. We annotated the images using Roboflow [27], with a dual-annotation 
strategy that reflected our definition of MLS:  
 



 3 
 

1. Delineation of the bounding box of the lateral ventricles.  
2. Keypoint annotation of the cerebral midline using five anatomical landmarks.  

 
Figure 2 shows examples of the testing set inference predictions for the lateral ventricle bounding boxes and keypoint-based IML. Of note 
is that the IML (purple line segment) remains valid throughout shifting intracranial structures. As the mass effect increases and the 
ventricles become effaced, the lateral ventricular bounding boxes (green) shift laterally, causing their centers of mass to deviate from the 
IML. 
 
Model Architecture and Training  

Model development and training were conducted in a Jupyter environment using an in-house modified version of the You Only 
Look Once (YOLO) Python library [28, 29, 30]. This architecture was chosen for its ability to efficiently detect objects and locate 
keypoints. We trained two instances of the YOLO model:  
 

1. The first model detected the lateral ventricles using bounding boxes.  
2. The second model localized the cerebral midline using keypoints.  

 
Training utilized the AdamW optimizer with automatic hyperparameter tuning. A batch size of 16 and image dimensions of 640×640 
pixels were used. Data augmentation included techniques such as random flips, grayscale conversion, blur, median blur, Contrast Limited 
Adaptive Histogram Equalization (CLAHE), and other transformations. Automatic Mixed Precision (AMP) was enabled to improve 
computational efficiency. The dataset was split into training and validation sets, with approximately an 80:20 ratio. Both models converged 
within 150 training epochs. The best-performing models were selected based on validation set performance, with final evaluation 
conducted on the testing set. 
 
Overview of Midline Shift Quantification  
We quantified MLS with a novel approach that combines ventricle-based and midline-based measurements. We calculated the MLS as 
follows:  
 

1. We computed the centroid of the bounding box encompassing the lateral ventricles, serving as a proxy for the septum 
pellucidum’s position.   

2. We defined the IML by the anterior and posterior falcine-inner table attachments.   
3. We calculated the MLS as the shortest distance from the ventricular bounding box centroid and the nearest point on the IML.  

 
This method leverages the assumption that in normal anatomy, the centroid of the lateral ventricles closely corresponds to the midpoint of 
the actual anatomical midline.  
 
Implementation of Midline Shift Quantification  

Figure 1 illustrates how we computed MLS values. For each testing set image, once we computed the keypoint-based IML and 
lateral ventricle bounding box, we computed the MLS as follows. We obtained the bounding box center-of-mass, 𝐶box:  

 

                                       (1) 
 
where the upper left corner coordinates (𝑥௎௅, 𝑦௎௅), width 𝑤, and height ℎ define the bounding box. We may write an equation for the line 
specifying the IML with slope 𝑚IML and y-intercept 𝑏IML: 
 

                                        𝑦IML = 𝑚IML × 𝑥IML + 𝑏IML                                                           (2) 
 
Then, we define the MLS as the distance from 𝐶box to the nearest point on the IML, i.e., in the direction perpendicular to that of the IML: 
 

.                                                           (3) 
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FIG 1. Illustration of midline shift (MLS) estimation based on the centroid (green dot) of the lateral ventricles (green box) and 
sagittal skull axis midline (purple line). The septum pellucidum is visualized in image A but not in image B. Yet, our algorithm 
can successfully measure MLS (yellow arrows) and classify MLS severity in both cases, independent of the septum pellucidum. 

 
 
Data acquisition and preparation  

A waiver of informed consent was obtained from our Institutional Review Board for this retrospective study. Patient CT scans 
of the head were acquired and anonymized using the Extensible Neuroimaging Archive Toolkit (XNAT) system integrated in MSK’s 
database. Table 1 provides an overview of this study’s image categories and corresponding counts. We divided CT scans based on the 
severity of MLS that fellowship-trained neuroradiologists had detailed in their clinical reports: 
 

 Normal: No observable MLS 

 Mild: MLS of 2 − 4.9 mm 

 Moderate: MLS of 5 − 9.9 mm 

 Severe: MLS ≥ 10 mm 
 
The selection of 10 mm as a cutoff is supported by evidence indicating that functional outcomes worsen when the midline shift 

surpasses this threshold [5]. The total number of CT scans for each category used in this study was 215 normal scans, 244 mild scans, 349 
moderate scans, and 173 severe scans. We manually selected a slice from each scan containing the largest lateral ventricular volume. 
100 selected images from each category yielded a total training set of 400 images. Images were uploaded into Roboflow for manual 
annotation of 
 

 the lateral ventricles using a bounding box, and 

 the cerebral midline using keypoint detection, where 5 keypoints were used for annotating the midline. 
 
