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ORIGINAL RESEARCH
ARTIFICIAL INTELLIGENCE

Automated Idiopathic Normal Pressure Hydrocephalus
Diagnosis via Artificial Intelligence–Based 3D T1 MRI

Volumetric Analysis
Joonhyung Lee, Dana Kim, Chong Hyun Suh, Suyoung Yun, Kyu Sung Choi, Seungjun Lee, Wooseok Jung,

Jinyoung Kim, Hwon Heo, Woo Hyun Shim, Sungyang Jo, Sun Ju Chung, Jae-Sung Lim, Ho Sung Kim,
Sang Joon Kim, and Jae-Hong Lee

ABSTRACT

BACKGROUND AND PURPOSE: Idiopathic normal pressure hydrocephalus (iNPH) is reversible dementia that is underdiagnosed. The
purpose of this study was to develop an automated diagnostic method for iNPH using artificial intelligence techniques with a T1-
weighted MRI scan.

MATERIALS AND METHODS: We quantified iNPH, Parkinson disease, Alzheimer disease, and healthy controls on T1-weighted 3D
brain MRI scans using 452 scans for training and 110 scans for testing. Automatic component measurement algorithms were devel-
oped for the Evans index, Sylvian fissure enlargement, high-convexity tightness, callosal angle, and normalized lateral ventricle vol-
ume. XGBoost models were trained for both automated measurements and manual labels for iNPH prediction.

RESULTS: A total of 452 patients (200 men; mean age, 73.2 [SD, 6.5] years) were included in the training set. Of the 452 patients,
111 (24.6%) had iNPH. We obtained area under the curve (AUC) values of 0.956 for automatically measured high-convexity tightness
and 0.830 for Sylvian fissure enlargement. Intraclass correlation values of 0.824 for the callosal angle and 0.924 for the Evans index
were measured. By means of the decision tree of the XGBoost model, the model trained on manual labels obtained an average
cross-validation AUC of 0.988 on the training set and 0.938 on the unseen test set, while the fully automated model obtained a
cross-validation AUC of 0.983 and an unseen test AUC of 0.936.

CONCLUSIONS:We demonstrated a machine learning algorithm capable of diagnosing iNPH from a 3D T1-weighted MRI that is ro-
bust to the failure. We propose a method to scan large numbers of 3D T1-weighted MRIs with minimal human intervention, making
possible large-scale iNPH screening.

ABBREVIATIONS: AD ¼ Alzheimer disease; AUC ¼ area under the curve; DESH ¼ disproportionately enlarged subarachnoid space hydrocephalus; HC ¼
healthy controls; ICV ¼ intracranial volume; iNPH ¼ idiopathic normal-pressure hydrocephalus; PD ¼ Parkinson disease; ROC ¼ receiver operating characteris-
tic; SENSE ¼ sensitivity encoding

Idiopathic normal-pressure hydrocephalus (iNPH) is a neu-
rologic condition that shows the typical triad of the following

symptoms: gait disturbance, cognitive impairment, and uri-
nary incontinence.1 The iNPH is often reversible via CSF
shunt surgery,2,3 and when patients are accurately selected,
.90% showed clinical improvement,4 which strongly implies
that appropriate diagnostic procedures are needed.5 Although
it is one of the reversible forms of dementia and is treatable in

its early stages,6 iNPH often goes undiagnosed and untreated
because it is difficult to clinically differentiate iNPH from
other similar neurodegenerative diseases.7-9 This explanation
is supported by data from the Hydrocephalus Association, which
estimates that 80% of patients with normal pressure hydrocepha-
lus are not identified, often being incorrectly diagnosed with
Alzheimer disease (AD) or Parkinson disease (PD).10
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The commonly used diagnostic imaging biomarkers for iNPH
are disproportionately enlarged subarachnoid space hydrocephalus
(DESH), callosal angle, and the Evans index.1,11-14 In a previous
meta-analysis,12 the sensitivity and specificity of the callosal angle
for diagnosing iNPH were 91% and 93%, respectively, and those of
the Evans index were 96% and 83%. However, the pooled preva-
lence of DESH in iNPH was only 44% (95% CI, 34%–54%), despite
its high positive predictive value.11 Moreover, in a previous study
in which a brain morphometry–based nomogram was created on
the basis of visual assistance, DESH alone was inappropriate for
diagnosing iNPH due to its high interobserver variability.15

