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ABSTRACT 

BACKGROUND AND PURPOSE: To develop and validate a deep learning-based automatic quantification for nigral hyperintensity and 
a classification algorithm for neurodegenerative parkinsonism using susceptibility map-weighted imaging (SMwI). 

MATERIALS AND METHODS: We retrospectively collected 450 participants (210 with idiopathic Parkinson’s disease [IPD] and 240 
individuals in the control group) for training data between November 2022 and May 2023, and 237 participants (168 with IPD, 58 with 
essential tremor, and 11 with drug-induced Parkinsonism) for validation data between July 2021 and January 2022. SMwI data were 
reconstructed from multi-echo GRE. Diagnostic performance for diagnosing IPD was assessed using deep learning-based automatic 
quantification (Heuron NI) and classification (Heuron IPD) model. Reference standard for IPD was based on 18F-FP-CIT PET finding. 
Additionally, the correlation between the H&Y stage and volume of nigral hyperintensity in patients with IPD was assessed.  

RESULTS: Quantification of nigral hyperintensity using Heuron NI showed AUC of 0.915 (95% CI, 0.872–0.947) and 0.928 (95% CI, 
0.887–0.957) on the left and right, respectively. Classification of nigral hyperintensity abnormality using Heuron IPD showed AUC of 
0.967 (95% CI, 0.881–0.991) and 0.976 (95% CI, 0.948–0.992) on the left and right, respectively. H&Y score ≥ 3 showed significant 
smaller nigral hyperintensity volume (1.43 ± 1.19 mm3) compared to H&Y score 1–2.5 (1.98 ± 1.63 mm3; p = 0.008). 

CONCLUSIONS: Our deep learning-based model proves rapid, accurate automatic quantification of nigral hyperintensity, facilitating 
IPD diagnosis, symptom severity prediction, and patient stratification for personalized therapy. Further study is warranted to validate 
the findings across various clinical settings. 

ABBREVIATIONS: IPD = Idiopathic Parkinson’s disease; SN = substantia nigra; SMwI = susceptibility map weighted imaging; QSM = 
quantitative susceptibility mapping; CNN = convolutional neural network; ICV = intracranial volume.  
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 SUMMARY SECTION 

PREVIOUS LITERATURE: Loss of nigrosome-1 in idiopathic Parkinson’s disease (IPD) serves as an early diagnostic imaging biomarker. 
Although several deep-learning models have been proposed for diagnosing IPD and segmenting the substantia nigra or nigrosome-1 
region, these models have not simultaneously segmented nigrosome-1 and diagnosed IPD. Moreover, previous studies have 
demonstrated relatively low diagnostic performance and lacked external validation. Therefore, we propose a fully automated deep-
learning model using susceptibility map-weighted imaging (SMwI) to identify and determine abnormalities in the nigrosome-1 region 
(Heuron IPD), along with quantifying volume of nigral hyperintensity (Heuron NI). 

KEY FINDINGS: Quantification of nigral hyperintensity using Heuron NI showed AUC of 0.915 and 0.928 on the left and right, 

respectively. Classification of nigral abnormalities using Heuron IPD showed AUC of 0.967 and 0.976. H&Y score ≥3 showed significant 

smaller nigral hyperintensity volume (1.43±1.19 mm3) compared to H&Y score 1–2.5 (1.98±0.63 mm3; p=0.008). 

KNOWLEDGE ADVANCEMENT: Our deep learning-based model enables rapid and accurate automated quantification and classification 
of nigral hyperintensity, facilitating the diagnosis of IPD and predicting symptom severity. 

 Published November 15, 2024 as 10.3174/ajnr.A8585
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INTRODUCTION 

Idiopathic Parkinson's disease (IPD) is a chronic and progressive neurodegenerative disease causing Parkinsonian symptoms, including 
tremors, bradykinesia, rigidity, and postural instability.1 The principal pathophysiological change associated with this disease is 
dopaminergic neuron degeneration in the substantia nigra (SN) pars compacta.2 The nigrosome-1 is located in the dorsolateral portion of 
the SN. It is the initial site of dopaminergic neuron degeneration as the disease progresses.3 The nigrosome-1 typically contains high 
neuromelanin and low iron concentrations. Therefore, this region usually identified by the hyperintense area at the dorsolateral aspect of 
the SN on susceptibility-weighted imaging (SWI), also known as the "swallow tail sign".4 

Hyperintensity loss in nigrosome-1 occurs in IPD,5-7 serving as an early imaging biomarker of IPD.8 A recent meta-analysis 
demonstrated that detecting loss of nigrosome-1 yields excellent diagnostic accuracy, with pooled sensitivity and specificity of 0.96 and 
0.95, respectively.9 However, visualizing nigrosome-1 varies subjectively across imaging sequences, including T2* weighted imaging, 
SWI, and quantitative susceptibility mapping (QSM).10 Among these imaging sequences, susceptibility map-weighted imaging (SMwI), 
which is similar to SWI but generated by combining the GRE magnitude image and a QSM-derived quantitative susceptibility mask, 
enhances susceptibility contrast of nigrosome-1.11-14 Enhanced contrast in nigrosome-1 allows for better visualization of nigral 
hyperintensity structural information and improves diagnostic performance.  

Recently, many deep learning models have been proposed for neurodegenerative diseases.15-17 In the case of IPD, deep learning models 
have been developed not only for diagnosis but also for segmenting the SN and nigrosome-1 regions. Chen et al. developed hybrid model 
for predicting early-stage IPD that combines deep learning features and radiomics features, employing YOLO-v5 for initial brainstem 
detection and integrating both feature for enhanced predictive accuracy.18 Shin et al. used a convolutional neural network (CNN)-based 
diagnostic algorithm on SMwI, exhibiting comparable performance to that of an experienced neuroradiologist.19 Ariz et al. introduced an 
automatic segmentation model utilizing a 3D atlas-based pipeline on SWI, revealing that relative neuromelanin and iron quantification 
improved diagnostic performance.20 Wang et al. used a CNN architecture on true SWI, demonstrating its capability to detect nigrosome-1 
abnormalities and localize them.21 However, these deep learning models have not been used to segment nigrosome-1 and diagnose 
Parkinson’s Disease at the same time. Also, previous studies have demonstrated relatively low diagnostic performance for nigrosome-1 
(AUC, 0.87–0.95), and no external validation was conducted except the model by Shin et al, whose data we incorporated into our training 
dataset. To our knowledge, the diagnostic performance of a fully automated deep learning-based model for simultaneously detecting and 
quantifying nigrosome-1 abnormality using SMwI and its external validation remains unexplored. Therefore, we propose a fully automated 
deep-learning model using SMwI to identify and determine abnormalities in the nigrosome-1 region, along with quantifying volume of 
nigral hyperintensity. This study aimed to develop and validate a deep learning-based automatic quantification for nigral hyperintensity 
and a classification algorithm for neurodegenerative parkinsonism using SMwI. 

