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ABSTRACT 

BACKGROUND AND PURPOSE: Spinal cord injury (SCI) in the pediatric population presents a unique challenge in diagnosis and 
prognosis due to the complexity of performing clinical assessments on children. Accurate evaluation of structural changes in the 
spinal cord is essential for effective treatment planning. This study aims to evaluate structural characteristics in pediatric patients 
with SCI by comparing cross-sectional area (CSA), anterior-posterior (AP) width, and right-left (RL) width across all vertebral levels 
of the spinal cord between typically developing (TD) and participants with SCI. We employed deep learning techniques to utilize 
these measures for detecting SCI cases and determining their injury severity. 
MATERIALS AND METHODS: Sixty-one pediatric participants (ages 6-18), including 20 with chronic SCI and 41 TD, were enrolled and 
scanned using a 3T MRI scanner. All SCI participants underwent the International Standards for Neurological Classification of Spinal 
Cord Injury (ISNCSCI) test to assess their neurological function and determine their American Spinal Injury Association (ASIA) 
Impairment Scale (AIS) category. T2-weighted MRI scans were utilized to measure CSA, AP width, and RL widths along the entire 
cervical and thoracic cord. These measures were automatically extracted at every vertebral level of the spinal cord using the SCT 
toolbox. Deep convolutional neural networks (CNNs) were utilized to classify participants into SCI or TD groups and determine their 
AIS classification based on structural parameters and demographic factors such as age and height. 

RESULTS: Significant differences (p<0.05) were found in CSA, AP width, and RL width between SCI and TD participants, indicating 
notable structural alterations due to SCI. The CNN-based models demonstrated high performance, achieving 96.59% accuracy in 
distinguishing SCI from TD participants. Furthermore, the models determined AIS category classification with 94.92% accuracy. 

CONCLUSIONS: The study demonstrates the effectiveness of integrating cross-sectional structural imaging measures with deep 
learning methods for classification and severity assessment of pediatric SCI. The deep learning approach outperforms traditional 
machine learning models in diagnostic accuracy, offering potential improvements in patient care in pediatric SCI management. 

ABBREVIATIONS: SCI = Spinal Cord Injury, TD = Typically Developing, CSA = Cross-Sectional Area, AP = Anterior-Posterior, RL = Right-
Left, ASIA = American Spinal Injury Association, AIS = American Spinal Injury Association, CNN = Convolutional Neural Network. 
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 SUMMARY SECTION 

PREVIOUS LITERATURE: Pediatric spinal cord injury (SCI) is a rare yet debilitating condition that significantly impacts motor and 
sensory function. Previous studies have primarily focused on adult SCI, with limited research on pediatric populations. Structural MRI 
metrics, such as cross-sectional area (CSA), anterior-posterior (AP) width, and right-left (RL) width, have been explored as potential 
biomarkers for SCI severity. Traditional assessments rely on clinical examinations like the ASIA Impairment Scale (AIS), but objective 
imaging-based methods remain underdeveloped. Deep learning approaches have shown promise in medical image analysis, but their 
application to pediatric SCI classification and severity assessment has not been extensively investigated. 

KEY FINDINGS: This study demonstrates that MRI-derived structural parameters, combined with a custom convolutional neural 
network (CNN), can accurately classify pediatric SCI and predict AIS severity. The CNN achieved 96.59% accuracy in distinguishing 
SCI from typically developing (TD) participants and 94.92% accuracy in AIS classification, outperforming traditional machine learning 
models. 

KNOWLEDGE ADVANCEMENT: This study establishes a novel deep learning-based framework for pediatric SCI classification and 
severity assessment, leveraging MRI-derived structural metrics. The results highlight the feasibility of using imaging biomarkers for 
objective SCI evaluation. The approach offers potential clinical applications, aiding in diagnosis, prognosis, and personalized 
treatment planning for pediatric SCI patients. 
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INTRODUCTION 

Spinal cord injury (SCI) represents a profound challenge in pediatric medicine, occurring amidst ongoing central nervous system 
development1. In children with SCI, over 50% suffer complete injuries with total motor and sensory deficits below the injury level, with 
younger children being more susceptible to experiencing complete injuries2. Despite advances in clinical and imaging techniques, 
accurately assessing SCI severity in children remains challenging, particularly when traditional methods fall short3, 4. 