Regarding the diagnosis of iNPH, previous work using
machine learning has helped measure only the ventricle volume
or callosal angle.9,15-18 To the best of our knowledge, studies
aiming to assess DESH or diagnose iNPH on the basis of deep
learning have not been reported. We hypothesize that by devel-
oping an algorithm for measuring DESH, the Evans index, and
the callosal angle using machine learning, we will be able to
obtain a biomarker for iNPH diagnosis that is more objective
and reproducible than with human ratings alone. Therefore, this
study aimed to develop an algorithm for measuring DESH, the
Evans index, and the callosal angle using a combination of
machine learning and deep learning techniques and to propose
an automated iNPH diagnostic method with only a single T1-
weighted MRI. We expect to achieve an appropriate algorithm
and prediction model using FreeSurfer (http://surfer.nmr.mgh.
harvard.edu) for data-preprocessing and a deep learning model
for segmentation, which was developed with healthy controls
(HC).

MATERIALS AND METHODS
VUNO (Seoul, Republic of Korea) provided technical support for
analyzing totally automatic ventricle segmentation and by provid-
ing VUNOMed-DeepBrain for the analysis. In addition, 1 author
(J.L.) was an employee of VUNO, and 2 other authors (S.L., W.J.)
are currently employees of VUNO. However, VUNO did not
have any role in the study design, data collection, or interpreta-
tion. The other authors did not have any conflicts of interest.
Two institutions (Asan medical center and Seoul National
University Hospital) were involved in this study.

This retrospective, observational, multi-institutional study
was approved by the appropriate institutional review board
(Asan medical center and Seoul National University Hospital),
which waived the requirement for written informed consent.

We followed the Standards for Reporting Diagnostic Accuracy
(STARD) guidelines,19 the Enhancing the Quality and Transparency
of Health Research (EQUATOR) reporting guidelines,20 and
conformed to the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)
standards.21

Training and Testing Data Sets
We quantified iNPH, PD, AD, and HC on T1-weighted 3D brain

MRI scans using 452 scans from the Asan Medical Center (AMC)

for training and 110 scans from Seoul National University

Hospital (SNUH) for testing. AD was diagnosed in accordance

with the clinical diagnostic guidelines of the National Institute

on Aging-Alzheimer’s Association workgroups,22 and PD was

diagnosed in accordance with the UK Parkinson Disease

Society Brain Bank clinical diagnostic criteria.23 Possible, prob-

able, or definite iNPH was diagnosed in accordance with the

Japanese guidelines.1 Satisfaction with these possible, probable,

and definite criteria was confirmed by 1 neurologist (S. J.). The

patients in this study overlapped with those in a previous

study,15 but the purpose of analyzing the data differed. The

diagnostic criteria for iNPH are described below.
Possible iNPH was diagnosed on the basis of the following

criteria:

1) Presence of.1 symptom in the triad of gait disturbance, cog-
nitive impairment, and urinary incontinence

2) Presence of clinical symptoms that cannot be completely
explained by other neurologic or non-neurologic diseases

3) Absence of any obvious preceding disease that may be the
cause of ventricular dilation.

Probable iNPH was diagnosed if a patient had all the follow-
ing 3 features:

1) Met the requirement for possible iNPH
2) Had a CSF pressure of# 200mmH2O and normal CSF content
3) Had one of the following 2 findings:

• Neuroimaging features of narrowing of the sulci and subar-
achnoid space over the high-convexity/midline surface
(DESH) with gait disturbance

• Improvement of symptoms after a CSF tap test or drainage test.
Definite iNPH was diagnosed when objective improvement of

symptoms was observed after CSF shunt surgery.

