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ABSTRACT 

BACKGROUND AND PURPOSE: Portable MRI (pMRI) has emerged as a cost-effective and accessible tool for the identification of white 
matter hyperintensities (WMH), an independent risk factor for stroke and dementia. Our objective was to confirm that pMRI can 
produce accurate WMH measurements and to develop and validate a risk model to predict WMH on pMRI for the purpose of identifying 
patients who may benefit from pMRI screening. 

MATERIALS AND METHODS: The development (N=143) and validation (N=127) cohorts included patients without acute neurologic 
pathology who received a pMRI at a tertiary care hospital between May 2020 and July 2024. The development cohort included pMRIs 
collected as part of a prospective WMH screening pilot program in the emergency department. The validation cohort was a 
retrospective collection of pMRIs obtained for separate research purposes. Conventional MRIs (cMRIs) in the validation cohort 
obtained within 3 months of pMRIs were used for additional validation and device agreement. The primary outcome was WMH burden 
greater than 10 mL, assessed via an axial T2-FLAIR sequence acquired on a 0.064 T pMRI and quantified using a WMH segmentation 
software developed to process sequences of any resolution. We used backwards selection to screen candidate variables and report 
the area under the curve of the resulting model.   

RESULTS: The final model, which included age, systolic blood pressure >140, atrial fibrillation, and tobacco use, achieved an AUC 
of 0.83 (95% CI 0.75-0.90) in the development cohort (N=143, 62.4±12.6 years, 44% female, 36% non-white race) and 0.85 (95% CI 
0.77-0.92) in the validation cohort (N=127, 65.2±16.8 years, 51% female, 34% non-white race), with similar results using WMH 
measurements derived from cMRI (N=120, p=0.98, AUC=0.86, 95% CI 0.77-0.93). Additionally, we confirmed agreement in WMH 
volumes between pMRI and cMRI (N=120, r=0.93, 95% CI 0.90-0.95, p<0.001). 

CONCLUSIONS: The WMH risk score demonstrated accurate performance and reproducibility across cohorts, supporting its potential 
as a screening tool for identifying patients at risk of significant WMH burden. Appropriately targeted pMRI screening in high-risk 
individuals could allow providers and patients to proactively manage vascular risk factors and improve neurological outcomes. 

ABBREVIATIONS: pMRI = portable magnetic resonance imaging; cMRI = conventional magnetic resonance imaging; WMH = white 
matter hyperintensity; hypertension = HTN; diabetes = DM; atrial fibrillation = AFib; systolic blood pressure = SBP; hyperlipidemia = 
HLD; area under the curve = AUC; receiver operating characteristic = ROC. 

 
 
Received month day, year; accepted after revision month day, year. 
From the Department of Neurology (I.P.J, H.B, J.S, E.P, A.C, L.L, D.L, K.N.S, A.D), Department of Radiology (G.S, S.P), and Department of Emergency 
Medicine (G.D, C.W), Yale School of Medicine, New Haven, CT, USA; Department of Neurology (A.S, W.T.K), Center for Genomic Medicine (A.S, W.T.K), 
and Athinoula A. Martinos Center for Biomedical Imaging  (J.E.I, M.S.R), Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; 
Centre for Medical Image Computing (J.E.I), University College London, London, UK; Computer Science and Artificial Intelligence Laboratory (J.E.I), 
Massachusetts Institute of Technology, Cambridge, MA, USA. 
 
Matthew Rosen is a founder and equity holder of Hyperfine, Inc. Dr Sheth reports investigator-initiated clinical research funding to Yale from Hyperfine, 
Inc, Biogen, and Bard; reports from Sense for data and safety monitoring services; compensation from Cerevasc for consultant services; compensation 
from Rhaeos for consultant services, compensation from Certus for consultant services; and a patent pending for Stroke wearables licensed to Alva 
Health. Dr de Havenon has received investigator-initiated clinical research funding from the American Academy of Neurology, has received consultant 
fees from Integra and Novo Nordisk, has equity in TitinKM and Certus, and receives author fees from UpToDate. Both Dr Sheth and Dr de Havenon report 
investigator-initiated clinical research funding to Yale from Genentech. Hyperfine had no role in the conceptualization, design, analysis, preparation 
of the manuscript, or decision to publish. 
 
