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Intelligence-Based Brain Tumor Response Assessment 

in Patients with Glioblastoma 
Jikai Zhang 1, 3, Dominic LaBella 4, Dylan Zhang 6, Jessica L. Houk 6, Jeffrey D. Rudie 7, Haotian Zou5, Pranav Warman8, Maciej A. 
Mazurowski 1, 2, 5, 6, Evan Calabrese 3, 6 
 

ABSTRACT 

BACKGROUND AND PURPOSE: To develop and evaluate an automated, AI-based, volumetric brain tumor MRI response assessment 
algorithm on a large cohort of patients treated at a high-volume brain tumor center. 

MATERIALS AND METHODS: We retrospectively analyzed data from 634 patients treated for glioblastoma at a single brain tumor 
center over a 5-year period (2017-2021). The mean age was 56 +/- 13 years. 372/634 (59%) patients were male, and 262/634 (41%) 
patients were female. Study data consisted of 3,403 brain MRI exams and corresponding standardized, radiologist-based brain tumor 
response assessments (BT-RADS). An artificial intelligence (AI)-based brain tumor response assessment algorithm was developed using 
automated, volumetric tumor segmentation. AI-based response assessments were evaluated for agreement with radiologist-based 
response assessments and ability to stratify patients by overall survival. Metrics were computed to assess the agreement using BT-
RADS as the ground-truth, fixed-time point survival analysis was conducted to evaluate the survival stratification, and associated P-
values were calculated. 

RESULTS: For all BT-RADS categories, AI-based response assessments showed moderate agreement with radiologists’ response 
assessments (F1 = 0.587-0.755). Kaplan-Meier survival analysis revealed statistically worse overall fixed time point survival for 
patients assessed as image worsening equivalent to RANO progression by human alone compared to by AI alone (log-rank P=0.007). 
Cox proportional hazard model analysis showed a disadvantage to AI-based assessments for overall survival prediction (P=0.012).   

CONCLUSIONS: AI-based volumetric glioblastoma MRI response assessment following BT-RADS criteria yielded moderate agreement 
for replicating human response assessments and slightly worse stratification by overall survival.  

ABBREVIATIONS: GBM ＝ Glioblastoma; RANO ＝ Response Assessment in Neuro-Oncology; BTRADS ＝ Brain Tumor Reporting and 
Data System; NLP = Natural Language Processing. 
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 SUMMARY SECTION 

PREVIOUS LITERATURE: In recent years, there have been extensive efforts to develop standardized MRI response assessment criteria, 
including RANO and BT-RADS. However, human assessments are prone to error, bias, and inter-rater variability. Artificial intelligence 
(AI)-based brain tumor MRI segmentation models have potential to improve response assessments through objective volumetric 
assessment. However, there has been limited prior work focused on developing automated AI-based response assessment tools for 
glioblastoma incorporating established response assessment criteria. 

KEY FINDINGS: AI-based automated volumetric response assessments showed moderate agreement with radiologists’ response 
assessment and comparable survival stratification for patients with glioblastomas. Time-dependent cox proportional hazards models 
showed similar performance of human and AI assessments for predicting overall survival. 

KNOWLEDGE ADVANCEMENT: AI-based volumetric response assessments on MRI may help automate and standardize glioblastoma 
response assessments. This approach may be particularly useful for certain scenarios where radiologist interpretations are infeasible 
or as an adjunct to radiologist-based response assessment. 

 Published November 14, 2024 as 10.3174/ajnr.A8580
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INTRODUCTION 

Glioblastoma (GBM) is the most common primary brain malignancy in adults and remains difficult to treat even with the benefit 
of decades of experience.1 Despite improved understanding of the genetic underpinnings of brain malignancies, treatment options for GBM 
are limited and survival remains poor.2–4 GBM management is further complicated by the complexity and frequency of clinical and 
radiologic response assessments, which may occur as often as every 4 weeks during active treatment.5 Brain MRI plays a critical role in 
GBM treatment response assessments, and along with comprehensive clinical assessment, is central for determining treatment response 
and/or disease progression.6,7   

Given the importance of MRI for GBM treatment monitoring, there have been extensive efforts to develop standardized MRI response 
assessment criteria.8 Originally proposed in 1990, the McDonald criteria were widely considered the standard for GBM MRI response 
assessments, particularly for clinical trials.9 While similar to other solid tumor response assessment criteria, such as the Response 
Evaluation Criteria in Solid Tumors (RECIST),10 the McDonald criteria employed two-dimensional (2D) tumor measurements to better 
capture the complex shape that is typical of GBM. In the following decades, the Response Assessment in Neuro-Oncology (RANO) criteria 
and its variations6,11 superseded the McDonald criteria with their primary advantage being consideration of both enhancing and non-
enhancing tumor in addition to relevant treatment modalities. While RANO continues to be widely used in clinical trials, it is not commonly 
used for routine clinical assessments owing to its complexity.7 RANO 2.0 updates RANO by providing a unified criteria to assess gliomas 
regardless of their grades and recommend volumetric assessments.39  