SUMMARY

PREVIOUS LITERATURE: Disproportionately enlarged subarachnoid space hydrocephalus, a representative radiologic finding of
iNPH, has interobserver variability.

KEY FINDINGS: We were able to provide automatic component measurement algorithms for measuring the callosal angle and
the Evans index and determining the presence of high-convexity subarachnoid space tightness and Sylvian fissure enlargement,
which showed good diagnostic performance.

KNOWLEDGE ADVANCEMENT: We demonstrated a fully automated machine learning algorithm capable of diagnosing iNPH
from a single 3D T1-weighted MRI that is robust to the failure of any of its component algorithms.
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Of the 452 patients in the training data set, 111 had iNPH
(possible: 29/111, 26%, probable: 63/111, 57%, definite: 19/111,
17%), whereas 28 (possible: 2/28, 7%, probable: 26/28, 93%, defi-
nite: 0, 0%) of the 110 patients in the testing data set had iNPH.
Evans index, Sylvian fissure enlargement, high-convexity tight-
ness, callosal angle, and normalized lateral ventricle volume were
used for diagnosis. Manual labels are available for all these indica-
tors except normalized lateral ventricle volume.

MRI Protocol
MRI data were obtained using various MRI machines at multiple
institutions. MRI evaluations at AMC (the training data set) were
performed on a 3T unit (Ingenia CX; Philips Healthcare)
using a 32-channel sensitivity encoding (SENSE) head coil.
High-resolution anatomic 3D volume images were obtained
in the sagittal plane using a 3D gradient-echo T1-weighted
sequence. The detailed parameters were as follows: TR, 9.6 ms;
TE, 4.6 ms; flip angle, 8°; field of view, 224� 224 mm; section
thickness, 1 mm with no gap; matrix size, 224� 224; and total
scan time, 6 minutes 11 seconds.

MRI evaluations at SNUH (the unseen test data set) were
performed on a 3T unit (Magnetom Skyra; Siemens) using a
32-channel SENSE head coil for those with AD and HC. High-
resolution anatomic 3D volume images were obtained in the
sagittal plane using a T1-weighted MPRAGE sequence. The
detailed parameters were as follows: TR, 1600 ms; TE, 1.89 ms;
flip angle, 9°; field of view, 250 � 250 mm; section thickness,
1 mm with no gap; matrix size, 256 � 256; and total scan time,
6 minutes 48 seconds. For the PD group, MRI on a 3T unit
(Discovery MR750w; GE Healthcare) using a 32-channel SENSE
head coil was performed. High-resolution anatomic 3D volume
images were obtained in the sagittal plane using a T1-weighted
fast-spoiled gradient recalled sequence. The detailed parameters
were as follows: TR, 8.5 ms; TE, 3.2 ms; flip angle, 12°; field of
view, 256 � 256 mm; section thickness, 1 mm with no gap; ma-
trix size, 256 � 256; and total scan time, 3 minutes 30 seconds.
For the iNPH group, MRI data were obtained using various MRI
machines at multiple institutions.

Manual Measurement
For the reference standard, the MRI findings were retrospec-
tively reviewed in consensus by 2 radiologists (S.Y. and C.H.S.,
with 5 and 10 years of clinical experience in neuroradiology,
respectively) for the presence of tightness of the high-convexity
subarachnoid space and Sylvian fissure enlargement. Any dis-
crepancy between the 2 radiologists was resolved by a third
radiologist (S.J.K., with 35 years of clinical experience in neuro-
radiology). The Evans index and the callosal angle were man-
ually measured solely by 1 radiologist (S.Y., with 5 years of
clinical experience in neuroradiology) using an in-house PACS.
The reviewers were blinded to the final diagnosis and other pre-
dictors of each patient.