The International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) is the most widely accepted framework 
for assessing SCI severity 5. This classification system provides a standardized approach for evaluating neurological function and injury 
severity. The American Spinal Injury Association (ASIA) Impairment Scale (AIS), which is part of the ISNCSCI, categorizes injury 
severity from AIS A (complete loss of motor and sensory function) to AIS D (incomplete, with significant motor function preserved), with 
intermediate levels B and C indicating partial recovery of sensory or motor function. However, the ISNCSCI relies heavily on clinical 
examinations, which can be challenging to administer accurately in young children 6, 7. For children under six years of age, participating 
in and accurately performing the ISNCSCI examination can be particularly problematic, potentially leading to inaccuracies in assessing 
the true extent of their injury 6. Furthermore, conditions such as spinal cord injury without MR (SCIWOMR) abnormality pose additional 
diagnostic challenges, as traditional imaging techniques may not reveal the precise location or extent of the injury 8. 

High-resolution MRI has significantly advanced our ability to visualize and quantify structural changes in the spinal cord 9, 10. By 
measuring parameters such as cross-sectional area (CSA), anterior-posterior (AP) width, and right-left (RL) width along the spinal cord, 
high-resolution MRI provides critical insights into the extent of spinal cord damage 11. Studies have shown that changes in cervical spinal 
cord CSA are closely linked to functional outcomes, with smaller CSA correlating with poorer motor and sensory functions and reduced 
functional independence 12-14. For instance, research has demonstrated that the AP width of the spinal cord correlates with sensory function, 
while the RL width aligns more closely with motor function 13. Additionally, baseline measurements of AP width have been associated 
with lower limb motor scores at follow-up in acute SCI cases 12. However, much of this research has focused on adult populations, with 
limited studies addressing the morphological changes of the cervical spinal cord in children following SCI. Recent findings indicate that 
quantitative measures like CSA and AP width at the C2/3 level can serve as objective biomarkers for assessing neurological function in 
pediatric thoracolumbar spinal cord injury (TLSCI) 14. Notably, CSA and RL width in the AIS A/B (motor complete) group were 
significantly lower compared to the typically developing (TD) group and the AIS C/D (motor incomplete) group, with RL width being the 
most sensitive biomarker for differentiating AIS A/B from AIS C/D. These findings underscore the potential of quantitative spinal cord 
measurements as biomarkers for assessing injury severity and predicting neurological recovery. 

Despite these advancements, predicting SCI severity using individual structural measurements has not been thoroughly explored, 
particularly in pediatric populations. Traditional machine learning approaches, such as support vector machines (SVM) and random forests, 
have been used to analyze MRI data and have demonstrated some efficacy in classification tasks 15. However, these methods often require 
manual feature extraction and may not fully capture complex, high-dimensional patterns in imaging data. In contrast, deep learning 
techniques, particularly convolutional neural networks (CNNs), offer an advantage by automatically learning hierarchical features from 
large-scale imaging datasets 16. To leverage these advantages, we developed a custom CNN model specifically for analyzing pediatrics 
with chronic SCI. This model incorporates structural measurements, including CSA, AP width and RL width, alongside demographic 
factors such as height and age in its final layer. These demographic features are critical as they influence spinal cord structure and 
development, impacting the severity of SCI.  

The goal of this paper is twofold: first, to develop and apply deep learning techniques to classify SCI and predict the severity based on 
these cross-sectional measurements, an innovative approach that to the best of our knowledge has not been explored in the pediatric 
context; and second, to demonstrate the differences in these measurements at all vertebral levels in pediatric SCI compared to TD controls, 
a comparison that has not been previously conducted with such a number of TD participants. By integrating high-resolution MRI imaging 
with advanced computational methods, this study aims to enhance both the understanding and assessment of pediatric SCI, offering new 
insights into early diagnosis and treatment planning. The importance of this work lies not in replacing clinical evaluations but in 
demonstrating the feasibility of using imaging-derived biomarkers as objective and reproducible tools for SCI assessment. While 
distinguishing SCI from TD participants may not hold direct clinical significance, it establishes the capability of MRI to serve as a rich 
source of quantitative information. More critically, the ability to predict AIS categories with high accuracy addresses a pressing need for 
objective severity measures that complement or even augment traditional methods. By reducing reliance on subjective testing, these tools 
have the potential to standardize clinical workflows, improve inter-rater reliability, and enable consistent monitoring of SCI progression. 