 

MATERIALS AND METHODS 

This study follows the guidelines of Checklist for Artificial Intelligence in Medical Imaging (CLAIM)1 (Supplemental Table 1). For data 
privacy, data was anonymized before entering the model, and the data entered was not used elsewhere. 

 
Participants 

Patients with Parkinsonism symptoms who underwent brain MRI, including SMwI, as well as N-3-fluoropropyl-2-β-carbomethoxy-3-β-
(4-iodophenyl) nortropane (18F-FP-CIT) PET imaging were included in the training and external validation datasets. 

The training data comprised: 1) 151 subjects (56 patients with IPD and 95 healthy subjects in the control group) collected prospectively 
from three hospitals between November 2022 and May 2023, and 2) 299 subjects (154 patients with IPD, as well as a control group 
consisting of 125 patients with drug-induced parkinsonism [DIP] and 20 healthy subjects) from the training dataset of the previous study 
by Shin et al.19 Overall, 450 participants (210 with IPD and 240 individuals in the control group) from four hospitals were used for training 
the detection and segmentation models. 

For external validation, data was retrospectively collected from one hospital between July 2021 and January 2022. We excluded healthy 
subjects from the validation process and included only individuals with symptoms of Parkinsonism, which is crucial for differential 
diagnosis in identifying IPD. Out of 313 patients presenting with symptoms of parkinsonism and suspected IPD at clinics, eight were 
excluded due to inappropriate SMwI to interpretate due to image quality, artifact, and scan range. Patients with multiple system atrophy 
(n = 53), progressive supranuclear palsy (n = 9), and normal pressure hydrocephalus (n = 6) were also excluded. We enrolled 168 patients 
with IPD as a disease group with abnormality on PET imaging. As a disease control group, we enrolled 69 patients with DIP or ET who 
had normal PET imaging. Figure 1 shows the flowcharts detailing training and external validation dataset collection. 
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Figure 1. Flowcharts illustrating patient selection for (A) training and (B) validation data. 

Abbreviations: IPD, Idiopathic Parkinson's disease; DIP, drug-induced Parkinsonism; ET, essential tremor  

  
MR Imaging Protocol 

Oblique coronal imaging was employed owing to the location of the nigrosome-1 region below the inferior pole of the red nucleus.23 All 
participants underwent MR imaging on a 3T MRI with a 32-channel coil (Ingenia CX and Ingenia Elition X, Philips Medical Systems, 
Best, the Netherlands; Skyra, Siemens Healthineers, Forchheim, Germany). The imaging parameters of the 3T scanner are presented at 
Supplemental Table 2.  

 
SMwI data reconstruction and reslicing 

To visualize the nigrosome-1 region, a special sequence and image processing technique was employed called SMwI, derived from QSM.24 
This approach enhances the Swallow-tail sign visualization in the SN region by amplifying the susceptibility contrast resulting from iron.25 
Images were acquired using a 3D GRE 3-echo sequence. QSM, generated using the iterative least-square method, was further processed 
to create a QSM mask for susceptibility contrast weighting, based on a paramagnetic threshold value.24,26 The threshold was determined 
for a optimal contrast-to-noise ratio. The mask was generated by calculating the quantitative susceptibility values of QSM using an equation 
that utilizes this threshold. SMwI was subsequently created by multiplying the multi-echo combined magnitude images with the QSM 
mask. The reconstructed SMwI data were resliced in 0.5 mm increments using the Antspy open-source medical imaging library (version 
0.3.8, https://antspy.readthedocs.io/). 

 
Development of deep learning-based automatic quantification for nigral hyperintensity 

For SN segmentation and nigral hyperintensity quantification, we employed Heuron NI (version 1.0.0.19, Heuron, Seoul, Korea), which 
was commercially launched in the Republic of Korea in June 2021. This system is designed as a nigral hyperintensity segmentation model 
to evaluate quantitative information. It utilizes SMwI data as input and provides the measured volume of nigral hyperintensity as output 
(Figure 2). 
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Figure 2. Automatic nigrostriatal degeneration classification and nigral hyperintensity volume measurement using deep learning 
models. (A) Classification progress of nigrostriatal degeneration and measurement of nigral hyperintensity volume. (B) Output 
from the Heuron IPD and Heuron NI systems. Heuron IPD shows the analysis results for nigrostriatal degeneration, while Heuron NI 
depicts nigral hyperintensity volume measurement results. The classification of the Heuron dataset graph is depicted in normal 
(blue) and abnormal (red) categories. 

Abbreviations: IPD, Idiopathic Parkinson's disease; CNN, convolutional neural network; SN, substantia nigra  

 
Initially, the input images underwent preprocessing, consists of reslicing and resizing to produce 64 slices of 512*512 2D SMwI images. 

These preprocessed images were then used as input for the 2D instance segmentation model, SparseInst,27 to segment the SN region. We 
used SN mask-based image registration for nigral hyperintensity quantification. The SN segmentation model generates predicted SN mask 
information for each slice and binarized it by excluding background or extraneous data from the image to extract the hyperintensity region.  
In this process, input and target data for registration were generated. Inputdata was defined by binarized SN mask. Target data was defined 
by the SMwI template8 SN mask. An experienced neurologist delineated the SN and nigral hyperintensity in the SMwI template and 
annotated hyperintensity region as ‘processed nigrosome-1’. After registering the input data (binarized SN mask) and the target data 
(template SN mask), the overlapping area between the hyperintensity region in the binarized SN mask and processed nigrosome-1 region 
in the template SN mask was designated as ‘nigrosome-1’. To account for interindividual variation, normalization was conducted using 
the intracranial volume, calculated using SynthSeg.28 The details of development and progress of our deep-learning model is demonstrated 
in Supplemental materials. 