To investigate these MRI features of iNPH, we performed the
following evaluations:

1) The tightness of the high-convexity subarachnoid space was
defined as the narrow CSF space at the medial and/or high-
convexity cortex sulci located above the body of the lateral

ventricles in the coronal plane. The presence of tightness of
the high-convexity subarachnoid space was visually evaluated
and marked “Yes” or “No.”

2) The presence of Sylvian fissure enlargement in the coronal
plane was visually evaluated and marked “Yes” or “No.”

3) The Evans index was calculated as the ratio of the maximum
diameter of the frontal horns of the lateral ventricles to the
maximum inner diameter of the skull in transverse sections.24

4) The callosal angle, the angle between the left and right corpus
callosum, was measured in the coronal image perpendicular
to the anterior/posterior commissure plane at the posterior
commissure.14

Development of Automatic Component Measurement
Algorithms
The scans used for the experiments were first preprocessed
using FreeSurfer (Version 7.3.2)25 and FSL (Version 6.0.5.2)26 to
minimize interscan variability. We found that the exact data-
processing steps taken have a nontrivial effect on the perform-
ance of downstream algorithms. The FSL FMRIB Linear Image
Registration Tool (FLIRT; http://www.fmrib.ox.ac.uk/fsl/fslwiki/
FLIRT) was first used to align the scan to the Montreal
Neurological Institute 152 template,27 normalize the brain size,
and clip outlier intensity values. The registration process used
spline interpolation to minimize any errors. In addition to help-
ing downstream tools process the scans correctly, brain size nor-
malization simplified the specification of brain region sizes,
which have greater variability in the original scans. The result-
ing volumes were then processed with FreeSurfer automatic
reconstruction stage 1 to obtain bias-field-corrected and inten-
sity-normalized scans.

We applied a 3D Swin Transformer28 (https://github.com/
microsoft/Swin-Transformer) deep neural network trained on
the parcellation outputs of.3000 healthy patients to obtain brain
region segmentations for the processed scans. The neural net-
work was trained using output from FreeSurfer, Version 7.3.2,
with additional output for brainstem substructure segmentation.
After merging classes present on both hemispheres, we obtained
56 brain region classes and 1 background class. The model used
patches of size 64 � 64 � 64 sampled from the scan so that the
input patches always contained brain tissue.

A separate neural network trained on manual labels was used
to obtain the intracranial volume (ICV) segmentations.29 A hole-
filling mechanism was applied to the largest connected compo-
nent of the model output to take advantage of the anatomic
knowledge that the ICV is a single contiguous volume with no
holes or disconnected regions.

The callosal angle, defined as the angle of the corpus callosum
at the coronal slice containing the posterior commissure, was
measured by taking the angle between the 2 sides of the mini-
mum enclosing triangles of each ventricle (Fig 1A). The acpcde-
tect package30 (https://github.com/tannerjared/MRI_Guide/blob/
master/install_acpcdetect.md) was used to detect the posterior
commissure, where a single coronal slice was taken to measure
the callosal angle. For angle measurement, a triangle containing
the corpus callosum and lateral ventricle was drawn on each
hemisphere using OpenCV (https://opencv.org/).31 The
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enclosing triangles of the callosal angle were then measured from
the coronal slice at the posterior commissure by measuring the
angle between the hypotenuses of the resulting triangles. To
improve the quality of the measurement, we considered only the
region between the peaks of the corpus callosum.