MATERIALS AND METHODS 

Participants  

Sixty-eight pediatric participants enrolled in this study between 2013 and 2017, comprising 41 TD with no history of spinal cord pathology 
or injury and 27 with SCI. Participants with SCI were recruited via an SCI registry and during routine visits to a pediatric hospital. TD 
participants were recruited via an institutional review board–approved pamphlet in the hospital. Inclusion criteria for participants with SCI 
required that they demonstrate an unchanged neurological examination and clinical status over the past 3 months (i.e., a stable neurological 
status) and be at least 12 months post-injury. All AIS impairment levels (AIS A-D) were enrolled. Seven SCI participants were excluded 
from the study due to issues related to metal distortion and poor MRI quality. The SCI participants had a mean age at the time of injury 
of 5.59 years (SD = 5.19, range [0.5–13.58]) and a mean age at scanning of 12.10 years (SD = 3.27, range [7.03–16.99]). The SCI group 
comprised 12 males and 8 females. In contrast, the 41 TD participants had a mean age at scanning of 11.71 years (SD = 3.06, range [6.37–
16.78]) with a sex distribution of 17 males and 24 females. Statistical comparisons of age between the two groups showed no significant 
differences (p = 0.66). Recruitment of all participants was conducted using an Institutional Review Board (IRB)-approved brochure. All 
participants and their guardians provided informed assent and consent, respectively, in accordance with the IRB-approved protocol. The  
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Table 1: Demographic information for SCI participants. NA indicated that the measure was not available due to an incomplete 
ISCNSCI* examination. 

ID Sex Age at the Time 
of Injury (years) 

Age at Time of 
Scanning (years) 

Time From 
Injury (years) 

AIS Grade Neurological 
Level of Injury 

Abnormal 
Signal 

115 M 1.75 9.2 7.45 B C6 -** 
118 F 12.33 15.15 2.82 B T10 T9-T12 
142 F 10.75 13.96 3.21 C L2 - 
201 M 4.75 11.12 6.37 A C6 C5-T5 
202 F 12 15.13 3.13 NA L2 - 
206 F 3.67 8.07 4.4 D C1 - 
207 M 0.5 13.72 13.22 D C5 - 
208 M 2.08 8.08 6 A C8 C6-T1 
210 M 1.4 12.37 10.97 D C1 - 
211 F 1.58 12.60 11.02 NA NA T9-T11 
212 M 8.4 12.68 4.28 A T12 T10-T12 
213 M 3.4 8.04 4.64 A T7 T6-T8 
214 M 0.67 8.66 7.99 NA NA - 
215 M 13.58 14.96 1.38 A C8 C6-T2 
216 F 1.33 7.03 5.7 D L2 T12-L1 
217 M 15 16.99 1.99 B C4 C4-C6 
219 F 13.08 14.88 1.8 D T4 T4-T6 
220 M 2 16.94 14.94 D L3 T7-T11 
221 F 0.67 14.13 13.46 B T3 C7-T5 
222 M 2.91 8.15 5.24 NA T4 T2-T4 

* International Standards for Neurological Classification of Spinal Cord Injury 
**Cases where no abnormal signal was detected, the spinal cord signal appeared normal, or the assessment was inconclusive due 
to artifacts or image distortion. 
 

age range for all participants was 6–18 years. Demographic and injury information for SCI participants is summarized in Table 1. For 
some SCI participants, the AIS grade or level of injury is not provided in table due to incomplete ISNCSCI testing. This was due to testing 
limitations, including the patient’s inability to cooperate, non-testable dermatomes or myotomes due to a separate injury (e.g., brachial 
plexus injury), or unwillingness/inability to complete all parts of the examination (e.g., anorectal examination). 
 