 
Development of deep learning-based automatic classification for nigral hyperintensity  

Heuron IPD, a deep learning-based system (version 1.0.1.10, Heuron Corporation, Seoul, Korea), has been commercially available in 
Korea since April 2021. This system is designed to detect nigrostriatal degeneration and includes a CNN-based model for object detection 
and segmentation model, integrating outputs of each model to classify nigrostriatal degeneration (Fig 2). 

Initially, the input images underwent preprocessing to produce 64 slices of 640*640 2D SMwI images. Heuron IPD first performed 
object detection using YOLOX model,29 utilizing the preprocessed images to predict the nigrosome-1 region and classify abnormalities. 
The model was trained on a dataset annotated with nigrosome-1 location by an experienced neurologist, with 18F-FP-CIT PET imaging 
serving as the ground truth for the presence of nigrostriatal degeneration. 

For the classification of nigrostriatal degeneration, five slices from the scanned MR images containing SN and nigral hyperintensity 
structures were utilized for analysis.19,25 The object detection model returned a probability value indicating the likelihood of a specific 
object based on its training. The quantification information of nigral hyperintensity volume, measured by Heuron NI, informed the object 
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detection model and acted as a weight for the class probability value. These weighted class probability values were employed to determine 
the abnormalities in the nigral hyperintensity region. The details of development and progress of our deep-learning model is demonstrated 
in Supplemental materials. The diagnostic performance of Heuron IPD was evaluated and compared with the model using only the CNN, 
without volume weight, to determine the effectiveness of volume weighting. 

 
Evaluation of diagnostic performance 

18F FP-CIT PET (Biograph TruePoint; Siemens, Erlangen, Germany) was performed in all subjects and served as the reference standard 
to determine whether the patient had IPD, with findings assessed by experienced nuclear medicine physicians. The performance of both 
Heuron IPD and Heuron NI was evaluated per SN and participants. The performance of Heuron IPD was assessed by classifying IPD 
based on the reference standard. Although Heuron NI was employed to quantify the nigral hyperintensity and provide volume measurement 
for the left and right sides, its diagnostic performance for diagnosing IPD was also evaluated using the cut-off value as a threshold. The 
cut-off value was calculated based on the highest AUC from the ROC curve of the volume and reference standard. For the per participant 
analysis, a participant was considered to exhibit an abnormality if abnormalities were on either side of the SN. 

 
Statistical analysis 

Determining diagnostic accuracy involved calculating several metrics, including AUC, sensitivity, specificity, F1-score, and accuracy for 
each result set. Furthermore, 95% CIs were determined using Clopper–Pearson intervals. Correlations with Hoehn and Yahr (H&Y) Scale 
were analyzed using Kruskal–Wallis, Mann–Whitney, and Hanley&McNeil tests. p<0.05 was considered statistically significant. All 
statistical analyses were conducted using MedCalc version 22.007 (MedCalc Software, Ostend, Belgium).  

 

RESULTS 
 
Participant enrolment  

Overall, 237 participants were enrolled for external validation of the performance of the model. The external validation data included 168 
patients with IPD, as well as a control group consisting of 58 with essential tremor and 11 with drug-induced Parkinsonism. Demographics 
of external validation data are shown in Table 1 and training data in Supplemental Table 3. 

 

Table 1. Demographic findings and clinical characteristics of external validation data. 
 IPD (n=168) Control (n=69) P-value 

Age, yr 66 ± 10 66 ± 12 .659* 
Sex, male:female 79:89 26:43 .189† 
Disease duration, yr 5.7 ± 5.9 4.0 ± 6.2 .507* 
H&Y stage 2.4 ± 0.8 2.0 ± 0.6 .004* 
Disease involvement    
Right  4 0  
Left  2 0  
Both 162 0  

*Comparison of two groups using Mann-Whitney test, †Comparison of two groups using chi-square test. 
 
Diagnostic performance of Heuron NI and Heuron IPD per SN and participant 

The diagnostic performance of Heuron NI was assessed by comparing the volume measured through Heuron NI and the reference standard 
for all participants using the AUC. The AUC were 0.915 (95% CI, 0.872–0.947) and 0.928 (95% CI, 0.887–0.957) on the left and right, 
respectively (Figure 3). No significant difference in diagnostic performance was observed between the left (sensitivity 87.8%, specificity 
83.6%) and right (sensitivity 89.2%, specificity 85.9%) directions (p = .65). The diagnostic performance per participant exhibited 96.4% 
sensitivity, 73.9% specificity, and 93.1% F1-score. The same analysis was repeated by dividing the measured volume by the ICV (Online 
Supplemental Data), yielding nearly identical diagnostic performance as before dividing the volume by ICV. 

When using only the CNN model in Heuron IPD without incorporating volume weight from quantification information, the AUC was 
0.942 (95% CI 0.904–0.968) and 0.933 (95% CI 0.893–0.961) on the left on right, respectively (Online Supplemental Data). Using 
Heuron IPD, applying weighted class probability values from quantification information, the AUC increased to 0.967 (95% CI, 0.881–
0.991) and 0.976 (95% CI, 0.948–0.992) on the left and right, respectively (Figure 3). Consistent with the volume-reference standard 
analysis, no significant difference was observed in the diagnostic performance between the left (sensitivity 95.1%, specificity 95.9%) and 
right (sensitivity 94.6%, specificity 95.8%) directions (p=0.60). The per-participant diagnostic performance was as follows: sensitivity 
97.0%, specificity 95.7%, and F1-score 97.6% (Online Supplemental Data). The representative cases of Heuron NI and Heuron IPD for 
both normal and IPD patient are shown in Figure 4 and Figure 5, respectively.  

Heuron IPD also demonstrated significant performance in differentiating IPD from ET (AUC, 0.965–0.980) and DIP (AUC, 0.959–
0.968) (Supplemental Table 4, 5). Additionally, there was no significant performance difference by patient gender (Supplemental Table 6, 
7). 
 

Heuron IPD also demonstrated significant performance in differentiating IPD from ET (AUC, 0.965–0.980) and DIP (AUC, 0.959–
0.968) (Supplemental Table 4, 5). Additionally, there was no significant performance difference by patient gender (Supplemental Table 6, 
7). 
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Figure 3. ROC curves for each nigrosome volume and Heuron IPD for PET visual assessment. ROC curves for the volume of nigrosome 
and PET for the right (A) and left (B) SN. ROC curves for the classification results of Heuron IPD and PET for the right (C) and left 
(D) SN. 