Please address correspondence to Adam de Havenon, MD, MS, Department of Neurology, Yale School of Medicine, 15 York Street, New Haven, CT 06510, 
USA; adam.dehavenon@yale.edu. 
 

 Published March 12, 2025 as 10.3174/ajnr.A8734

 Copyright 2025 by American Society of Neuroradiology.



2  

 

 SUMMARY SECTION 

PREVIOUS LITERATURE: White matter hyperintensities (WMH) are an established biomarker of vascular brain health, associated with 
stroke and dementia. While conventional MRI is the standard for WMH detection, its high cost and limited accessibility have prevented 
widespread screening. Portable MRI (pMRI) has emerged as an alternative, providing accurate WMH measurements at a fraction of 
the cost. Future efforts deploying pMRI for brain health screening would benefit from objective tools to triage patients by risk for 
clinically actionable WMH burden. We have addressed this need by developing and validating a WMH prediction model tailored for 
pMRI. 

 

KEY FINDINGS: We developed a WMH risk model using pMRI data, incorporating age, systolic blood pressure >140, atrial fibrillation, 
and tobacco use, demonstrating high accuracy in the development (AUC=0.83) and validation (AUC=0.85) cohorts. Additionally, we 
confirmed strong correlation between pMRI and conventional MRI WMH measurements (r=0.93). 

 

KNOWLEDGE ADVANCEMENT: This study presents a WMH risk model that may be used to identify patients with the greatest risk for 
severe WMH burden. Identifying high risk patients may allow providers to fairly and efficiently deploy pMRI resources where they will 
have the greatest impact.  

 

 

INTRODUCTION 

As the global population ages, the economic and health burden caused by dementia and cerebrovascular injury emphasizes the need for 
biomarkers to detect changes in brain health before the onset of neurodegenerative disease and brain injury. White matter hyperintensities 
(WMH) are one such biomarker that are well-established indicators of vascular brain health and are an independent risk factor for 
cardiovascular disease, stroke, and dementia.1–5 WMH are most often attributed to cerebral small vessel disease and are strongly linked to 
vascular risk factors, including hypertension (HTN), diabetes (DM), atrial fibrillation (AFib), and tobacco use.6–13 Management of risk 
factors can slow WMH accumulation, making early detection a promising opportunity to proactively support brain health.14 However, 
large-scale WMH screening remains constrained by the high cost and accessibility barriers of conventional MRI, particularly for 
socioeconomically disadvantaged populations. 

 
Portable MRI (pMRI) has emerged as a cost-effective and accessible tool for the identification of WMH. pMRI devices are available 

at a fraction of the cost of conventional MRI units, are compact enough to be brought directly to patients, and can be deployed anywhere 
with a standard 120V wall outlet. Additionally, their low-field magnet does not present the same risk as conventional MRI, and they can 
be operated without the need for dedicated technicians or shielding. Recent studies have assessed the image quality and accuracy of pMRI 
in hospital and outpatient cohorts with neurologic disease, including WMH, with high reliability.15–23 Leveraging pMRI for WMH 
detection could enable large-scale screening efforts previously unattainable due to resource constraints. 

 

Previously developed WMH risk models have found age and HTN to be the strongest predictors of WMH.24,25 To confirm these 
findings, and to develop a model that is uniquely suited to facilitate patient triage for pMRI screening, we have developed and validated a 
WMH risk prediction model built specifically with pMRI data that incorporates readily available clinical and demographic variables. We 
hypothesized that this risk score would accurately predict clinically actionable WMH burden, allowing providers to prioritize the delivery 
of pMRI resources to patients with the highest risk for WMH. Additionally, we sought to provide further confirmation that pMRI can 
provide accurate WMH measurements in a large and diverse cohort. 

 
We believe that a WMH risk score would enable unbiased and efficient delivery of pMRI screening to patients facing the greatest need 

for imaging. Disparities in access to diagnostic imaging disproportionately affect racial minorities and economically disadvantaged 
patients, populations at higher risk of cardiovascular disease and dementia.26–33 The emergency department, as a safety‐net setting, often 
serves as the primary point of care for high risk individuals.34 Thus, this environment provides a unique opportunity to identify patients 
who are both at high risk for the neurological consequences of inadequate vascular risk factor control and face the greatest barriers to 
accessible neuroimaging. 