More recent efforts towards response assessment standardization have included the Brain Tumor Reporting and Data System (BT-RADS), 
a standardized MRI reporting system designed to simplify brain MRI reporting for routine clinical follow up of patients with GBM.12–14 
Similar to RANO, BT-RADS relies on measurements of both enhancing and non-enhancing tumor, and the BT-RADS 4 category was 
designed to be equivalent to the primary imaging criterion for RANO progression.6,12 The main advantage of BT-RADS is its ease of use 
and implementation. In contrast to RANO, BT-RADS has seen more rapid adoption for routine clinical use and has been implemented at 
several major brain tumor centers since it was first proposed in 2018.13 RANO 2.0 and BT-RADS differ in scope (RANO 2.0 primarily 
focused on clinical trials and BT-RADS on routine assessments) and in approach. Specifically, RANO 2.0 proposes a unified set of criteria 
for high- and lower-grad gliomas, while BT-RADS was designed for high-grade gliomas. Both criteria acknowledge changes in enhancing 
and non-enhancing tumor, and both share similar criteria for tumor progression (25% increase in enhancing tumor). However, other RANO 
2.0 categories do not have straightforward relationships to BT-RADS categories. For example, RANO 2.0 “partial response” requires 50% 
2D/linear decrease in enhancing tumor, while BT-RADS 1 (imaging improvement) does not specify an enhancing tumor decrease 
threshold. However, BT-RADS, like its predecessors, relies on 2D measurements, which may not accurately capture the complex three-
dimensional (3D) shape of GBM.15 In addition, it should be acknowledged that human BT-RADS assessments are an imperfect reference 
standard as they are somewhat subjective and dependent on manual measurements and interpreting radiologists’ adherence to published 
guidelines. While previous volumetric (3D) response assessment criteria have been proposed, implementation has been hindered by the 
difficulty in translating volumetric changes into response assessment categories. 

Automated artificial intelligence (AI)-based volumetric brain tumor MRI segmentation has recently matured into a clinically viable tool 
principally due to large collaborative efforts such as the multimodal brain tumor segmentation (BraTS) challenge16 and the global Federated 
Tumor Segmentation (FeTS) initiative.17 This has led several groups to explore the use of AI-based segmentation tools for automated 
volumetric GBM MRI response assessment.18–21 In this work, we evaluate an automated, AI-based, volumetric brain tumor response 
assessment tool on a large cohort of patients treated at a high-volume brain tumor center. We compare AI-based results to standardized 
neuroradiologist response assessments in two key domains: ability to recapitulate human response assessments and ability to stratify 
patients by overall survival. 

MATERIALS AND METHODS 
Study Population 

This was a single-center, retrospective, Institutional Review Board approved study with a waiver for informed consent. Candidate 
participants were identified by systematic search of electronic health encounter records from 2017-2021 for all adult patients with a 
diagnosis of “glioblastoma” at a high-volume academic brain tumor center using Center for Medicaid Services (CMS) Hierarchical 
Condition Category (HCC) codes (n = 4,689). This included both isocitrate dehydrogenase mutant and wildtype (WT) grade 4 astrocytomas 
in line with current WHO classifications at the time of diagnosis (referred to as “GBM” hence forth for conciseness). Exclusion criteria 
were: patients lacking at least one MRI brain exam with and without intravenous contrast (n = 3,199), and patients lacking at least one 
standardized neuroradiologist response assessment (n = 856). The final study population consisted of 634 patients. A patient flow diagram 
is provided as FIG 1. 
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FIG 1. Patient flow diagram for study inclusion 
Neuroradiologists response assessments 

Formal neuroradiologist-based GBM MRI response assessments using the BT-RADS structured reporting system were available as part 
of routine clinical care. BT-RADS scores and baseline comparison exam dates were extracted from radiology reports using a custom semi-
supervised natural language processing (NLP) algorithm with near-perfect internal validation performance. The full data curation pipeline 
was demonstrated in FIG 2. For each patient, we searched for all reports containing BT-RADS scores. Then, for each BT-RADS report, 
the NLP algorithm retrieved the prior exam date and searched for its prior exam with the retrieved exam date (complete methodologic 
details and performance assessment provided as Supplementary Data). This yielded 2,446 pairs of exams (current and baseline prior) with 
BT-RADS scores. One baseline prior can be paired with multiple follow-up exam. BT-RADS scores included the following numerical 
categories: 1 = imaging improvement, 2 = no significant imaging change, 3 = imaging worsening, 4 = imaging worsening with >25% 
increase in 2-dimensional enhancing tumor measurements (equivalent to RANO progression). 
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FIG 2. Pipeline of data curation process, aided by NLP and image segmentation methods. 