Abbreviation: IPD, Idiopathic Parkinson's disease; SN, substantia nigra; PET, positron emission tomography  

 



 7 
 

 

Figure 4. A 69-year-old female patient with essential tremor, showing nigral hyperintensity within the substantia nigra (arrow). 
The analysis results (middle row) display the segmentation of the substantia nigra (blue) and nigral hyperintensity (red). The nigral 
hyperintensity volume is 10.13 mm3 on the left and 9 mm3 on the right. 18F-FP-CIT imaging (lower row) shows normal dopamine 
transporter binding in the bilateral basal ganglia.  
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Figure 5. A 63-year-old female patient with idiopathic Parkinson’s disease was found to have abnormal nigrosome-1 regions (arrow) 
on both sides. The analysis results (middle row) display the segmentation of the substantia nigra (blue) and nigral hyperintensity 
(red). The nigral hyperintensity volume is 0 mm3 on the left and 0.13 mm3 on the right. 18F-FP-CIT imaging (lower row) shows 
decreased dopamine transporter binding in the bilateral basal ganglia  

 

Diagnostic performance of Heuron IPD across H&Y score groups 

We compared diagnostic performance in different groups of H&Y score in patients with IPD. H&Y scores were categorized into two 
distinct groups. Group 1 comprised four categories: 1 (1–1.5), 2 (2–2.5), 3 (3–3.5), and 4 (4–5), while group 2 consisted of two categories: 
1 (1–2.5) and 2 (3–5). Both group 1 and 2 showed higher AUC in lower H&Y stage group. The AUC was 1.000 in H&Y score 1 to 1.5 in 
group 1, and 0.957 in H&Y score 1 to 2.5 in group 2 (Online Supplemental Data). However, the diagnostic performance within each 
group revealed no significant statistical difference (Group 1: category 1 vs. category 2, p = 0.11; category 1 vs. category 3, p = 0.29; 
category 2 vs. category 3, p = 0.61; Group 2: category 1 vs. category 2, p = 0.55). 
 
Volume-H&Y score correlation using Heuron NI 

We assessed the correlation between the H&Y stage and volume in patients with IPD. We evaluated the relationship between the 
quantitative information of the nigral hyperintensity volume measured by Heuron NI and disease progression. In the analysis 
(Supplemental Table 8 and Supplemental Figure 1), group 1 showed no statistical correlation between H&Y stages and volume (p = .06). 
However, group 2 exhibited a significant correlation (p = .008). This pattern remained consistent even after adjusting the volume for 
intracranial volume (group 1, p= .07; group 2, p = .01).  

 

DISCUSSION 

We developed and validated a deep learning-based model for the automatic quantification of nigral hyperintensity (Heuron NI) and 
diagnosis of IPD (Heuron IPD). Both Heuron IPD and Heuron NI demonstrated successful diagnosis of IPD in patients with clinical 
suspicion of Parkinsonism, achieving an AUC of 0.915–0.976 per SN and accuracy of 89.9–96.6% per patient. Quantifying nigral 
hyperintensity, H&Y stage 3–5 showed significantly lower nigral hyperintensity volume compared to H&Y stage 1–2.5, suggesting more 
severe motor symptoms.  

Nigrosome-1 is affected in early-stage IPD, and its loss serves as an imaging biomarker for early IPD diagnosis.8,30,31 Previous studies 



 9 
 

predominantly employed manual drawing of region of interest for nigrosome-1 and performed voxelwise or quantitative analyses.8,30,32 
Ariz et al. recently introduced the first fully automated segmentation model for quantifying nigrosome-1.20 Their segmentation model 
relied on a 3D atlas-based pipeline,33 generating two atlases from neuromelanin MRI and SWI images. However, their model requires atlas 
reconstruction and it is difficult to utilize SMwI. Creating an atlas from SMwI poses challenges owing to inconsistent imaging slabs. 
Consequently, our model initially segmented the SN and created an SN mask from the input images, then it quantified nigral hyperintensity 
within the segmented SN area using the SMwI template. Shin et al. introduced an automated nigrosome-1 identification method, but it did 
not provide quantification.19 Our model had advancements in simultaneously detecting and quantifying nigrosome-1 abnormality. In 
addition, our approach differs from previous studies as we evaluated diagnostic performance in patients with clinical suspicion of 
Parkinsonism rather than comparing it with a normal control group. Our model exhibited an AUC ranging from 0.915 to 0.928 for 
diagnosing IPD based on nigral hyperintensity volume, suggesting significant diagnostic utility in clinical practice. However, a small 
number of false positives and false negatives could lead to misinterpretation. Therefore, deep-learning models should play a supportive 
role and be used in conjunction with comprehensive clinical and radiological evaluations when diagnosing IPD. 

Loss of nigral hyperintensity resulting from dopaminergic cell degeneration and iron deposition,34,35 suggesting a potential association 
between nigrosome-1 and IPD symptom severity. A negative correlation has been observed between the UPDRS part III score and signal-
to-noise ratio of neuromelanin in the posterolateral SN 36 or nigrosome-1 volume.37 Hence, we evaluated the correlation between nigral 
hyperintensity volume and H&Y stage, revealing that the H&Y stage 1–2.5 group showed significantly higher nigral hyperintensity volume 

than the H&Y stage 3–5 group. Advanced-staged IPD, characterized by an H&Y stage of ≥3, patients typically exhibit a lower quality of 

life,38 an increased risk of medication-refractory disease progression,39 and a shorter overall survival time.40 Therefore, accurately 
quantifying nigral hyperintensity holds clinical value in assessing patient outcomes. Furthermore, automated quantification can possibly 
be utilized as an imaging biomarker for monitoring the efficacy of disease-modifying drugs, and further studies are warranted. 

We developed a model (Heuron IPD) using a deep learning-based algorithm called YOLOX for classifying nigral hyperintensity, as 
normal or abnormal. The YOLOX model has been improved with a decoupled-head approach, optimizing layer arrangement to enhance 
classification and localization.19 Moreover, YOLOX employs an anchor-free design facilitated by the multi-positive approach, enhancing 
its flexibility and performance through structural modifications. This modification eliminates the need for heuristic tuning associated with 
anchor optimization while concurrently diminishing computational requirements. Consequently, our model (AUC: 0.967–0.976, per SN) 
outperformed the diagnostic performance of the previous model based on YOLOv3 (AUC: 0.921–0.937) and even visual interpretation by 
a neuroradiologist (AUC: 0.937–0.945).19 It also showed higher performance than other pre-existing deep-learning model such as Pvtv241 
and Detectors42 (Supplement Table 9). Our study demonstrated the advancement of the YOLO series and its practical utility in clinical 
practice. Additionally, Heuron IPD showed enhanced diagnostic performance following volume-weighting application to the class 
probability value. In patients with IPD, the volume of the nigral hyperintensity is notably small or even absent. Therefore, comprehensively 
analyzing SN and nigral hyperintensity volume is essential for improving diagnostic accuracy. 