 

MATERIALS AND METHODS 

Development and Validation Cohorts 

The development cohort was made up of 143 patients who participated in a pilot program for WMH screening among patients with at least 
one vascular risk factor. Patients were prospectively enrolled at a tertiary care emergency department between December 2021 and July 
2024. Participants were approached for the study based on the presence of cardiovascular risk factors, including systolic blood pressure 
(SBP) above 160 upon presentation, medical history of HTN, use of anti-hypertensive medications, HLD, DM, AFib, or other 
cardiovascular disease. All 143 participants underwent a pMRI study on a 0.064 T MRI (Swoop (Version 8.1-9.0), Hyperfine Inc., Guilford, 
CT) with 124 completing a Montreal Cognitive Assessment. The pMRI study included an axial T2-FLAIR following manufacturer’s 
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standard protocol (repetition time msec/echo time msec/inversion time (TR/TE/TI) = 4000/234/1400 msec; in-plane resolution = 1.6 x 1.6 
mm; slice thickness = 5 mm; study time = 9:35 min). Each pMRI study was reviewed for significant artifacts. Based on this review, we 
did not exclude any scans from the analysis. Candidate risk variables for model construction were collected by bedside questionnaire. 
Patients with incomplete questionnaires were backfilled using data from the EHR. Inclusion criteria for the analysis were absence of acute 
neurological pathology and a completed pMRI scan. Given our goal to estimate risk of WMH before the development of stroke or other 
cerebrovascular pathology, we excluded 16 patients with a prior stroke. Six patients with incomplete questionnaires were completed using 
data from the EHR. 

Table 1. Clinical characteristics in development and validation cohort. 

Characteristic  Development 
cohort (n=143) 

Validation 
cohort (n=127) 

P value 

Age 62.4±12.6 65.2±16.8 0.12 

Female Sex 63 (44%) 65 (51%) 0.24 

BMI 31.4±17.2 -  

Non-white race 51 (36%) 43 (34%) 0.80 

Hispanic 21 (15%) -  

≥ College education 57 (42%) -  

Employment status 
  

 

   Employed 64 (47%) -  

   Unemployed 21 (16%) -  

   Retired 50 (37%) -  

   Insured 128 (93%) -  

Usual source of care 
  

 

   Community health center 9 (6%) -  

   Hospital clinic or outpatient department 31 (23%) -  

   Private doctor’s office 92 (68%) -  

Hypertension 100 (72%) 92 (72%) 0.93 

Systolic blood pressure > 140 77 (54%) 66 (52%) 0.76 

Antihypertensive medication 93 (65%) 77 (61%) 0.46 

Congestive heart failure 15 (11%) -  

Myocardial Infarction 21 (13%) -  

Repeated falls 53 (39%) -  

Atrial fibrillation 22 (16%) 30 (24%) 0.13 

Hyperlipidemia 98 (71%) 80 (63%) 0.17 

Diabetes 45 (33%) 48 (38%) 0.38 

Current smoker 17 (13%) 14 (11%) 0.57 

Alcohol use 43 (32%) 42 (33%) 0.80 

Montreal Cognitive Assessment (n=124) 24 (21-26 IQR) -  

WMH Volume (mL) 9.2±6.4 11.9±8.4 0.02 
Binary variables presented as n (%); ordinal variables as median (interquartile range); and continuous variables as mean±SD. T-
test for continuous variables and Chi-Squared tests for categorical variables were used to compare the development and validation 
cohort across demographic and clinical variables. Given the non-parametric distribution of WMH burden in both cohorts, a Mann-
Whitney U test was used to compare WMH burden. Of note, the validation cohort is a limited data set that does not include 
variables that were part of the demographic survey given to patients in the development cohort, resulting in fewer variables 
available in the validation cohort.  
 

The validation cohort included a limited data set of 127 pMRIs obtained retrospectively at the same hospital for separate research 
projects utilizing pMRI between May 2020 and July 2024. We included all patients who received a physician-requested or research portable 
MRI, did not have acute intracranial pathology, and consented to retrospective analysis of their imaging studies and health records. We 
excluded two patients who declined health record access. In this cohort, 120 patient cMRIs with axial T2-FLAIR obtained within 3 months 
of pMRI were included for additional validation of pMRI WMH measurements and model performance on conventional images. cMRI 
studies were obtained on a 3 T device using an 8-channel sensitivity encoding head coil (MAGNETOM Verio, Siemens, Erlangen, 
Germany) with the following protocol for axial T2-FLAIR: repetition time msec/echo time msec/inversion time (TR/TE/TI) = 
9000/91/2500 msec; in-plane resolution = 1.6 x 1.6 mm; slice thickness = 5.0 mm; study time = 5:30 min. This study operated under a 
research protocol approved by the university Institutional Review Board and informed consent was obtained from all participants. 
 