Downstream training and predictions were done in a Jupyter environment using a modified version of the You Only Look Once 

(YOLO) Python library. The bounding box and keypoint annotations were downloaded from Roboflow and used as input into our model 
implemented in YOLO to identify these structures in the testing set. We then calculated the MLS, as described earlier, as the shortest 
distance between the centroid of the bounding box and the nearest point on the IML.  

 

 

 

 

 

Table 1: CT scan categories based on radiology reports with midline shift (MLS) criteria, patient counts, and dataset splits for 
training, validation, and testing. Of note, the MLS values were those measured by radiologist using the septum pellucidum’s 
deviation from the imagined midline. 
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Category MLS (mm)    Total  Training/Validation        Testing  

Normal  0-2  215  100  115  
Mild MLS  2-5  244  100  144  
Moderate MLS  5-10  349  100  249  
Severe MLS  ≥10  173  100  73  
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RESULTS  

Bounding box ventricle localization 

 

 

FIG 2. Examples of testing set inference predictions of lateral ventricle bounding box (green) and ideal midline (IML, purple), 
the latter based on fiducial keypoints related to the skull axis.  

After 150 epochs of training, the training and validation losses steadily decreased and eventually plateaued, indicating 
convergence. The trained ventricle detection network achieved the following performance metrics on the testing set: 

 Mean Average Precision at 50% overlap (mAP@50) = 0.999: This meant that the model was nearly perfect (99.9%) at drawing 
bounding boxes around the lateral ventricles when a lenient standard was used. Specifically, if the predicted box overlapped with 
the true box by at least 50%, the model was credited with being correct. This demonstrated that the model was highly reliable at 
detecting the general location of the lateral ventricles. 

 Mean Average Precision at 50% to 95% overlap (mAP@50–95) = 0.841: This score evaluated how well the model 
performed across stricter overlap thresholds, ranging from 50% to 95%. A score of 0.841 (84.1%) indicated that the model was 
quite good at matching the actual shape and position of the lateral ventricles, although it showed slightly lower accuracy when 
requiring a very close match. 

 Precision: 0.973: This metric reflected the proportion of true positive detections among all positive detections made by the 
model, indicating high reliability in predicting positive cases. 

 Recall: 0.987: This score represented the proportion of true positive detections among all actual positive cases, demonstrating 
the model's effectiveness in capturing as many true instances as possible. 

 

Keypoint detection of imaginary midline 

We trained a keypoint detection variant of YOLO to identify five keypoints defining the IML: two near the anterior falx-skull 
inner table interface, two near the posterior falx-skull interface, and one approximately halfway between the anterior and posterior 
interfaces. 

After 100 epochs of training, the model demonstrated convergence on the training and validation datasets with the following testing set 
performance metrics: 

 mAP@50: 0.889 

 mAP@50–95: 0.888 

 Precision: 0.933 

 Recall: 0.937 
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Four-category prediction of presence and severity of midline shift 

Figure 3 illustrates the average MLS values across the four categories: normal, mild, moderate, and severe MLS. The results 
demonstrate clear stratification, with progressively higher mean MLS values corresponding to increasing radiologist-measured severity 
levels. The differences in mean MLS between successive categories surpass the 95% confidence intervals, as indicated by the error bars 
in the box plot. Furthermore, the mean MLS values align reasonably well with our stratification criteria: 

 Normal: Mean MLS less than 2 mm 

 Mild: Mean MLS between 2 and 5 mm 

 Moderate: Mean MLS between 5 and 10 mm 

 Severe: Mean MLS approximately 10 mm 

The statistical analysis revealed a statistically significant difference between each pair of MLS severity categories, as 
elaborated in the following subsections. 