This study has some limitations. First, we opted for 18F-FP-CIT PET imaging as the reference standard for diagnosing IPD. 
Consequently, atypical Parkinsonism, including MSA and PSP, which can also exhibit decreased dopamine transporter binding similar to 
IPD, were excluded. Therefore, when interpreting the quantification and classification of nigral hyperintensity in a clinical context using 
our model, caution is advised, and a comprehensive assessment of other clinical features is essential. Second, we assessed nigral 
hyperintensity, which was considered as nigrosome-1 region. However, these hyperintensity areas were not pathologically confirmed and 
may not be definitely correlated with nigrosome-1. Third, we did not evaluate the use of SWI or neuromelanin imaging as input for our 
model. There is also a limitation in using SMwI reconstructed from QSM, as it is not yet a widely generalized method. However, SMwI 
is probably more suitable for diagnosing IPD due to its higher signal-to-noise ratio and contrast-to-noise ratio compared to SWI imaging, 
and its more distinct margins than neuromelanin imaging.7,14 Lastly, this is a retrospective study and external validation was limited to 
data from a single hospital, which may not represent demographic diversity. Furthermore, the use of a limited number of MRI scanners—
Ingenia CX, Ingenia Elition X, and Skyra—along with the need for high-resolution images to visualize the “swallow tail sign” may limit 
the generalizability of our model, necessitating a real-world validation study. 

 

CONCLUSIONS 

In conclusion, our deep learning-based model proves valuable for rapid and accurate automatic quantification of nigral hyperintensity, 
facilitating IPD diagnosis and symptom severity prediction. 
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SUPPLEMENTAL FILES 

Supplemental Figure 1. Volume analysis results for the two groups. (a) and (b) show the analysis results between the volume and 
the two groups while (c) and (d) depict the analysis results between the volume/ICV and the two groups. The normalized nigrosome 
volume was calculated using the following formula: total nigrosome volume (mm3) / total intracranial volume (mm3) × 1,000,000. 

 

Abbreviation: ICV, intracranial volume 
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Supplementary Figure 2. Examples demonstrating the results of image augmentation on the input image. In the Yolox model, 
multi-scale(480 ~ 800, 32 range), mosaic, mixup, color jitter, random flip, and resize were used. In the SparseInst model, multi-
scale(416 ~ 608, 32 range), random brightness, contrast, flip, and rotation(± 10°) were utilized. Examples of the main 
augmentation methods used are shown in the figure below. 

Original Contrast Rotation Mosaic Mixup 

     

     

     

     
 

Online Supplemental Data. Diagnostic performance of Heuron NI and Heuron IPD in all participants 
 Sensitivity, % 

[95 % CI] 
Specificity, % 

[95 % CI] 
Accuracy, % 

[95 % CI] 
F1-score, % 
[95 % CI] 

AUC 
[95 % CI] 

Heuron NI      
Right 89.2 [83.4, 93.5] 85.9 [75.6, 93.0] 88.2 [83.4, 92.0] 91.4 [87.0, 94.6] 0.928 [0.887, 0.957] 
Left 87.8 [81.8, 92.4] 83.6 [73.1, 91.2] 86.5 [81.5 90.6] 90.0 [85.5, 93.5] 0.915 [0.872, 0.947] 
Participant 96.4 [92.4, 98.7] 73.9 [69.9, 83.8] 89.9 [85.3, 93.4] 93.1 [89.1, 96.0]   

Heuron NI / ICV      
Right 88.0 [82.0, 92.5] 88.7 [79.0, 95.0] 88.2 [83.4, 92.0] 91.3 [86.9, 94.5] 0.928 [0.887, 0.957] 
Left 87.8 [81.8, 92.3] 83.6 [73.1, 91.2] 86.5 [81.5, 90.6] 90.0 [85.5, 93.5] 0.915 [0.872, 0.947] 
Participant 96.4 [92.4, 98.7] 75.4 [63.5, 85.0] 90.3 [85.8, 93.8] 93.4 [89.4, 96.2]  

Heuron IPD 
(only CNN) 

     

Right 92.2 [87.0, 95.8] 94.4 [86.2, 98.4] 92.8 [88.8, 95.8] 94.7 [91.1, 97.2] 0.933 [0.893, 0.961] 
Left 93.9 [89.1, 97.0] 94.5 [86.6, 98.5] 94.1 [92.2, 97.9] 95.7 [90.3, 96.7] 0.942 [0.904, 0.968] 
Participant 97.0 [93.2, 99.0] 91.3 [82.0, 967] 95.4 [93.6, 98.6] 96.7 [91.9, 97.7]  

Heuron IPD      
Right 94.6 [90.0, 97.5] 95.8 [88.1, 99.1] 94.9 [91.3, 97.4] 96.3 [93.1, 98.3] 0.976 [0.948, 0.992] 
Left 95.1 [90.6, 97.9] 95.9 [88.5, 99.1] 95.4 [91.9, 97.7] 96.6 [93.4, 98.5] 0.967 [0.936, 0.986] 
Participant 97.0 [93.2, 99.0] 95.7 [87.8, 99.1] 96.6 [93.5, 98.5] 97.6 [94.8, 99.2]   

 

Online Supplemental Data. Diagnostic performance of Heuron IPD across different groups  
H&Y score Sensitivity, % 

[95 % CI] 
Specificity, % 

[95 % CI] 
Accuracy, % 

[95 % CI] 
F1-score, % 
[95 % CI] 

AUC 
[95 % CI] 

Group 1      
#1 (1~1.5) 100 [79.4, 100] 100 [63.1, 100] 100 [85.8, 100] 100 [85.8, 100] 1.000 [0.858–1.000] 
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#2 (2~2.5) 97.3 [90.5, 99.6] 91.3 [72.0, 98.9] 95.8 [89.7, 98.8] 97.3 [91.7, 99.5] 0.943 [0.876–0.980] 
#3 (3~3.5) 97.1 [84.7, 99.9] 80.0 [28.4, 99.5] 94.9 [82.7, 99.3] 97.1 [85.9, 99.9] 0.885 [0.742–0.964] 
#4 (4~5) 100 [75.3, 100] - 100 [75.3, 100] 100 [75.3, 100] - 