 
MRI data 

All routine brain tumor MRI exams were performed with a Brain Tumor Imaging Protocol (BTIP)22 compliant protocol including 
3D, gradient echo, T1-weighted pre- and post-contrast sequences and 2D, T2-weighted and T2-Fluid Attenuated Inversion Recovery 
(FLAIR) sequences. MRI data were retrieved for each pair of exams corresponding to the BT-RADS scores identified in the previous 
section, which resulted in 3,403 unique MRI exams. Scanner information was included in the Supplementary Data. 

Image processing and automated tumor segmentation 

MRI data underwent standard image preprocessing steps including translation-only alignment to the Montreal Neurological 
Institute brain atlas (MNI352) for filed-of-view (FOV) standardization,23 and skull stripping using a publicly available deep learning 
method.24 Preprocessed images then underwent automated, volumetric tumor segmentation using 3D convolutional segmentation neural 
network. This model was specifically designed for post-treatment exams including four distinct compartments: resection cavity, enhancing 
tumor, necrotic tumor core, and surrounding non-enhancing T2-FLAIR signal abnormality. The final model was pre-trained on an external 
post-operative brain MRI exam. We utilized nnU-Net36 to train and validate the model. Internal validation results showed a mean +/- 
standard deviation of 0.8861 +- 0.2476 for enhancing tumor and 0.9833 +- 0.0372 for surrounding non-enhancing FLAIR signal 
abnormality (complete methodologic details and performance assessment provided as Supplementary Data). 

Artificial intelligence volumetric tumor response assessment (AI-VTRA) 

An AI scoring system (AI-VTRA) based on volumetric differences for enhancing tumor (VDET) and surrounding non-enhancing 
FLAIR hyperintensity (VDFLAIR) were computed for each pair of exams in the dataset and were used to develop AI-based volumetric 
equivalents to BT-RADS scores. BT-RADS 4 was defined as ≥40% increase in VDET, as the extrapolated volumetric threshold derived 
from 2D measurements, for measurable disease (enhancing tumor volume greater than 1 mL) consistent with multiple previously published 
studies.25–27,38 Other relevant volumetric thresholds (notably a +/- 10% threshold for no significant change) were determined empirically, 
as previously published values did not exist. BT-RADS 3 was defined as either (1) VDET between 10% and 40% increase or (2) VDET 
<10% change and VDFLAIR ≥40% increase. BT-RADS 2 was defined as either (1) VDET <10% change or (2) VDET ≥10% increase and 
VDFLAIR ≥40% increase. BT-RADS 1 was defined as either (1) VDET ≥10% decrease or (2) VDET <10% change and ≥40% decrease in 
VDFLAIR. Complete criteria for AI-VTRA are presented in Table 1. To assess the importance of including VDFLAIR, we also evaluated AI-
VTRAET, which was solely based on VDET (Supplementary Data).    

AI performance for survival stratification 

Performance of automated volumetric criteria for replicating human BT-RADS scores was evaluated across the entire dataset. 
Composite performance for all BT-RADS categories was assessed with the Macro-F1 score. Performance for individual BT-RADS 
categories was assessed with sensitivity, specificity, precision, Micro-F1 score (calculated globally across all categories), and Macro-F1 
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score (calculated for each category and then averaged). 

AI performance for recapitulating human BT-RADS scores 

Performance for survival stratification was assessed based on the highest response assessment category assigned within the first 
6 months of MRI follow up, which typically (though not necessarily) corresponded to the second postoperative MRI exam. Time from 
initial diagnosis was not available for all patients and was not included in the analysis. 323/634 (51%) patients had at least 1 BT-RADS 
assessment in the first 6 months of follow up and were included in this sub-analysis. This cohort was sub-stratified by response score and 
whether they were assigned this score by human alone, by AI alone, or by both human and AI simultaneously. We plotted Kaplan-Meier 
survival curves of each sub-strata to visualize survival probability. Patients who were still alive at the last available follow up were 
censored. Log-rank tests were used to determine the pair-wise differences between survival curves. 

Multivariate survival modeling 

Multivariate Cox proportional hazard models were applied for human (eq 1.) and AI assessments (eq 2.) separately to assess the 
relative predictive value for survival prediction. Besides the scores, we included normalized age, sex, race, and ethnicity in the model. 
Time between baseline and follow-up exams was considered as the time-varying covariate in the cox model. We removed observations 
due to unknown IDH status before fitting the cox models. Concordance index (C-index) was calculated for each Cox model. To compare 
the difference in C-index between two cox models, we applied statistical tests that account for the paired data (see Supplementary Data 
for details). 