FIG 3: Mean predicted midline shift values for the testing set across four clinical categories. The bar labels denote MLS severity 
as determined by radiologists during clinical interpretation, while the bar heights indicate the mean MLS values predicted by our 
automated method. Error bars represent the 95% confidence intervals.  
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STATISTICAL ANALYSIS  

Coarse-grained stratification into two classes of the degree of midline shift for clinical utility  
As outlined earlier, our statistical analysis primarily focused on a binary classification of normal-to-mild MLS versus moderate-

to-severe MLS. This approach is driven by the clinical importance of moderate-to-severe cases, which often necessitate urgent review and 
warrant higher prioritization on radiologist worklists. By systematically varying the threshold MLS value to distinguish between normal-
to-mild and moderate-to-severe cases, we generated the Receiver Operating Characteristic (ROC) curve depicted in Figure 4.  
 

 
 

FIG 4: Receiver Operating Characteristic (ROC) Curve illustrating the model’s performance in distinguishing between normal-to-
mild and moderate-to-severe midline shift categories by varying the decision threshold. The blue curve represents the algorithm’s 
True Positive Rate, while the dashed line indicates the performance of a random classifier. The blue region represents 95% 
confidence intervals, and the red dot displays the Youden optimal point 
 
 
The resulting Area Under the Curve (AUC) was 0.79, indicating fair discriminative ability, with 1.0 representing perfect classification and 
0.5 reflecting random chance (dashed line). Additionally, the optimized Youden's index point is marked on the figure, corresponding to 
the optimal threshold value of 3.2 mm. Using this threshold, the following confusion matrix was obtained: 
 

                           Confusion matrix = ቀ
186 72

87 232
ቁ                          (4) 

Based on the confusion matrix, the primary metrics for binary classification are presented in Table 2. 

Table 2: Performance metrics for binary classification, normal-to-mild versus moderate-to-severe, for the testing set. PPV: 
Positive Predictive Value; NPV: Negative Predictive Value; F1 Score: Harmonic mean of precision and recall. These values are 
based on a threshold value of 3.24 mm, that was obtained by optimization of Youden’s index, as shown in Figure 4.   
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Metric Value 

Accuracy 0.72 
Sensitivity (Recall) 0.73 

Specificity 0.72 
PPV (Precision) 0.76 

NPV 0.68 
F1 Score 0.74 

 

Four categories of midline shift severity 
We conducted a one-way analysis of variance (ANOVA) to compare midline shift values across four severity categories: normal, 

mild, moderate, and severe. The ANOVA revealed a significant effect of severity on midline shift values, with an F-statistic of 99.9 and a 
corresponding p-value 1.3 × 10ିହ . These results indicate a highly significant difference in midline shift across the four severity groups, 
suggesting that the degree of severity is strongly associated with variations in midline shift values. We performed a post-hoc Tukey’s 
Honest Significant Difference (HSD) test following the one-way ANOVA to further investigate pairwise differences between the midline 
shift values across the four severity categories. The results are summarized in Table 3. 

 
 

Table 3: Tukey's Honestly Significant Difference (HSD) test results for pairwise comparisons of group means, specifically midline 
shift (MLS) values across severity categories. 'p-adj' represents the adjusted p-values calculated using the Tukey's HSD method, 
which controls the family-wise error rate. ⟨∆⟩ denotes the mean pairwise distance between MLS values.  

 
Group 1  Group 2  ⟨∆⟩  p-adj  Lower CI  Upper CI  

Mild  Moderate  2.3  < 5x10−4  1.4  3.3  
Mild  Normal  -1.8  5x10−4  -2.9  -0.6  
Mild  Severe  6.6  < 5x10−4  5.3  7.9  

Moderate  Normal  -4.1  < 5x10−4  -5.1  -3.1  
Moderate  Severe  4.3  < 5x10−4  3.1  5.5  
Normal  Severe  8.4  < 5x10−4  7.0  9.7  

 
 

In all pairwise comparisons, the differences between groups were statistically significant, as indicated by: 
 

 p-values below the threshold of 0.05, and 

 95% confidence intervals for the mean differences not including zero 
 

Our analysis supports the conclusion that predicted midline shift values varied significantly across the different severity categories. 