Group 2      
#1 (1~2.5) 97.8 [92.1 - 99.7] 93.6 [78.6, 99.2] 96.7 [91.7, 99.1] 97.8 [93.2, 99.6] 0.957 [0.903, 0.985] 
#2 (3~5) 97.9 [88.7, 100] 80.0 [28.4, 99.5] 96.2 [86.8, 99.5] 97.9 [89.4, 99.9] 0.889 [0.772, 0.959] 

 

1. Tejani AS, Klontzas ME, Gatti AA, et al. Checklist for Artificial Intelligence in Medical Imaging (CLAIM): 2024 Update. 
Radiol Artif Intell 2024;6:e240300. DOI: https://doi.org/10.1148/ryai.240300 

 

Supplemental materials 
Development of deep learning-based automatic quantification for nigral hyperintensity 

For SN segmentation and nigral hyperintensity quantification, we used Heuron NI (version 1.0.0.19, Heuron, Seoul, Korea), launched 
commercially in Republic of Korea in June 2021. The process leading to clinical validation and regulatory approval includes pilot studies 
in clinical settings and user feedback. The Heuron NI system comprises a segmentation model, utilizing SMwI data as input and providing 
the measured volume of the nigral hyperintensity as output (Fig 2). 

This nigral hyperintensity segmentation model was developed to evaluate quantitative information effects on the nigral hyperintensity 
area on classification and disease progression. Heuron NI system performs segmentation of the SN, followed by quantification of the 
nigrosome-1 within the segmented SN area. The 2D instance segmentation model SparseInst1 was used to segment the SN region, and the 
training data annotation was generated by an experienced neurologist. This model, built with a fully convolutional encoder-decoder 
structure, comprised a backbone, context-encoder, and decoder, generating an instance activation map (IAM). ResNet2 served as the 
backbone to extract multi-scale features from the input image. These context-encoders processed these features, yielding single-level 
features enriched with contextual information. The decoder takes the output of the encoder as input and generates an IAM and a mask 
feature. The IAM highlighted discriminative regions associated with objects and enhanced instance-level feature representation by 
grouping multiple IAMs for a single object. This was accomplished using the Hungarian algorithm3 and bipartite matching during the 
training phase. Each target was assigned one IAM through bipartite matching, ensuring IAM singular activation for each object 
highlighting more discriminative regions. This obviated the need for a separate non-maximum suppression algorithm in post-processing, 
enhancing computational efficiency. The preprocessing consists of reslicing and resizing, resulting in 512*512 2D SMwI images. These 
preprocessed images are used as input for the instance segmentation model, which predicts SN mask information. The model was trained 
using an AdamW optimizer with a learning rate of 5e-5 and batch size of 16. Multi-scale training, random brightness, contrast, horizontal 
flip, and rotation were used for data augmentation techniques. The loss functions utilized for training include focal,4 dice, and binary cross-
entropy losses.  

We performed SN mask-based image registration for nigral hyperintensity quantification. This method prioritized SN mask information, 
excluding background or extraneous data from the image. The SN segmentation model generates predicted SN mask information for each 
slice. This data serves as the moving data for registration, with the fixed data defined by the SMwI template5 SN mask. Annotations were 
generated by an experienced neurologist, who delineated the SN and nigral hyperintensity in the SMwI template. Registration between 
these datasets was conducted using the SyNRA registration from Antspy. Upon completing the registration, the inverse registration field 
was used to transform the nigrosome-1 label information in the SMwI template from fixed to moving space. These areas are defined as the 
processed nigrosome-1. The SN region pixel values were binarized to extract the hyper-intensity region, defining it as the binarized SN 
mask. We identified areas where the processed nigrosome-1 region overlapped with the binarized SN mask. These overlapping areas were 
then designated as nigrosome-1. We determined the optimal cut-off using the analyzed nigrosome-1 volume and subsequently evaluated 
the diagnostic performance.  

To account for interindividual variation, normalization was conducted using the intracranial volume. SynthSeg was utilized to quantify 
the intracranial volume from three-dimensional T1-weighted imaging. SynthSeg—utilizing a CNN approach—is specifically designed to 
segment brain structures regardless of MRI contrast and resolution. This tool is integrated into the FreeSurfer 7.3.2 package, as described 
in the SynthSeg-FreeSurfer Wiki (harvard.edu).6 In the version employed here, SynthSeg 2.0 can accurately segment native 3D-T1 to 
acquire parcellation volume and intracranial volume (ICV).7,8 

 

Development of deep learning-based automatic classification for nigral hyperintensity  

Heuron IPD, a deep learning-based system (version 1.0.1.10, Heuron Corporation, Seoul, Korea), commercially available in Korea since 
April 2021, was utilized to detect nigrostriatal degeneration. The system comprises a CNN-based object detection and segmentation model, 
integrating each model output to classify nigrostriatal degeneration (Fig 2). Heuron IPD first performs object detection using YOLOX 
model, followed by segmentation using our previously introduced Heuron NI model, which utilizes the SparseInst segmentation model. 
SMwI served as the input data for the Heuron IPD system, with the output indicating nigrostriatal degeneration.  

In previous study, a system using YOLOv39 can classify nigrostriatal degeneration.10 In this study, we used the object detection model 
YOLOX for classifying nigrostriatal degeneration.11 This model was designed based on YOLOv3 and included features comprising anchor-
free, decoupled head, multi-positive, and simOTA alongside the original YOLOv3. YOLOX utilizes SMwI data preprocessed to 640*640 
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as 2D images to predict the nigrosome-1 region and classify abnormalities. The model was trained using a dataset annotated with 
nigrosome-1 location by an experienced neurologist, with 18F-FP-CIT PET imaging used as the ground truth to determine the presence of 
nigrostriatal degeneration. 