(1) ℎ௛௨௠௔௡ = ℎ଴௛௨௠௔௡
(𝑡)exp (𝛼ଵ ∗ 𝐵𝑇𝑅𝐴𝐷𝑆 + 𝛼ଶ ∗ 𝑁𝑜𝑟𝑚(𝐴𝑔𝑒) + 𝛼ଷ ∗ 𝑆𝑒𝑥 + 𝛼ସ ∗ 𝑅𝑎𝑐𝑒 + 𝛼ହ ∗ 𝐸𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 + 𝛼଺ ∗ 𝐼𝐷𝐻) 

(2) ℎ஺ூ = ℎ଴஺ூ
(𝑡)exp (𝛽ଵ ∗ AIVTRA + 𝛽ଶ ∗ 𝑁𝑜𝑟𝑚(𝐴𝑔𝑒) + 𝛽ଷ ∗ 𝑆𝑒𝑥 + 𝛽ସ ∗ 𝑅𝑎𝑐𝑒 + 𝛽ହ ∗ 𝐸𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 + 𝛽଺ ∗ 𝐼𝐷𝐻) 

Statistical analyses 

Statistical analyses were performed in Python version 3.8 and R version 4.2. Kaplan-Meier estimates were computed using the 
“lifelines” package in Python. Cox modeling was performed in R using the “survival” package. The scale method in R was used to 
normalize Age. We set the confidence level as 95% and P-values less than 0.05 were considered significant. 

RESULTS 

Patient characteristics 

Basic study participant demographic data are reported in Table 2. The mean age was 56 +/- 13 years. 372/634 (59%) patients 
were male, and 262/634 (41%) patients were female. 566/634 (89%) patients listed their primary self-reported race as Caucasian/white, 
41/634 (7%) as black or African American, and 9/634 (1%) as Asian. 8/634 (1%) of patients reported a secondary race, and 10/634 (2%) 
patients did not report race. 479/634 (76%) patients had an IDH wildtype tumor, 63/634 (10%) patients had an IDH mutant tumor, and 
92/634 (14%) patients had missing or inconclusive IDH testing.  

MRI image data and segmentation 

The 634 included patients had 3,403 qualifying MRI brain exams (average 3.85 exams per patient). The average time between 
baseline and follow-up studies was 160 days with a standard deviation of 236 days. Automated volumetric tumor segmentation was 
successfully completed for all exams without errors. The average segmentation time was 11.5 seconds per exam. Representative segmented 
MRI images from four different patient’s exam pairs with each of the different assessment categories are presented in FIG 3. 
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FIG 3. Example MR images, radiologist response assessment categories, and volumetric changes for 4 patients at 2 different 
timepoints. 

AI Performance for recapitulating human BT-RADS scores 

For recapitulating human BT-RADS scores, AI-VTRA had a higher macro-F1 score (AI-VTRA macro-F1 = 0.548) compared 
to AI-VTRA¬ET (AI-VTRA¬ET macro-F1 = 0.535). Performance metrics for predicting each of the individual BT-RADS scores are 
provided in Table 3. AI-VTRAET alone demonstrated improved performance compared to AI-VTRA¬ for a single score, BT-RADS 2 (no 
significant change). Overall, automated volumetrics yielded moderate performance (F1 > 0.7) for predicting neuroradiologist BT-RADS 
scores of 1, 2, and 4, and yielded moderate performance (F1 > 0.55) for predicting BT-RADS 3. Total counts and percentage for each 
score and an analysis of major discrepancies between human and AI assessments are provided in Supplementary Data. 

Fixed timepoint survival analysis 

465/634 (73%) patients died during the follow-up period. Median overall survival (OS) for the cohort was 443 days from the 
first available MRI exam, and median survival after the 6-month timepoint selected for the fixed timepoint survival analysis (S6mo) was 
401 days. Median S6mo stratified by the highest human (BT-RADS) response category assessed during the first 6 months of follow up was 
401 days for BT-RADS 1, 625 days for BT-RADS 2, 394 days for BT-RADS 3, and 207 days for BT-RADS 4. Median S6mo stratified by 
the highest AI (AI-VTRA) category assessed during the first 6 months of follow up was 450 days for imaging improvement, 501 days for 
no significant change, 346 days for imaging worsening, and 305 days for image worsening equivalent to RANO progression. Survival 
curves for each BT-RADS and AI-VTRA category are presented in FIG 4. There was statistically worse overall S6mo for patients assessed 
as image worsening equivalent to RANO progression by human alone compared to by AI alone (log-rank p = 0.007). For other assessment 
categories, S6mo was not significantly different when assessed by AI alone versus human alone.  
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FIG 4. Fixed timepoint Kaplan-Meier survival curves for each response assessment category stratified by AI- and radiologist-based 
assessment methods. * Indicates a statistically significant difference. 

Multivariate survival modeling 

A multivariate Cox proportional hazard model for S6mo yielded a C-index for human assessments versus AI assessments (0.637 
[0.600, 0.674] vs 0.594 [0.555, 0.633], p-value =0.012), indicating significant improvement in predictive ability for human BT-RADS 
assessment. We showed hazard ratios and 95% confidence intervals of fitted fixed effects in Table 4 and Table 5 for BT-RADS and AI-
VTRAS respectively. Both models suggested that Imaging RANO Progression (Score of 4) had significantly worse survival than No 
change (Score of 2). The model that included BT-RADS suggested significantly worse survival in Improving (Score of 1) and Worsening 
(Score of 3) than No change. 