WMH Measurement and Volume Agreement 

The primary outcome was moderate to severe WMH. To assess WMH burden, axial T2-FLAIR acquisitions were processed using WMH-
SynthSeg in FreeSurfer, a validated open-source machine learning algorithm built to measure WMH on MRI sequences of any contrast or 
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resolution, including pMRI.22 We excluded patients with acute brain injury as any hyperintense pathology can be erroneously flagged as 
WMH by WMH-SynthSeg. We defined moderate to severe WMH burden as a volume greater than or equal to 10 mL, previously 
established as the threshold for clinically relevant WMH.35–37 To assess volumetric agreement between devices, patients in the validation 
cohort with cMRI obtained within three months of patient pMRIs were also processed with WMH-SynthSeg. We compare raw cMRI and 
pMRI volumes and assess device agreement in detection of moderate to severe WMH (>10 mL).  
 

Variable Selection and Model Construction 

Candidate WMH risk variables included previously established risk factors and variables that are readily available in the EHR. In the 
development cohort, we collected 20 clinical and demographic variables from each patient (Table 1). A backwards stepwise logistic 
regression model (p=0.1) was used to identify the strongest predictors of WMH in the development cohort. Accuracy of the model was 
measured by the area under the curve (AUC) of the receiver operating curve (ROC). With a clinical interest in maximizing sensitivity 
while maintaining a specificity greater than 40%, we used a positive outcome threshold of >0.2 to select a ROC cut-point. The model was 
then applied to the validation cohort using volumes from both pMRI and cMRI with DeLong’s test used to compare ROC curves. The 
TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis) + AI checklist was followed 
in adherence with standardized reporting of prediction models (see Online Supplemental Data). 
 
Statistical Analysis 
All statistical analysis was performed in Python (Version 3.13.1, Python Software Foundation). Pearson’s correlation and Cohen's kappa 
(κ) were used to assess pMRI and cMRI agreement in raw volumes and detection of WMH over 10 mL respectively. T-test for continuous 
variables and Chi-Squared tests for categorical variables were used to compare the development and validation cohort across demographic 
and clinical variables. Given the non-parametric distribution of WMH burden in both cohorts, a Mann-Whitney U test was used to compare 
WMH burden. A p-value < 0.05 was considered statistically significant. Study data is available upon request. 
 

 

FIG 1. Representative example of WMH detection on pMRI, with paired cMRI and automatically segmented lesions outlined (blue). 

RESULTS 

Development Cohort 

The WMH prediction model was trained on data from 143 participants (mean 62.4±12.6 years, 44% female, 36% non-white race) who 
presented to an urban tertiary care emergency department between December 2021 and July 2024. A complete summary of clinical and 
demographic characteristics is available in Table 1. 72% of patients had a diagnosis of HTN, 65% were taking an anti-hypertensive 
medication, 54% had a SBP over 140, 16% had AFib, 71% had HLD, 33% had DM, 32% reported alcohol use, and 13% reported tobacco 
use. The median (IQR) WMH burden was 7.5 (5.1-11.1) mL, with 29% of participants presenting with moderate to severe WMH. An 
example of the pMRI axial FLAIR acquisition with a paired cMRI and automated WMH segmentation is shown in Fig 1. Through 
backwards selection, we identified four variables to be included in the final WMH prediction model: age, diagnosis of AFib, tobacco use, 
and SBP > 140 (Table 2). The AUC for the risk model in the development cohort was 0.83 (95% CI 0.75-0.90); for a positive outcome 
threshold >0.2, the model was 86% sensitive and 61% specific (Fig 2A).  
 