High-convexity subarachnoid space tightness and Sylvian fis-
sure enlargement were both measured by the ratio of nonbrain
regions in hand-crafted ROIs. For high-convexity tightness, as
shown in Fig 1B, the upper three-quarters of the ICV region

between the 2 peaks of the ventricles was used. The ventricle
peaks were measured for each coronal slice separately. The
ICV volume was calculated by summing the voxels for each
axial slice within the area of the previously specified ventricu-
lar peaks. Sylvian fissure widening (Fig 1C) was measured by
selecting the combined superior temporal, supramarginal,
transverse temporal cortices, and insula regions around the
Sylvian fissure from both hemispheres. The largest connected
component of this combined region was extracted, and its 3D

FIG 1. Callosal angle (A), high-convexity tightness (B), Sylvian fissure widening (C), and Evans index (D). Note that the results vary significantly
depending on the preprocessing procedure. For the best results, we apply 7 df linear registration using FSL FLIRT, which applies intensity
clamping, aligns the scan to the Montreal Neurological Institute 152 template, and normalizes the brain size. The resulting scans are then intensity-
normalized and bias-field corrected with FreeSurfer, Version 7.3.2.
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convex hull defined the ROI. Within this ROI, the ratio of CSF
to the total ROI volume was calculated as the Sylvian fissure
widening metric.

The Evans index, a commonly used proxy for the relative

volume of the lateral ventricles, was computed by localizing the

frontal horns via the corpus callosum. The maximum horizontal

distance between the ventricles at any coronal plane anterior to

the frontal corpus callous was divided by the maximum hori-

zontal ICV distance at the axial slice of the discovered plane as

shown in Fig 1D.
We also include measurements for the normalized lateral ven-

tricle volume,15 defined as the ratio of the lateral ventricle volume

to the total intracranial ventricle volume, which we found to be a

strong predictor of iNPH. We speculate that the normalized lat-

eral ventricle volume is an important predictor because it directly

measures the volume of the CSF in the lateral ventricles as

opposed to being a proxy metric used for ease of measurement.

The discovery of the normalized lateral ventricle volume has the

additional benefit of motivating the use of automated measure-

ments because it is time-consuming to measure manually. Note

also that the formulation of both the Evans index and normalized

lateral ventricle volume allows them to be calculated even for the

size-normalized images obtained via the proposed preprocessing

steps, because they measure the relative, not absolute, sizes of

brain regions.

Statistical Analyses
To measure the performance on each
of the modalities, we compared the
model prediction results with the man-
ual labels. In addition, to enhance inter-
pretability and for fair comparison with
the manual labels, we indicated the
presence or absence by discretizing
each discrete feature using task-specific
thresholds on the raw contiguous out-
put values.

For the high-convexity tightness
and Sylvian fissure enlargement, we
measured the area under the receiver
operating characteristic curve between
the obtained volume ratios and man-
ual labels using the Sci-kit learn
Python package (https://scikit-learn.
org/stable/index.html)32 to obtain
thresholds of 70% and 25% based on
the cross-validated results from the
training set for the performance each
module and rounding by 5%. Test set
data were excluded from the cross-
validation measurements when select-
ing the thresholds. See Fig 2 for the
cross-validation results. For the callosal
angle and Evans index, both of which
are continuous measurements, we meas-
ured the intraclass correlation with sin-
gle fixed raters compared with the

manual labels to measure the performance using the Pingouin33

Python package (https://pypi.org/project/pingouin/).
The threshold for the normalized lateral ventricle volume

was set to 5% after a preliminary investigation in which
XGBoost models (https://xgboost.readthedocs.io/en/stable/)
were found to produce the most accurate iNPH predictions
when the threshold was set to this region. Following standard
medical practice, the callosal angle threshold was set at 90°,
while the Evans index used the thresholds of 0.25 and 0.3 for
patients with mild and severe conditions, respectively. The man-
ual labels were also categorized with the same threshold values
for the callosal angle and Evans index.

Development of iNPH Prediction Models: Manual
Measurement–Based and Fully Automated Models
The radiologic findings used to develop the 2 models are as fol-
lows: the tightness of the high-convexity subarachnoid space,
Sylvian fissure enlargement, the Evans index, and the callosal
angle. To develop the fully automated model, we also used the
normalized lateral ventricle volume information.

For the final iNPH prediction, XGBoost34 models were
trained to make predictions based on the output features of the
individual modules. Separate models were trained for both the
discretized automated measurements and the manual labels to
predict iNPH in individual patients.