DISCUSSION 

The goal of this study was to compare AI-based volumetric GBM MRI response assessment with standardized radiologist 
response assessments. First, we addressed the ability of AI to recapitulate radiologist response assessments. Our results show that AI-based 
volumetric response assessment yielded overall moderate performance (Macro F1 ≈ 0.7) for recapitulating most human response 
assessment categories (BT-RADS 1, 2, and 4). Performance was lowest (Macro F1 ≈ 0.6) for predicting BT-RADS 3. This is likely related 
to the high variability of this assessment category, which ranges from minimal changes to relatively large tumor volume increases that do 
not meet the threshold for RANO progression. Prediction of this category is further complicated by the need to specify a volumetric 
threshold for “no significant change”, which is incongruous with human response assessments where this threshold may differ depending 
on the clinical scenario. For example, radiologists may intuitively ignore T2/FLAIR signal attributed to post-treatment changes, whereas 
the volumetric segmentation model does not explicitly distinguish non-enhancing tumor versus treatment effect. These results suggest that 
AI-based volumetric response assessments may be better suited as a clinical decision support adjunct rather than a replacement for 
radiologists’ assessments.28 While different thresholds may ultimately be relevant for IDH mutant versus wildtype grade 4 tumors, they 
are currently treated the same by BT-RADS. The subgroup analysis of IDH WT tumor dataset (included in the section IDH Subgroup 
Analysis in Supplementary Material) showed that using the same threshold, that the composite metric AI-VTRA outperforms AI-VTRAET 
in both IDH WT dataset and the original dataset. 

A separate but related domain for evaluating AI-based volumetric response assessment is its ability to stratify patients by overall survival. 
Compared to a similar survival analysis study on BT-RADS stratification conducted by Kim et al.39, our study reported the same non-
significant hazard ratios for IDH status and significantly high hazard ratios for Score 4. For all assessment categories other than BT-RADS 
4, there was no statistically significant difference in overall survival whether assigned by AI alone or human alone. However, overall 
survival was statistically lower for patients assessed as BT-RADS 4 by human alone compared to by AI alone with a median S6mo of 207 
versus 305 days, respectively. Interestingly, when BT-RADS 4 was assigned by both AI and human assessments, survival was more similar 
to those assigned by AI alone. In addition, although there were no statistically significant survival differences in other assessment categories 
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whether assigned by AI alone versus human alone, human assessment resulted in larger differences in survival between assessment 
categories. These findings are indicative of the fact that human assessments often draw on additional findings or clinical history not 
captured by the proposed AI method, such as progression of non-enhancing tumor in the setting of anti-angiogenic therapy. Incorporating 
this additional data will likely be important for improving AI-based GBM assessment methods in the future. We observed poorer S6mo for 
BT-RADS 1 (401 days) than BT-RADS 2 (625 days), almost equivalent to BT-RADS 3 (394 days). We suspect that this might be due to 
bevacizumab pseudo-response in patients with late-stage recurrent disease, which is consistent with the prior published report40 on survival 
following BT-RADS assessment. 

GBM MRI response assessments are highly complex owing to the highly variable appearance of recurrent tumor and treatment changes. 
There are several well-known issues with current response assessments that could be addressed with AI including the inherent inaccuracies 
and high inter-rater variability of 2D measurements.11,29–32 The results of this study add to a growing body of literature focused on AI-
based GBM MRI response assessments,28,33,34 which, like many applications of AI in neuro-oncology, have yet to deliver promised benefits 
in a meaningful way.35 However, our results highlight three important observations, 1) simple rule-based AI volumetric response 
assessments yield only moderate performance for predicting human response assessments, 2) using this approach, human assessments 
yielded a small but significant improvement in survival stratification performance, and 3) major discrepancies between human and AI 
assessments were rare and both human and AI error were identified as causes. Overall, these results highlight the need for better AI models 
that can incorporate additional clinical and imaging variables into the response assessment. Although potentially incomplete segmentation 
of the lesion from the AI model may contribute to the survival discrepancy between AI and human assessment, we do not believe that 
incomplete segmentation of tumors was a major factor in our study. Based on the defined rules of AI-VTRA and our evaluations, we 
believe that the primary factors are (1) a 25% 2D increase does not precisely correspond to a 40% volumetric increase and (2) the fact that 
human determination of “no significant change” does not necessarily correspond to any specific volumetric threshold. 