Data Acquisition 

All participants underwent MRI scanning using a Siemens Verio (Erlangen, Germany) 3 Tesla MRI scanner. A 3D  turbo spin echo (TSE) 
T2-weighted isotropic SPACE sequence was employed, with the following imaging parameters: a repetition time (𝑇𝑅) of 1500 𝑚𝑠, an 
echo time (𝑇𝐸) of 122 𝑚𝑠, a voxel size of 1 × 1 × 1 𝑚𝑚3, a bandwidth of 751 𝐻𝑧/𝑝𝑥, a field of view (FOV) of 256 × 256 𝑚𝑚2, an 
acquisition matrix of 256 × 256 × 30, and an acquisition time of 3 minutes and 21 seconds. Each subject underwent two acquisitions: one 
covering the cervical to upper thoracic cord, and another covering the upper to lower thoracic regions. This ensured coverage from at least 
the C1 through the T12-L1 disc, with overlap to facilitate the effective stitching of the two slabs. All MRI scans were reviewed by a board-
certified pediatric neuroradiologist with over 30 years of experience, who assessed the presence of abnormal spinal cord signal changes. 
While many SCI cases exhibited clear abnormalities, some cases had no detectable abnormal signal or were deemed normal, while others 
were indeterminate due to artifacts or image distortion. In addition to undergoing imaging procedures, all participants diagnosed with SCI 
underwent a comprehensive evaluation using the ISNCSCI examination to determine their AIS category 6. These findings are detailed 
in Table 1. 
 
Preprocessing and Feature Extraction  

The initial step in the image processing involved stitching two slabs using the scanner provided software to generate a comprehensive 
spinal cord image that covered vertebral levels C1 to T11 for all participants. This approach provided a continuous and detailed 
representation of the spinal cord necessary for accurate segmentation and subsequent analysis (Figure 1.a). 

Following the stitching, the Spinal Cord Toolbox (SCT) was utilized for the segmentation of the spine and the labeling of vertebral 
levels for each subject 17. This process effectively isolated the spinal cord from surrounding tissues and enabled precise identification and 
labeling of vertebral levels (Figure 1.b,c). Each segmented and labeled image then underwent a rigorous quality check performed by 
research fellows trained overseen by a pediatric board certified pediatric neuroradiologist. Images with metal distortion or those deemed 
to have insufficient quality were excluded from the study to ensure the reliability of the data. Any discrepancies identified during the 
quality check were manually corrected to maintain the integrity of the dataset. 

For each axial slice of the spine, the CSA, RL width, and AP width were automatically extracted from this data set across all participants. 
The final measurements for each vertebral level from C1 to T11 were determined by averaging over the slices within each level (Figure 
1.d). 
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FIG 1. Workflow of the image processing steps. The initial stitching of two slabs to generate a continuous spinal cord image 
covering vertebral levels C1 to T11 (a). The segmentation (b) and labeling of vertebral levels (c) using the Spinal Cord Toolbox 
(SCT), isolating the spinal cord from surrounding tissues and accurately identifying vertebral levels. The measurement of cross-
sectional area (CSA), right-left (RL) width, and anterior-posterior (AP) width for each vertebral level, averaged over the axial 
slices. 
 
Statistical Analyses  

To evaluate the structural differences between pediatric SCI and TD participants, we examined the distribution of each structural parameter 
(CSA, AP width, RL width) across all vertebral levels (C1 to T11) to determine whether the data followed a normal distribution. These 
parameters represent measurable morphological changes in spinal cord dimensions and were selected as quantitative indicators of spinal 
cord volume, potentially reflecting atrophy or denervation associated with SCI. Based on this assessment, we selected the appropriate 
statistical tests: independent t-tests were applied to vertebral levels where all structural parameters followed a normal distribution, while 
the Mann-Whitney U test was used for parameters that did not meet the normality assumption. Some vertebral levels exhibited normal 
distributions for all structural parameters and were analyzed using t-tests (c6-T3), whereas others had a mix of normally and non-normally 
distributed parameters, requiring a combination of t-tests and Mann-Whitney U tests accordingly. A significance level of p<0.05 was 
adopted to identify statistically significant differences between the SCI and TD groups. 

Additionally, Spearman’s rank correlation coefficients were calculated to explore the relationship between each structural measure and 
the AIS categories. The AIS scale, while categorical, was treated as ordinal due to its ranked nature, making Spearman’s correlation 
appropriate for assessing monotonic relationships. This non-parametric test was selected due to its effectiveness in analyzing non-normally 
distributed data and its ability to assess monotonic relationships. Correlations were evaluated across all vertebral levels to understand how 
structural changes correlate with the severity of SCI, as categorized by the AIS group. Results were deemed statistically significant if p-
values were less than 0.05, indicating a meaningful difference or association between the parameters under investigation. 
 