FIG 2. ROC curves for high-convexity tightness and Sylvian fissure widening measured by auto-
matic methods. The volume of nontissue regions relative to the ROI volume gives prediction
scores for the ROC curve.
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The performance of each prediction model was calculated
using the receiver operating characteristic (ROC) curve with
unseen test data set and summarized by calculating the area
under the curve (AUC) of the ROC curve. To increase the
robustness of the performance estimation, we performed 5-fold
cross-validation.

RESULTS
Patient Demographics
A total of 546 Asian patients were selected for the training data
set. Of these, 94 patients were excluded. Therefore, the training
data set consisted of 452 patients (200 men, 252 women; mean
age, 73.2 [SD, 6.5] years; Online Supplemental Data), with 111
(24.6%) cases of iNPH, 101 (22.3%) cases of AD, 103 (22.8%)
cases of PD, and 137 (30.3%) HC. The unseen test data set
included all 110 Asian patients (48 men and 62 women; mean
age, 72.4 [SD, 7.7] years), with 28 (25.5%) cases of iNPH, 28
(25.5%) cases of AD, 26 (23.6%) cases of PD, and 28 (25.5%) HC.

Diagnostic Performance of Component Measurement
Algorithms
We obtained AUC values of 0.956 for automatically measured
high-convexity tightness and 0.830 for Sylvian fissure enlargement
(Fig 2). In addition, intraclass correlation values (single fixed
raters) of 0.824 for the callosal angle and 0.924 for the Evans
index were measured.

Diagnostic Performance of iNPH Prediction Models
Figure 3 depicts the decision tree of the XGBoost model when
automatically measured features are provided as input. Figure 4
shows the ROC curve for our XGBoost model for the diagnosis
of iNPH in the unseen test data set. The model trained on manual
labels obtained an average cross-validation AUC of 0.988 on
the training data set and 0.938 on the unseen test data set,
while the fully automated model obtained a cross-validation
AUC of 0.983 and a test AUC of 0.936 (Table). We obtained
these results despite 4% of the scans failing at least one of the
measurements, with the posterior commissure detection in the
callosal angle measurement being the most common cause of
failure. In addition, when the “possible” patients with iNPH
were removed from both data sets, both models overfit the
training data set.

In addition, we evaluated the AUC for discriminating between
iNPH and AD, as well as between iNPH and PD. For distinguish-
ing iNPH from AD, our model achieved an AUC of 0.90. When
discriminating iNPH from PD, the model demonstrated an even
higher AUC of 0.95. These results indicate that our model is
highly effective in differentiating iNPH from PD.

FIG 3. Decision tree of the XGBoost model with normalized lateral ventricle volume, callosal angle, high-convexity tightness (vertex region
crowding), Sylvian fissure widening, and Evans index.

FIG 4. The ROC curve for our XGBoost model for the diagnosis of
iNPH in the unseen test data set.

Diagnostic performance of iNPH prediction models

Model

AUC
Average Cross-
Validation AUC

Unseen Test
Data Set

Training
Data Set

Manual measurement–
based model

0.938 0.988

Fully automated model 0.936 0.983
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DISCUSSION
In this study, we were able to provide automatic component mea-
surement algorithms for measuring the callosal angle and Evans
index and for determining the presence of high-convexity subar-
achnoid space tightness and Sylvian fissure enlargement, which
showed good diagnostic performance. We were also able to pro-
vide a fully automated machine learning algorithm capable of
diagnosing iNPH from a single 3D T1-weighted MRI. The auto-
mated iNPH prediction model also showed good discrimination
ability. We internally validated the algorithm and tested with the
unseen test data set, which showed an AUC of 0.983 for cross-val-
idation and 0.936 for the unseen test data set. The fully auto-
mated iNPH prediction model has the possibility of helping
alleviate the burden caused by a treatable disease that too often
goes undiagnosed.