DISCUSSION 

In this study, we developed a fast and efficient model for detecting and quantifying MLS in patient CT scans using bounding 
box and keypoint localization techniques. By combining elements of symmetry-and localization-based approaches, our method leverages 
the lateral ventricles to evaluate mass effect on intracranial structures and the inner table-falx junctions to establish a stable reference for 
estimating the ideal midline (IML). This approach enabled the model to reliably differentiate moderate and severe cases from normal and 
mild MLS. Such differentiation is crucial, as moderate-to-severe MLS often requires prompt medical attention and possible intervention. 
YOLO is particularly advantageous due to its rapid inference speed, enabling swift deployment in clinical settings. This efficiency makes 
it well-suited for simultaneous use across multiple instances, allowing numerous radiologists to leverage the model in diverse clinical 
environments. 

One previous study has shown that AI can capture different severities of MLS across thresholds of 2 mm, 5 mm and 10 mm with 
high sensitivity (83.3%-91.7%) and specificity (72.7%-98.5%) [13]. Their model used the distance between the cerebral midline and the 
septum pellucidum to measure MLS and correlate MLS severity with patient outcome. Although we do not correlate our model’s 
performance with patient outcomes directly, our model builds on this approach in multiple ways. First, the integration of bounding boxes 
and keypoint detection within a single YOLO-based model can improve computational efficiency and accuracy. Second, using the lateral 
ventricle bounding box centroid as a robust proxy for septum pellucidum position may be advantageous in cases of severe deformation or 
poor visibility of traditional landmarks. Finally, combining ventricle and “skull axis”-based definitions of midline and MLS may improve 
reliability across a spectrum of pathological conditions. Finally, we report consistent performance of our model across 581 scans that were 
acquired over the past 10 years with various scanners and settings, and annotated by numerous different radiologists across our institution. 
Despite the variability present in our dataset, our model was able to accurately differentiate non-emergent from emergent MLS cases.  

Along with the improvements our model introduces, several limitations warrant consideration. One drawback is that the input is 
a single lateral ventricle-containing slice from the full CT scan z-stack. The radiologist must manually select this slice, which introduces 
lag between the radiologist receiving the scan and identifying MLS. Although our model aims to streamline the detection of MLS, this 
manual step could be a source of delay in busy hospital settings where time-sensitive decisions are critical. Second, manual slice selection 



10  

introduces the potential for human error. Given numerous slices in a typical CT scan z-stack, even experienced radiologists might face 
difficulty selecting the exact slice that best represents the lateral ventricles, especially in cases where the ventricles are effaced due to 
pathologies such as swelling or mass effect. This variability in slice selection could lead to slight discrepancies in model input, which can 
affect the accuracy of MLS measurements. Lastly, a misaligned or suboptimal slice could result in an inaccurate estimation of MLS, 
undermining the model’s performance. To this end, relying on a single slice to represent the entire three-dimensional (3D) structure of the 
brain means that important contextual information from adjacent slices is disregarded. MLS is not necessarily uniform across all axial 
slices and in some cases, the degree of MLS may vary between slices, making it difficult to capture an accurate representation of the entire 
shift from a single, isolated slice. This limitation could be particularly problematic in cases where MLS is subtle or inconsistent across 
different z-stack slices. 

To address these limitations, future pipeline iterations could incorporate automated slice selection. By leveraging deep learning 
techniques trained to identify the most relevant slice based on the presence of the lateral ventricles, the system could automatically select 
the appropriate slice, reducing the need for manual intervention and the potential for human error in slice selection. Moreover, extending 
the model to consider a series of slices rather than just a single slice could enhance its ability to capture the full 3D context of MLS. This 
approach would allow the model to analyze the relationship between adjacent slices, potentially leading to a more accurate estimation of 
MLS across the entire z-stack. Combining 2D and 3D analysis could improve the robustness of the model, especially when tilt artifact is 
present, and in cases where MLS is subtle or variable across different brain regions. 

 

FIG 5: Examples of Failure Modes. (A) False normal and (B) false moderate classification predictions. Relative bounding box rotation 
is chiefly responsible for these errors, noting that uncorrected tilt artifact and extensive craniotomy changes in (B) likely 
contribute to an erroneous IML estimation (purple). (C) A true normal case is shown, demonstrating that despite tilting, the 
ventricular bounding box’s center of mass remains relatively stable and near the IML, due to its resistance to rotational 
displacement.  