Model Architecture and Training  

The model architecture designed for this study is a custom CNN developed to address the classification of SCI and TD participants, as 
well as to categorize the severity of the injury using the AIS grade (Figure 2). The model was initialized with random weights and was 
trained from scratch to learn relevant features from the input data. This architecture comprises two primary components: a CNN for feature 
extraction and a fully connected network for final classification. Efficiently capturing information from each spinal level, the CNN 
component considers both the above and below levels. This allows for the extraction of spatial features along the axial direction of the 
spinal cord, effectively encompassing the anatomical context surrounding each level. The model includes three convolutional layers, each 
with 32, 64, and 128 filters, respectively, with a filter size of 3. Each convolutional layer is followed by a ReLU activation function and a 
max-pooling layer with a pool size of 2 to reduce the spatial dimensions. The final convolutional layer's output is flattened and then 
combined with demographic features, height and age, before passing through two fully connected layers of 128 and 64 neurons, 
respectively. Additionally, dropout layers with a rate of 0.2 were added after each fully connected layer to reduce overfitting. The model 
is primed for two principal classification tasks: distinguishing between TD participants and those with SCI and categorizing injury severity 
according to the AIS classification. 

The CNN model was implemented using Python 3.9 and PyTorch 1.12.1. Training and inference were conducted on a cloud-based  
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FIG 2. Architecture of the custom CNN developed for classifying pediatric SCI and assessing injury severity using the AIS. The 
network consists of three convolutional layers with ReLU activation functions, followed by max-pooling layers to progressively 
reduce spatial dimensions while retaining key features. The extracted features are then augmented with demographic information, 
including height and age, before being passed through fully connected layers. The final layer utilizes a softmax activation function 
to predict class probabilities for both SCI/TD classification and ASIA Impairment Scale categories.  
 
high-performance computing environment equipped with an NVIDIA A100 GPU, an Intel CPU, and 16 GB of available RAM. The model 
was trained using a categorical cross-entropy loss function for both classification tasks, with the Adam optimizer set at an initial learning 
rate of 0.001. Training was conducted with a batch size of 32 over 100 epochs. A validation split of 20% was used to monitor the model’s 
performance, and early stopping was implemented with a patience of 5 epochs based on validation loss to prevent overfitting.  

To ensure robust performance evaluation, 30 models were trained with different 80/20 splits of the dataset into training and testing sets. 
The training dataset was shuffled before each epoch to ensure a balanced representation of classes within each batch. The accuracies of 
these models were averaged to obtain a more reliable estimate of model performance. For each of the 30 trained models, we computed 
precision, recall, F1 score. These were averaged across all models to assess the overall performance of the CNN in distinguishing AIS 
categories. 

In addition to the custom CNN, traditional machine learning models, such as random forest and SVM, were also employed for 
comparison. The random forest model was implemented using the scikit-learn library with a maximum tree depth of 10, and the SVM 
model used a radial basis function kernel. Both models were trained on the same feature set to benchmark the performance of the deep 
learning approach. The results of the traditional models were compared against the CNN’s performance to evaluate the relative 
effectiveness and robustness of the deep learning techniques. 

RESULTS 

Significant structural differences (p<0.05) were observed between pediatric SCI and TD participants across all measured parameters—
CSA, AP width, and RL width—at multiple vertebral levels from C1 to T11 (Figure 3). For CSA, SCI participants exhibited significantly 
reduced values compared to TD controls at all vertebral levels. Similarly, RL width showed significant differences at all vertebral levels. 
For AP width, significant reductions were observed at most vertebral levels, except for C2, C3, and T5, where the differences did not reach 
statistical significance (Figure 4).  

Correlation analysis revealed moderate to strong relationships between structural measures and AIS categories (Figure 5). Particularly 
at levels C6 and C7, CSA showed moderate correlations with the AIS scale, with coefficients ranging from 0.37 to 0.51, suggesting an 
association with injury severity. The AP width also demonstrated moderate correlations, with values reaching up to 0.49, indicating its 
meaningful relationship with the severity of injury. The RL width showed the strongest correlations, with coefficients up to 0.56. 