Unlike naïve deep learning–based predictions, our proposed
method has the twin advantages of interpretability and robust-
ness to failure. Because the decision tree was constructed using
radiologic findings well known to neuroradiologists and clini-
cians, such as DESH, callosal angle, and the Evans index, disease
prediction is possible through a process similar to how a neurora-
diologist diagnoses iNPH. With interpretable features that can be
confirmed visually, our work makes possible automated iNPH di-
agnosis at scale. Whereas the failure of any of the component
algorithms in our method results in only a partial performance
degradation, the failure of an end-to-end machine learning model
could be highly inaccurate.

In this study, we also provide component measurement algo-
rithms for each radiologic finding. These algorithms determine
the presence of Sylvian fissure enlargement and high-convexity
subarachnoid space tightness by setting thresholds. Therefore, a
more objective evaluation than visual assessment is possible, and
bias caused by human judgment can be reduced. By means of this
algorithm, it may be possible to evaluate whether DESH is related
to the shunt responsiveness in patients with iNPH; the answer is
still unclear. Additionally, because this algorithm uses segmenta-
tion to obtain the volume ratio, further research on the size of
this ratio, that is, the correlation between shunt responsiveness
and DESH severity degree, will be possible.

There has been some effort to develop models that predict the
probability of iNPH or predict the treatment response. According
to a systematic review35 that analyzed 22 articles published
through 2022, the most used input data were MRI, as in our
study. That review included various machine learning studies
related to iNPH. Among these, there were only 4 articles that
used MRI input data and presented iNPH probability or NPH
status as output. Among these 4 articles, none presented testing
data. As in our study, various studies attempting to predict iNPH
using segmentation36 are ongoing. However, the distinctiveness
of our developed model lies in its independence from the black
box nature of artificial intelligence. Instead, it focuses on detect-
ing well-known iNPH findings, allowing the user to make judg-
ments in a manner similar to that of a neuroradiologist.

There are several limitations in this model. First, 4% of the
scans failed for at least one of the component measurement algo-
rithms. The most error-prone was the callosal angle measure-
ment, with 75% of failures due to this modularity. The posterior

commissure was often incorrectly located in the cerebellum by
acpcdetect, and the triangle measurements also had difficulty
with patients showing signs of severe iNPH. Adding rules that
catch anatomically infeasible results could aid in error detection.
Second, the current implementation requires 2 hours of prepro-
cessing for each scan, making it impractical for real-time deploy-
ment. Preprocessing could be accelerated by training a separate
neural network to perform both intensity clipping and bias field
correction instead of relying on pre-existing image-processing
tools. In addition, the method must be verified across a greater
variety of scanning protocols, especially accelerated acquisition
methods, because learning-based methods are highly sensitive to
the MRI acquisition protocols used to acquire the scans. Many
scans may be available that have been collected for purposes
other than iNPH detection, using acquisition settings that may
be optimized for other diagnoses. This possibility is important
to reduce the costs associated with acquiring an additional scan
specifically for iNPH measurement and would allow retrospec-
tive studies for scans acquired with different settings. Third, we
used patients with AD, PD, HC, and patients with iNPH as sub-
jects. We included AD, PD, and aged HC because they may
have clinical symptoms and MRI findings similar to those of
iNPH. However, this inclusion led to an imbalanced data set.
Nevertheless, we believe we have demonstrated the robustness
of our model through the use of an unseen test data set. Last, a
single neuroradiologist measured the callosal angle and Evans
index, possibly causing bias. However, because the measure-
ments are clearly defined values and the neuroradiologist who
measured them also had sufficient clinical experience, the
impact on internal validity is expected to be minimal.

CONCLUSIONS
We demonstrated a machine learning algorithm capable of diag-
nosing iNPH from a single 3D T1-weighted MRI scan that is ro-
bust to the failure of any of its component algorithms. We
propose a method to scan large numbers of 3D T1-weighted MRI
scans with minimal human intervention, making possible large-
scale iNPH screening.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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