 

 

Examining additional limitations of the current approach, it is important to analyze how the model failed during inference on the 
testing set (Figure 5). Understanding these failure modes provides valuable insights into the model’s shortcomings and areas for 
improvement. Figure 5A illustrates a false normal (“false negative”) prediction, where the ventricular bounding box’s center of mass is 
erroneously close to the IML due to rotational effects. In contrast, Figure 5B presents a false prediction of moderate MLS (“false positive”), 
where the model incorrectly identifies MLS in a case that should be classified as normal, with no MLS present. In this case, the primary 
issue lies in excessive patient tilting in the axial plane. Although tilt correction successfully improved head CT orientations in most 
instances, it failed in this scenario. Likely influenced by the tilt and compounded by extensive craniotomy changes, the model predicted 
an incorrect IML. In the training set, nearly all IML predictions accurately connected the anterior and posterior falx-inner table junctions, 
making this failure an uncommon occurrence. Additionally, in Figure 5B, the ventricular bounding box’s center of mass is deflected due 
to rotation, further contributing to the false prediction of moderate MLS. Potential solutions to address these limitations include enhancing 
tilt correction algorithms and increasing the representation of training set images featuring recent post craniotomy changes, as observed in 
this case. Additionally, the latest version of YOLO (v11) offers a built-in capability to orient bounding boxes along the dominant direction 
or major axis of the objects being bounded, which could help mitigate rotational artifacts and improve model performance. Finally, it is 
important to note that, despite rotation-related failure modes, the model frequently produced results consistent with radiologist assessments. 
For instance, Figure 5C illustrates a normal case without significant MLS. Although the ventricular bounding box is rotated, its center of 
mass remains relatively stable and still aligns closely with the nearest point on the IML, ensuring an accurate prediction. 

Although our primary focus was distinguishing between normal-to-mild MLS and the more critical moderate-to-severe MLS for 
worklist prioritization, further stratification between no MLS and mild MLS could enhance the model’s granularity. In cases that do not 
fall under moderate or severe MLS, the septum pellucidum is generally unobstructed, allowing for precise calculation of its deviation from 
the IML to differentiate between normal and mild MLS. However, edge cases, such as the presence of a cavum septum pellucidum, would 
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need to be addressed through their inclusion in the training dataset to improve the model’s accuracy and robustness. Another area for future 
inquiry would be assessing changes in midline shift over time. This could be particularly useful in cases of long-standing midline shifts 
related to architectural brain changes, such as large resection cavities. We envision a future scenario where such a case is flagged for 
expedited review only if significant worsening occurs between two subsequent scans.  

Finally, there is ongoing debate about the efficacy of artificial intelligence for worklist prioritization and its role in improving 
radiologists’ diagnostic performance or turnaround time. The literature presents mixed evidence on whether AI-based worklist 
prioritization for intracranial hemorrhage in CT head scans enhances diagnostic speed or accuracy [31, 32]. Ultimately, its utility may vary 
depending on the clinical setting. 

CONCLUSIONS 

In conclusion, our study demonstrates the potential of combining fast, lightweight localization techniques like YOLO with a 
hybrid approach integrating symmetry-based and landmark localization methods for automated MLS detection and severity assessment. If 
the approach is further developed, particularly to include automated slice selection from the full 3D image stack, we can envision the 
following clinical scenario: cases with significant midline shift (MLS) could trigger automated alerts, prioritizing them to the top of 
radiologists’ worklists to ensure timely review and intervention. 
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SUPPLEMENTAL FILES 

 

SI Figure 1: Head-to-head scatterplot of MLS measured automatically by our model and manually by radiologists. The gray 
dashed line is the y=x line, the blue line is the line of best fit with a correlation coefficient of 0.76.   
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SI Figure 2: Flowchart of the AI training and testing methodology presented in this work.   

 

 

 

 

 

 
Package  Version  
Python  3.11.11   

Ultralytics  v8  
scikit-learn  1.6.1  
seaborn  0.13.2  

statsmodels  0.14.4  
pandas  2.2.2  

SI Table 1: Package versions used in the analysis presented in this work.   

 