The custom CNN-based models demonstrated high accuracy in distinguishing between TD and SCI participants. The CNN achieved 
an accuracy of 96.59% on the test set (95% confidence interval (CI): 94.50% - 98.68%). Integrating structural parameters with deep 
learning models enabled accurate prediction of AIS categories. The model achieved an overall accuracy of 94.92% in predicting the AIS 
category of the test set (95% CI: 92.10% - 97.74%). In comparison, traditional models showed lower accuracy: the random forest model 
achieved 74.00% accuracy (95% CI:  69.00% - 79.00%), and the SVM model achieved 68.89% accuracy (95% CI: 63.00% - 74.00%). 
Table 2 presents the results for both the TD/SCI classification and the AIS category determination tasks across all models. The model 
exhibited strong precision, recall, and F1 scores across the AIS categories, with nearly perfect precision for AIS A and B categories (Table 
3). 

Table 2: Classification Accuracy of SVM*, Random Forest, and CNN models. 
Task SVM Random forest CNN 

TD/SCI Classification 0.7635 0.7842 0.9559 
AIS Classification 0.6889 0.7400 0.9492 

* Support Vector Machine 
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Table 3: CNN model performance for classification of AIS grades. 
Category Precision Recall F1-Score 

A 0.99 0.95 0.97 
B 0.99 0.93 0.94 
D 0.95 0.94 0.94 
TD 0.88 0.98 0.93 

 

 

FIG 3. Cross-sectional measurements of cross-sectional area (CSA), right-left (RL) width, and anterior-posterior (AP) width 
averaged for all typically developing (TD) and spinal cord injury (SCI) participants across vertebral levels C1 to T11. The figure 
displays mean values with standard deviation bars, highlighting differences between TD and SCI groups at each vertebral level. 

 

FIG 4. Structural differences between pediatric spinal cord injury (SCI) and typically developing (TD) participants across measured 
parameters—cross-sectional area (CSA), anterior-posterior (AP) width, and right-left (RL) width—at vertebral levels C1 to T11. 
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FIG 5. Correlation analysis between structural measures (CSA, AP width, RL width) and AIS categories, showing moderate to strong 
relationships. 

DISCUSSION 

This study demonstrates the potential of combining high-resolution MRI structural measurements with deep learning techniques for 
assessing chronic spinal cord injuries in pediatric populations. The results underscore the effectiveness of deep learning techniques in 
capturing complex patterns in high-dimensional MRI data and highlight significant differences in spinal cord structure between SCI and 
TD participants. 

The significant differences observed in CSA, AP width, and RL width between SCI and TD participants corroborate previous studies 
that have noted structural alterations associated with SCI 14. The reduction in CSA, AP width, and RL width in SCI participants is consistent 
across all vertebral levels from C1 to T11, emphasizing that structural changes are widespread and not limited to specific segments. These 
findings support the utility of cross-sectional measurements as biomarkers for assessing SCI and underline the importance of 
comprehensive spinal cord imaging in pediatric SCI evaluations. 

The custom CNN demonstrated exceptional performance in distinguishing between SCI and TD participants, achieving an accuracy of 
96.59%. This performance highlights the CNN's ability to effectively leverage spatial features along the spinal cord, incorporating 
information from adjacent levels to enhance classification accuracy. Moreover, the integration of structural parameters with deep learning 
models facilitated accurate prediction of AIS categories, with the CNN model achieving an overall accuracy of 94.92% in this task. 

The robustness of the model is further highlighted by its high precision, recall, and F1 scores across the different AIS categories. The 
nearly perfect precision for AIS grade A and B categories suggests the CNN is particularly reliable in correctly identifying severe cases of 
spinal cord injury. Additionally, the high recall for TD participants indicates the model's proficiency in recognizing typically developing 
individuals. However, the slightly lower precision for the TD group suggests a minor tendency to classify other categories as TD, possibly 
due to overlapping structural features between less severe SCI cases and TD participants. 

Traditional machine learning models, including random forest and SVM, were evaluated as benchmarks against the CNN. The random 
forest model achieved an average accuracy of 74.00%, and the SVM model achieved 68.89%. These results indicate that while traditional 
models provide useful insights, they do not match the performance of deep learning techniques in this context. 

In our dataset, 35% of SCI participants had either no detectable abnormal signal or were indeterminate due to artifacts or image 
distortion, as assessed by a board-certified pediatric neuroradiologist. Despite this, our CNN-based model achieved high classification 
accuracy, demonstrating that MRI-derived structural parameters (CSA, AP width, and RL width) can effectively differentiate SCI from 
TD participants and predict AIS severity, even in cases where clear abnormal signal was not identified. This suggests that subtle structural 
changes, which may not always be visually apparent, still provide meaningful diagnostic information that deep learning models can 
leverage.  