Validation Cohort 

The validation cohort included 127 patients (65.2±16.8 years, 51% female, 34% non-white race) enrolled between May 2020 and July 
2024. Vascular risk factors were present at similar rates to the development cohort: 72% of patients had a diagnosis of HTN, 61% were 
taking a BP medication, 52% had a systolic BP over 140, 24% had AFib, 63% had HLD, 38% had DM, 33% reported alcohol use, and 
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11% were current smokers (Table 1). Demographic and clinical variables did not differ significantly between cohorts (all p > 0.05, Table 
1). The median (IQR) WMH burden in this cohort was 9.2 (5.2-16.7) mL, with 46% of participants presenting with greater than 10 mL 
WMH. The WMH burden in the validation cohort was significantly higher than the development cohort (p=0.02). The AUC in the 
validation cohort was 0.85 (95% CI 0.77-0.92); for a positive outcome threshold of >0.2 the model was 97% sensitive and 60% specific 
(Fig 2B). In this cohort, both age (p<0.001) and systolic BP over 140 (p=0.002) were significantly associated with WMH over 10 mL, 
while Afib (p=0.17) and tobacco use (p=0.82) were not. Finally, applying the model to WMH volumes derived from 120 cMRI studies in 
the validation cohort produced nearly identical results (p=0.98, AUC=0.86 95% CI 0.77-0.93). 

 

FIG 2. ROC curves for the WMH prediction model applied to the (A) development (N=147) and (B) validation (N=127) cohorts. AUC 
in the development cohort was 0.830 (95% CI 0.747-0.897) and 0.854 (95% CI 0.774-0.922) in the validation cohort using pMRI WMH 
volumes as the outcome variable. When using cMRI WMH volumes in the validation cohort (N=120), the AUC was 0.856 (95% CI 
0.773-0.931).      

Table 2. Multivariable logistic regression model predicting WMH. 

 

 

 

 

 

 

 

Agreement in pMRI vs cMRI 

Among all paired pMRI and cMRI in the validation cohort, WMH volumes showed strong correlation (N=120, r=0.93, 95% CI 0.90-0.95, 
p<0.001) (Fig 3). Additionally, there was strong agreement between devices for detection of moderate to severe WMH (>10 mL) (κ=0.83), 
confirming the reliability of pMRI to assess WMH burden. On average, pMRI underestimated WMH burden by 6.3%. There were no 
significant outliers when comparing volumes between devices (Z-score >3).  

 

 

FIG 3. WMH volume scatterplot and linear fit of WMH volumes from pMRI compared to cMRI using WMH-SynthSeg (r = 0.93 (95% CI 
0.90-0.95), p < 0.001). 

Variable Coefficient Multivariate analysis 
OR (95% CI) 

P value 

Age 0.110 1.12 (1.07-1.17) <0.001 

Atrial Fibrillation 1.539 4.66 (1.44-15.05) 0.01 

Tobacco Use 1.704 5.497 (1.45-20.77) 0.01 

Systolic BP>140 1.115 3.05 (1.19-7.81) 0.02 
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DISCUSSION 

This study presents a patient-level risk model for predicting clinically actionable WMH burden. The model leverages four readily available 
clinical factors: age, diagnosis of atrial fibrillation, tobacco use, and systolic BP over 140, all of which are well-established WMH risk 
factors. 6,8,9,13,14 The present model mirrors others in its consideration of HTN and age as significant predictors of WMH, while including 
Afib and tobacco use as additional variables to consider.24,25 Our model was validated across two independent cohorts, supporting its utility 
in clinical and research settings. The high sensitivity of this model, along with the strong agreement in WMH volumes between pMRI and 
cMRI, demonstrates the potential of pMRI as a transformative tool for brain health monitoring.20,23 We believe that this model could be 
used to help clinicians fairly and efficiently provide portable MRI scans to patients with the highest risk for clinically actionable WMH. 
While practice guidelines currently do not recommend clinical interventions for WMH, making brain MRI accessible to ascertain WMH 
may further future investigation. 

 
While the prohibitive cost of large-scale WMH screening has made individual risk scores unnecessary, recent developments in pMRI 

technology have opened the door to cost-effective and accessible screening. Through robust agreement of pMRI and cMRI WMH volumes 
(r=0.93), and ability of pMRI to detect moderate to severe WMH (κ=0.83), we have confirmed that pMRI is a reliable and accurate tool 
for WMH ascertainment. These measures together indicate that while there may be small differences in WMH volume between pMRI and 
cMRI, these differences would not change clinical interpretations of WMH burden. While the lower magnetic field strength of pMRI 
reduces the signal-to-noise ratio and thus reduces image resolution, advancements in machine learning tools like WMH-SynthSeg and on-
device AI image reconstruction have shown that low-field devices can nonetheless produce images of sufficient quality.  