We captured the input images adhering to a consistent protocol. We observed the anchor-free approach was more efficient, as the 
images were not significantly influenced by anchor clustering. The model was optimized using simOTA11 to address challenges inherent 
in anchor-free methods that categorize the center of the ground truth box as positive. While the Optimal Transport Assignment (OTA) can 
be employed to address the transport problem through the Sinkhorn-Knopp iteration, it introduces an increased learning overhead.12 
YOLOX reduced the learning cost by using simOTA with a dynamic top-K strategy.11 The model employed a CSP-Darknet backbone, 
learning rate 0.01, batch size 8, and the SGD optimizer. For classification, the binary cross entropy loss function was used, while the IOU 
loss function was used for localization. For image augmentation, we used multi-scale learning (480 ~ 800, 32 range), mosaic,13 mixup,14 
color jitter, random flip, and resize techniques. We performed 5-fold cross-validation on the training dataset to select the optimal model. 
All implementations were conducted using the open-source framework mmDetection (v.2.27.0, https://github.com/open-
mmlab/mmdetection).  

To classify the nigrostriatal degeneration, five slices from the scanned MR images containing SN and nigral hyperintensity structures 
were utilized for analysis.10,15 Following image analysis, the object detection model returns a probability value indicating the likelihood of 
a specific object based on its training. The object detection model was improved by incorporating quantification information because the 
hyperintensity area of nigrosome-1 is lost in patients with IPD in SMwI. The derived volume from the segmentation model serves as a 
weight for the class probability value (Fig 2). Consequently, these weighted class probability values were employed to determine the 
abnormalities in the nigral hyperintensity region. The diagnostic performances of Heuron IPD were evaluated and compared with the 
model using only the CNN, without volume weight, to determine the volume weight effectiveness. 
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Supplemental Table 1. Checklist for Artificial intelligence In Medical Imaging (CLAIM) 

Section / Topic No. Item Our 
work Comment 

TITLE / 
ABSTRACT 

    

 1 Identification as a study of AI methodology, specifying 
the category of technology used (e.g., deep learning) 

O Page 1, 2 

ABSTRACT     
 2 Summary of study design, methods, results, and 

conclusions 
O Page 2 

INTRODUCTION     
 3 Scientific and/or clinical background, including the 

intended use and role of the AI approach 
O Page 4, 5 

 4 Study aims, objectives, and hypotheses  O Page 4 
METHODS     
Study Design 5 Prospective or retrospective study O Page 1, Page 6. 
 6 Study goal O Page 4. 
Data 7 Data sources O Page 5~6 
 8 Inclusion and exclusion criteria O Page 5~6, Figure 1. 
 9 Data pre-processing O Page 8, 10 
 10 Selection of data subsets O Page 7. 
 11 De-identification methods X  
 12 How missing data were handled O Page 5~6, Figure 1. 
 13 Image acquisition protocol O Page 6. 
Reference 
Standard 14 Definition of method(s) used to obtain reference 

standard 
O  

 15 Rationale for choosing the reference standard O  
 16 Source of reference standard annotations O  
 17 Annotation of test set  O  
 18 Measures of inter- and intra-rater variability of 

features described by the annotators 
O  

Data 
Partitions 19 How data were assigned to partitions O Page 5, 6 

 20 Level at which partitions are disjoint O Page 5, 6 
Testing Data 21 Intended sample size O Page 6. 
Model 22 Detailed description of model O Page 7~10 
 23 Software libraries, frameworks, and packages O Page 7, 9, 10, 11 
 24 Initialization of model parameters O Page 7~10 
Training 25 Details of training approach O Page 8, 10 
 26 Method of selecting the final model O Page 10 
 27 Ensembling techniques X  
Evaluation 28 Metrics of model performance O Table 2 
 29 Statistical measures of significance and uncertainty O Page 11 

 30 Robustness or sensitivity analysis O Supplement Table 
3~7 

 31 Methods for explainability or interpretability O Page 11 
 32 Evaluation on internal data X  
 33 Testing on external data O Page 6, Table 2 
 34 Clinical trial registration X  
Result     
Data 35 Numbers of patients or examinations included and 

excluded 
O Page 6, Figure 1 

 36 Demographic and clinical characteristics of cases in 
each partition 

O Figure 1 

Model 
performance 37 Performance metrics and measures of statistical 

uncertainty 
O  Table 2, Supplement 

Table 3~7 
 38 Estimates of diagnostic performance and their 

precision 
O Table 2, Supplement 

Table 3~7 
 39 Failure analysis of incorrect results O   
DISCUSSION     
 40 Study limitations O Page 15, 16 
 41 Implications for practice, including intended use 

and/or clinical role  
O Page 14, 15, 16 

OTHER 
INFORMATION     

 
42 

Provide a reference to the full study protocol or to 
additional technical details O 

 

Supplementary 
Material 

 43 Statement about the availability of software, trained 
model, and/or data 

X  

 44 Sources of funding and other support; role of funders O  

Supplemental Table 2. SMwI protocol for three different scanners. Participants in the previous study (Shin et al.) underwent MR 
imaging on a 3T MRI with a 32-channel coil (Skyra, Siemens Healthineers, Forchheim, Germany). Participants from three hospitals 
also underwent MR imaging. The MRI scanners used were as follows: 1) Ingenia CX, Philips Medical System, Best, the Netherlands 
2) Ingenia Elition X, Philips Medical System, Best, the Netherlands 3) Skyra, Siemens Healthineers, Forchheim, Germany. 
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Participants for the external validation also underwent MR imaging (Ingenia CX, Philips Medical System, Best, the Netherlands) 
H&Y score Siemens Philips 

Matrix 384 x 384 384 x 384 
FOV (mm3) 192 x 192 x 32  192 x 192 x 32  
Slice thickness(mm) 1 1 
voxel size (mm3) 0.5 x 0.5 x 1 0.5 x 0.5 x 1 
Flip Angle 20 deg 20 deg 
Number of Echo 3 3 
TR (ms) 48 48 
TE (ms) 14 / 26.5 / 39 14.38 / 26.99 / 39.6 
Bandwidth 100 Hz / pixel 100 Hz / pixel 

 

Supplement Table 3. Demographic findings and clinical characteristics of training data 

 
IPD 

(n=56) 

Control 

(n=95) 
P-value 

Age, yr 70 ± 10 56 ± 17 .0001* 
Sex, male:female 32:24 36:59 .022† 

*Comparison of two groups using Mann-Whitney test, †Comparison of two groups using chi-square test. 