While distinguishing SCI from TD participants may not hold direct clinical significance, this classification serves as a critical first step, 
demonstrating that MRI contains rich, quantitative information that can be leveraged for automated analysis. The ability to predict AIS 
categories is particularly relevant, as it provides an objective alternative to current methods that depend heavily on subjective evaluations. 
This capability could reduce inter-clinician variability, standardize clinical workflows, and enable consistent monitoring of SCI 
progression. In complex or ambiguous cases, such as unresponsive patients or those with unclear trauma histories, imaging-based tools 
could serve as valuable adjuncts to clinical assessments. Moreover, as these models improve, they may enhance patient stratification for 
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treatment planning and serve as a foundation for developing personalized therapeutic strategies. 
Acute pediatric SCI cases were not included in this study due to the challenges in recruiting these patients, as acute cases are less 

commonly available for research participation. As a result, this study focused on chronic SCI, where recruitment was more feasible, and 
structural changes had stabilized, allowing for reliable imaging and analysis. However, if acute-phase data were available, our current 
analysis pipeline would be applicable for segmentation and evaluation. Future studies incorporating acute-phase pediatric SCI imaging 
would provide valuable insights into early-stage structural changes and their potential role in predicting long-term outcomes. 

In this study, we used 3D T2-weighted imaging to extract spinal cord structural parameters, ensuring consistent and high-resolution 
segmentation across vertebral levels. However, the same analysis applies to 2D T2-weighted images, as CSA, AP width, and RL width are 
calculated from axial slices and averaged within each vertebral level. This makes 2D imaging a viable option for structural assessment if 
slice positioning and spacing are carefully controlled. The main limitation of 2D imaging is its sensitivity to variations in slice positioning 
within a vertebral level. While 3D imaging provides isotropic resolution for more precise averaging, 2D acquisitions depend on pre-defined 
slice thickness and spacing, which could introduce variability if not standardized. Despite this, 2D sequences can still provide meaningful 
structural insights if slices are carefully selected for consistent anatomical coverage. Additionally, while this study did not include metal-
suppression techniques, surgical hardware in some SCI cases may introduce susceptibility artifacts that affect image quality. Future studies 
could explore advanced MRI acquisition methods including view-angle-tilting (VAT) and slice encoding for metal artifact correction 
(SEMAC) to mitigate metal-induced distortions, improving spinal cord visualization in post-surgical SCI cases and enhancing the accuracy 
and reliability of structural analyses. The future application of the deep learning approach used in this study to 2D and VAT/SEMAC 
sequences has potential improve the generalizability of these results and allow for utilization in a broader variety of imaging scenarios. 

Despite the promising results, there are limitations to this study. The dataset, while substantial for this population, is limited to pediatric 
chronic SCI, and the models' performance may vary with different datasets or clinical settings. Future research should focus on validating 
these findings with larger, diverse datasets and exploring longitudinal analyses to track changes over time. Additionally, incorporating 
other imaging modalities and advanced techniques, such as transfer learning and multi-modal data integration, could further enhance model 
performance and clinical applicability. Because this study used imaging at the chronic stage of SCI, these results cannot be used directly 
for prognostic purposes, but the high accuracy is encouraging for future applications with acute imaging. To this point, longitudinal studies 
spanning from the acute to chronic stages are essential to comprehensively understand SCI progression and to develop predictive models 
capable of assessing both current severity and future functional outcomes based on structural changes over time. 

CONCLUSIONS 

This study highlights the significant potential of integrating high-resolution MRI structural measures with deep learning techniques for the 
classification of pediatric SCI. By quantitatively analyzing structural parameters such as CSA, AP width, and RL width, we observed 
significant differences between TD participants and those with SCI. These structural alterations were effectively captured and analyzed 
using convolutional neural network (CNN) models, achieving high accuracy in classifying TD and SCI cases, and classification of AIS 
categories. The CNN models demonstrated an accuracy of 96.59% in distinguishing between TD and SCI, and an accuracy of 94.92% in 
predicting the AIS categories. The ability to accurately classify SCI and AIS categories can significantly enhance diagnostic and prognostic 
capabilities, leading to more personalized and effective treatment strategies for pediatric SCI patients.  
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