Several prior studies have investigated automated brain tumor MRI segmentation as a means of assessing longitudinal tumor burden and 
even predicting time to progression and overall survival18,19,21,40,41. However, these studies have largely focused on automated volumetrics 
as an alternative to standard response assessment criteria rather than as a comprehensive method for automation of these criteria. For 
example, Kickingereder et al compared brain tumor growth dynamics derived from automated segmentation with central RANO 
assessment for a longitudinal multi-institution cohort of 532 patients and found that the volumetric assessment was superior for predicting 
overall survival21. However, to our knowledge, no prior work has evaluated automated volumetrics for predicting human BT-RADS scores 
or RANO progressive disease assessments. Our study differs from prior work in that it includes a larger number of patients and focuses 
on recapitulating human response assessments. This approach focuses on a paradigm of automating existing assessments rather than 
proposing new ones. 

Pseudoprogression of GBM is a post-treatment phenomenon, with variable incidences from at least 9%, that can confuse the interpretations 
of tumor growth due to the pathology37. This study focuses exclusively on objective imaging change rather than subjective interpretation 
of the reason for this change. As such, the problem of pseudo-progression (and pseudo-response) is not directly addressed and is a major 
limitation of this approach. Future work will be required to effectively automate prediction of true versus pseudo-progression and will 
likely require additional inputs such as treatment history and advanced imaging modalities like perfusion-weighted MRI37, 38. 

This study has several important limitations. First, this was a single-center retrospective study, which limits generalization of its results. 
One generalization issue was the class imbalance favoring unchanged/improving conditions in our dataset, which may lead to under-
representation of progression cases in this study. As an attempt to account for this issue, we reported multiple classification metrics. 
Second, this study used a relatively simplistic logic-based approach for assigning tumor volumetric differences to response categories. 
Third, this study relied on BT-RADS scores for radiologist-based response assessments. The BT-RADS system has been previously 
validated in several studies,13 however, it is not yet as widely utilized as other response assessment criteria such as RANO. Fourth, although 
our NLP algorithm reached 99% accuracy in our internal validation, we would expect minor NLP- and human-induced errors of 
information retrieval from the reports, which may cause inexplicable discrepancies between AI vs human evaluations. Fifth, we did not 
include new lesion, which is part of the RANO progression criteria.7 In future studies, we propose to apply a connected component 
algorithm to evaluate the growth of each separate lesion region and incorporate this analysis to the AI-VTRA rules. Finally, AI-based 
response assessments did not benefit from any information on treatment (such as radiation or anti-angiogenic therapy), which 
fundamentally limits their ability to replicate radiologist-based response assessments. 

Table 1*: Relationship between BT-RADS score and AI-VTRA for each glioblastoma MRI follow up assessment score. 
Assessment Category Assessment System (rater) 

 BT-RADS 
(human) 

 

AI-VTRA  
(AI) 

 
Imaging Improvement 1 VDET ≤ -10% 

OR 

-10% > VDET < 10% 

AND 
VDFLAIR ≤ -40% 

 
No significant imaging change 2 -10% > VDET < 10% 
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OR 

VDET ≤ -10% 

AND 
VDFLAIR ≥ 40% 

 
Imaging worsening 3 10% ≤ VDET < 40% 

OR 

-10% > VDET < 10% 

 

AND 
VDFLAIR ≥ 40% 

Imaging worsening equivalent to RANO 
progression 

4 VDET ≥ 40% 

* Detailed rules of determining AI-VTRA are included in Supplementary Data. 

 

Table 2: Basic demographics for the 634 patients included in the study cohort. Patient age was assessed at the time of the first 
available MRI brain exam date. SD is standard deviation. “Other” self-reported races included “American Indian or Alaskan Native” 
and “Other”. “Other/Missing” IDH types included “Atypical IDH2 mutation”, “Both positive and negative”, “Not Provided”, 
“indeterminate”, or no records found in the database. The last item “Tumor Types” recorded enhancing and non-enhancing tumors 
(at least 1 milliliters) across the 3403 exams in the study cohort. 

Demographic Characteristics  

Age (yr)  
Mean 56 
Standard Deviation 14 

Sex N (%)  
Male 372 (59%) 
Female 262 (41%) 

Primary Self-Reported Race N (%)  
Caucasian/White 566 (89%) 
Black or African American 41 (7%) 
Asian 9 (1%) 
Other 8 (1%) 
Not Responded/Declined 10 (2%) 

Self-Reported Ethnicity N (%)  
Not Hispanic 592 (93%) 
Hispanic 11 (5%) 
Not Reported/Declined 31 (2%) 

IDH N (%)  
 Wildtype 479 (76%) 
 Mutant 63 (10%) 
 Inconclusive/Missing 92 (14%) 
Tumor Types N (%)  
 Enhancing 2,163 (64%) 
 Non-enhancing Edema/FLAIR 3,401 (99%) 

 
 
 

Table 3: Performance metrics (Macro-F1, Micro-F1, sensitivity, specificity, and precision) for AI-VTRA/AI-VTRAET predictions of 
radiologist-based response assessment. Within each category, we binarized the BT-RADS and AI predictions based on the target 
score and computed the metrics. 