 

Supplemental Table 4. Diagnostic performance of HeuronIPD in differentiating IPD from ET and DIP 
 Sensitivity, % 

[95 % CI] 
Specificity, % 

[95 % CI] 
Accuracy, % 

[95 % CI] 
F1-score, % 
[95 % CI] 

AUC 
[95 % CI] 

ET vs IPD      
Right 94.6 [90.0, 97.5] 96.7 [88.5, 99.6] 95.1 [91.5, 97.6] 96.6 [93.4, 98.6] 0.980 [0.951, 0.994] 
Left 95.1 [90.6, 97.9] 95.2 [86.5, 99.0] 95.1 [91.5, 97.6] 96.6 [93.3, 98.6] 0.965 [0.932, 0.985] 
Subject 97.0 [93.2, 99.0] 96.6 [88.1, 99.6] 96.9 [93.7, 98.8] 97.9 [95.1, 99.3]  

DIP vs IPD      
Right 94.6 [90.0, 97.5] 92.3 [64.0, 99.8] 94.4 [90.0, 97.3] 96.9 [93.2, 98.9] 0.959 [0.919, 0.983] 
Left 95.1 [90.6, 97.9] 93.3 [68.1, 99.8] 95.0 [90.7, 97.7] 97.2 [93.6, 99.1] 0.968 [0.931, 0.989] 
Subject 97.0 [93.2, 99.0] 90.9 [58.7, 99.8] 96.7 [92.9, 98.8] 98.2 [95.0, 99.6]  

Abbreviations: IPD, Idiopathic Parkinson's disease; ET, essential tremor; DIP; drug-induced parkinsonism 

 

Supplemental Table 5. Comparisons of AUC in differentiating IPD from ET and DIP using Hanley & McNeil method 
 ET vs IPD DIP vs IPD p-value 
Right 0.980 0.959 .462 
Left 0.965 0.968 .887 

 

Supplementary Table 6. Diagnostic performance of HeuronIPD system by gender 
 Sensitivity, % 

[95 % CI] 
Specificity, % 

[95 % CI] 
Accuracy, % 

[95 % CI] 
F1-score, % 
[95 % CI] 

AUC 
[95 % CI] 

Female      
Right 95.5 [88.9, 98.8] 97.6 [87.7, 99.9] 96.2 [91.4, 98.8] 97.1 [92.7, 99.3] 0.985 [0.946, 0.998] 
Left 90.7 [82.5, 95.9] 100 [92.3, 100] 93.9 [88.4, 97.3] 95.1 [89.9, 98.1] 0.967 [0.921, 0.990] 
Subject 95.5 [88.9, 98.8] 100 [91.8, 100] 97.0 [92.4, 99.2] 97.7 [93.5, 99.5]  

Male      
Right 96.1 [89.0, 99.2] 92.9 [76.5, 99.1] 95.2 [89.2, 98.4] 96.7 [91.3, 99.2] 0.963 [0.907, 0.990] 
Left 100 [95.4, 100] 88.9 [70.8, 97.6] 97.1 [91.9, 99.4] 98.1 [93.3, 99.8] 0.958 [0.900, 0.987] 
Subject 98.7 [93.1, 100] 88.5 [69.8, 97.6] 96.2 [90.5, 99.0] 97.5 [92.4, 99.6]  
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Supplementary Table 7. Comparison of AUC by gender using Hanley & McNeil method 
 ET vs IPD DIP vs IPD p-value 
Right 0.985 0.963 .331 
Left 0.967 0.958 .794 

 

Supplemental Table 8. Comparison of nigrosome-1 volume among the two groups of H&Y scores.  
 Nigrosome volume 

(mm3) 
P-value Nigrosome volume/ICV 

(mm3ⅹ106) 
P-value 

Group 1  0.06  0.074 
1–1.5 1.75 ± 1.07 (0.62–2.88)  1.18 ± 0.73  
2–2.5 1.99 ± 1.65 (1.72–2.26)  1.35 ± 1.15  
3–3.5 1.36 ± 1.12 (1.09–1.63)  0.92 ± 0.76  
≥ 4 1.62 ± 1.38 (1.05–2.18)  1.09 ± 0.94  

Group 2  0.008  0.011 
1–2.5 1.98 ± 1.63 (1.72–2.24)  1.34 ± 1.13  
3–5 1.43 ± 1.19 (1.18–1.67)  0.96 ± 0.81  

 

Supplement Table 9. Comparative analysis with other deep learning models 
 Sensitivity, % 

[95 % CI] 
Specificity, % 

[95 % CI] 
Accuracy, % 

[95 % CI] 
F1-score, % 
[95 % CI] 

Yolox     
Right 93.9 [89.1, 97.0] 94.5 [86.6, 98.5] 94.1 [92.2, 97.9] 95.7 [90.3 ,96.7] 
Left 92.2 [87.0, 95.8] 94.4 [86.2, 98.4] 92.8 [88.8, 95.8] 94.7 [91.1 ,97.2] 
Subject 97.0 [93.2, 99.0] 91.3 [82.0 ,96.7] 95.4 [93.6 ,98.6] 96.7 [91.9, 97.7] 

Yolov3     
Right 89.0 [83.2, 93.4] 97.3 [90.5, 99.7] 91.6 [87.3, 94.8] 93.6 [90.8, 96.1] 
Left 89.2 [83.4, 93.4] 95.8 [88.1, 99.1] 91.1 [87.8, 94.4] 93.3 [90.4, 96.1] 
Subject 92.9 [87.8, 99.6] 97.1 [89.9, 99.6] 94.1 [90.3, 96.7] 95.7 [93.2, 97.9] 

Pvtv2     
Right 89.6 [83.9, 93.8] 94.5 [86.6, 98.5] 91.1 [86.8, 94.4] 93.3 [90.3, 96.1] 
Left 90.1 [85.5, 94.9] 94.4 [86.2, 98.4] 92.0 [87.8, 95.1] 94.1 [91.4, 96.7] 
Subject 93.5 [88.6, 96.7] 94.2 [85.8, 98.4] 93.7 [89.8, 96.4] 95.4 [93.1, 97.4] 

Detectors     
Right 87.2 [81.1, 91.9] 90.4 [81.2, 96.1] 88.2 [83.4, 92.0] 91.1 [89.4, 94.0] 
Left 89.8 [84.1, 93.9] 88.7 [79.0, 95.0] 89.5 [84.8, 93.1] 92.2 [89.0, 95.1] 
Subject 94.6 [90.0, 97.5] 87.0 [76.7, 93.9] 92.4 [88.3, 95.4] 94.6 [92.0, 96.9] 

 

 

 