 
Given that up to 90% of stroke risk and 50% of dementia risk is modifiable, it is imperative that our healthcare networks develop 

infrastructure to proactively monitor brain health.42–44 While several factors contribute to brain health, WMH stands out as a prominent 
biomarker due to its close association with vascular health, stroke, and dementia.1-5 Measuring WMH as a surrogate for brain health will 
allow physicians to assess risk for multiple cerebrovascular pathologies and will provide patients with a salient marker of the impact that 
vascular risk factors have on their brain. pMRI technology enables early detection of WMH on a scale far beyond what was previously 
feasible. As pMRI is deployed in new settings, WMH risk stratification will be necessary to fairly allocate resources to those with the 
highest risk of clinically actionable WMH, while avoiding unnecessary burden to primary care and safety-net services. Additionally, risk 
stratification may be applied to clinical trials assessing the feasibility of large-scale WMH screening. 

 
A major strength of the present model is the diversity of the development cohort. This cohort closely mirrors the general population 

across race, sex, and education level. Additionally, the emergency department is often where disadvantaged populations with unmanaged 
vascular risk factors access the healthcare system, making it a setting where many would benefit from WMH screening. The median WMH 
volume in the development cohort (7.5 mL) is comparable to another population-based cohort of similar average age (6.8 mL), indicating 
that this model may predict WMH burden in the general population.45 Additionally, the model’s accurate performance in both cohorts 
despite the significant difference in WMH burden (p=0.02) demonstrate that it may be generalizable to populations with variable WMH 
burden; however, further use of pMRI in the general population is necessary to validate this claim. The model is further strengthened by 
the fact that it was developed using pMRI data, making it uniquely equipped for immediate use with this imaging modality. At the same 
time, its accurate performance using standard-of-care images indicates that it can also be applied to screening efforts utilizing conventional 
MRI. While we believe that this model can accurately predict WMH burden, an MRI, either portable or conventional, is ultimately 
necessary to make a definitive determination of WMH severity.  

 
This model has several potential limitations. First, the development cohort was smaller than other population-based cohorts that have 

assessed WMH. Additionally, this cohort was comprised of patients with at least one vascular risk factor who presented to the ED, 
potentially biasing the model towards higher WMH burden and limiting its generalizability to the general population or younger 
populations. Furthermore, the validation cohort, selected from patients with a wide range of clinical presentations, including suspected 
strokes, complaints of dizziness, post pituitary resections, and COVID, is unlikely to represent a random sample of the population, limiting 
its generalizability. The present model prioritizes high sensitivity (86-97%) meaning that very few patients with high WMH will be 
incorrectly categorized as low risk; on the other hand, the model may generate up to 40% false positives. While pMRI presents minimal 
patient risk, we recognize that the high false positive rate may lead to the use of pMRI in cases where it is not needed. 

 
We must also consider the potential limitations of pMRI technology. While we have demonstrated robust agreement between pMRI 

and cMRI, the lower resolution of pMRI may prevent the accurate detection of smaller WMH volumes. Additionally, while the pMRI 
exam can be completed in 15 minutes by clinical staff with limited training, this analysis does not address workflow in the primary care 
or outpatient setting. 

 
These limitations need to be explored with continued research in population-based cohorts and a focus on the potential costs and 

benefits of screening initiatives. Future research applying this model to WMH screening in a primary care setting, especially with 
longitudinal health outcomes, will further support its clinical utility. 
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CONCLUSIONS 

This study presents a validated risk model for predicting WMH burden. Four simple clinical factors, age, systolic blood pressure > 140 
mm Hg, atrial fibrillation, and tobacco use, predicted WMH burden in pMRI with high sensitivity and robust performance across cohorts, 
supporting its utility for targeted screening in diverse populations. The integration of this risk model with pMRI offers a practical tool to 
identify patients who should receive a pMRI for WMH detection, particularly in underserved settings where conventional imaging access 
is limited. Early WMH detection in high-risk patients will enable proactive risk factor management, with the potential to improve outcomes 
in brain and cardiovascular health. Future investigation applying this model as a screening tool in primary care or emergency department 
cohorts should be explored.  
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