 Imaging improvement 
 (BT-RADS 1) 

No significant imaging 
change (BT-RADS 2) 

Imaging worsening  
(BT-RADS 3) 

Imaging worsening 
equivalent to RANO 
progression (BT-RADS 4) 

 AI-VTRAET AI-VTRA AI-VTRAET AI-VTRA AI-VTRAET AI-VTRA AI-VTRAET AI-VTRA 

Macro-F1  0.747 0.755 0.760 0.750 0.561 0.587 0.705 0.705 

Micro-F1 0.857 0.870 0.765 0.757 0.695 0.689 0.831 0.831 

Sensitivity 0.747 0.700 0.793 0.746 0.222 0.298 0.596 0.596 

Specificity 0.873 0.895 0.746 0.765 0.920 0.875 0.872 0.872 

Precision 0.474 0.526 0.672 0.675 0.568 0.530 0.450 0.450 

 

Table 4: Hazard ratios, confidence intervals, and p-values of BT-RADS, age, sex, primary self-reported race, self-reported 
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ethnicity, and IDH 

Variable Level HR [95% CI] P-value 

BT-RADS 2- No change REF REF 

 1 - Improve 1.75 [1.05, 2.92] 0.03 

 3 - Worsening 1.48 [1.03, 2.13] 0.03 

 4 – RANO Progression 2.62 [1.71, 4.00] < 0.001 

Age  1.12 [0.95, 1.30] 0.16 

Sex Female REF REF 

 Male 1.30 [0.99, 1.71] 0.06 

Primary Self-reported Race Caucasian REF REF 

 Black or African American 0.93 [0.56, 1.56] 0.78 

 Asian 0.48 [0.11, 2.04] 0.32 

 American Indian or Alaskan 
Native 

0.93 [0.11, 8.00] 0.95 

 Not Reported/Declined 2.12 [0.54, 8.40] 0.28 

 Other 1.54 [0.31, 7.57] 0.60 

Self-Reported Ethnicity Hispanic/Latino REF REF 

 Not Hispanic/Latino 1.24 [0.57, 2.67] 0.58 

 Not Reported/Declined N/A N/A 

IDH Negative (WT) REF REF 

 Positive (Mutant) 0.69 [0.31, 1.51] 0.35 

 
 

Table 5: Hazard ratios, confidence intervals, and p-values of AI-VTRA, age, sex, primary self-reported race, self-reported 
ethnicity, and IDH 

Variable Level HR [95% CI] P-value 

AI-VTRA 2- No change REF REF 

 1 - Improve 1.26 [0.86, 1.87] 0.24 

 3 - Worsening 1.20 [0.81, 1.77] 0.36 

 4 – RANO Progression 1.54 [1.07, 2.21] 0.02 

Age  1.11 [0.95, 1.30] 0.18 

Sex Female REF REF 

 Male 1.25 [0.95, 1.65] 0.11 

Primary Self-reported Race Caucasian REF REF 

 Black or African American 1.02 [0.61, 1.71] 0.95 

 Asian 0.45 [0.11, 1.94] 0.28 

 American Indian or Alaskan 
Native 

1.29 [0.15, 11.12] 0.82 

 Not Reported/Declined 2.04 [0.51, 8.20] 0.32 

 Other 1.34 [0.27, 6.56] 0.72 

Self-Reported Ethnicity Hispanic/Latino REF REF 

 Not Hispanic/Latino 1.27 [0.59, 2.72] 0.54 

 Not Reported/Declined N/A N/A 

IDH Negative (WT) REF REF 

 Positive (Mutant) 0.68 [0.31, 1.51] 0.34 

 
 

CONCLUSIONS 

In conclusion, AI-based volumetric GBM MRI response assessment following BT-RADS criteria can provide moderate performance for 
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replicating human response assessments and show comparable performance for overall survival stratification. While this approach is 
unlikely to be useful for standalone response assessment, it may be useful for certain scenarios where radiologist interpretations are 
infeasible or as an adjunct to radiologist-based response assessment. 
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SUPPLEMENTAL FILES 

Additional Details of the Initial Cohort 

Our institution has implemented routine BT-RADS assessment for all high-grade adult gliomas since 2018. After the initial 
adoption period, all neuro-radiologists at our institution started using BT-RADS routinely. In this cohort specifically, we counted 8310 
radiology reports in total, 3570 (43%) reports had BT-RADS assessments (identified by either human annotations or the NLP algorithms), 
and 22 individual radiologists generated these BT-RADS assessments. From the original cohort, the average follow-up days to the prior 
were 74 days. 

Natural Language Processing Algorithm Methods and Evaluation 

We developed a custom rule-based Natural Language Processing (NLP) algorithm to retrieve BT-RADS score and comparison 
date from unstructured MRI reports. The NLP algorithm takes the unstructured brain MRI report as the input and provides a structured 
output, including pairs of baseline comparison and follow-up studies and assigned BT-RADS scores. Our institutional report has a specific 
section to document the baseline prior, and that baseline is derived from the treating neuro-oncologists’ clinical notes in the electronic 
health record. The specified baseline may be the immediate prior or the exam closest to the last change in treatment. BT-RADS scores are 
always in reference to the baseline prior regardless of whether there are other interval exams.  

To develop the NLP algorithm, we randomly sampled 450 patients with 2444 reports for the algorithm development, 150 patients with 
886 reports for validation, and 89 patients with 452 reports for testing.  

The NLP algorithm consisted of three modules to simulate the process of manually retrieving data from the unstructured report. 
Supplementary Figure 1 shows a brief illustration of the first two steps of the NLP algorithm. First, the algorithm retrieved BT-RADS 
score by searching the impression section of the report. The string next to the text “score” was extracted and processed to match with the 
BT-RADS scoring system. If the algorithm detected more than one score in the impression, no result was provided. Second, in baseline 
and comparison sections, the algorithm retrieved the date of the comparison exam using regular expression-based fuzzy logic date 
identification. In cases where a baseline comparison was not specified, we selected the most recent MRI exam date in listed in the 
comparison section. Comparison dates corresponding to CT or reference only exams were excluded. Finally, the existence of the baseline 
comparison study was confirmed by identifying prior MRI exams performed on the same patient on the extracted baseline date. From the 
test set, we compared the retrieved BT-RADS score, comparison exam date, and existence of the comparison study with the manually 
labeled results and reported the precision and recall for each labeling component. We found 99.4% precision and 99.4% recall for extracting 
BT-RADS scores (165 exams labeled), 97.5% precision and 96.3% recall for extracting comparison date (162 exams labeled), and 98.0% 
precision and 95.1% recall for confirming existence of the baseline exam (103 exams labeled). The final NLP model was applied to the 
entire dataset consisting of 634 patients with 3403 available MRI scans.   
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Supplementary Figure 1. Illustration of the first two steps of the NLP algorithm. Sensitive information was manually masked in 
this example. The NLP algorithm took a radiology report as input and retrieved relevant information from the free-text. BT-RADS 
score was retrieved in the impression section in the main body. Date information was retrieved from the comparison section at 
top. 

Deep Learning Segmentation Model Methods and Evaluation 

We developed a 3D deep convolutional neural network to segment tumor sub-compartments on multi-sequence MRI. The model 
was based on the 3D U-Net architecture and implemented in nnU-Net version 1. nnU-Net is an automated pipeline which configures the 
best U-Net-based network based on the provided training data. We trained the nnU-Net model in a 5-fold cross-validation scheme using 
the University of California San Francisco Adult Longitudinal Posttreatment Diffuse Glioma dataset (n=596 manually annotated brain 
MRI exams). Data is available at the following link: https://imagingdatasets.ucsf.edu/dataset/2. Training comprised 1000 epochs per fold 
iterating through the entire dataset and lasted approximately 20 hours per fold using an NVIDIA A6000 GPU. 

The trained model was formally evaluated using a previously unseen testing dataset from our institution. The testing cohort consisted of a 
subset of 497 MRI scans chosen to have equal proportions of exams scored as BT-RADS 1, 2, 3, and 4, respectively, as identified by the 
NLP algorithm described in the previous section. The trained segmentation model was applied to each exam to generate automated 
segmentations. Tumor segmentations for each exam in the testing cohort were manually corrected and approved by a fellowship trained 
neuroradiologist. Automated tumor segmentations were compared to manually corrected segmentations using the Dice coefficient as the 
primary metric. Results showed a mean +/- standard deviation of 0.8861 +- 0.2476 for enhancing tumor and 0.9833 +- 0.0372 for 
surrounding non-enhancing FLAIR signal abnormality. 

Concordance Index Difference Test  

We computed the difference in C-index between the two survival models. The variance of the difference was computed based 
on the covariance matrix of the C-index from the two survival models, which accounts for the correlation between the two C-indices. We 
then computed the test statistic and p-value based on an approximation from the standard Normal distribution under large sample size 
approximation. 

IDH Subgroup Analysis 

Supplementary Figure 2 shows Kaplan-Meier curves between IDH-wildtype and IDH-mutant. The log-rank test shows a 
significantly worse overall survival in IDH-wildtype comparted to IDH-Mutant (P-value = 0.018). This finding aligns with the poor 
prognosis and survival outcomes in IDH-wildtype GBMs reported in literature. 
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Supplementary Table 1 provides full performance metrics (similar as Table 3 in the manuscript) in IDH-wildtype patients. AI-VTRA had 
a higher macro-F1 score (AI-VTRA macro-F1 = 0.532) compared to AI-VTRAET (AI-VTRAET macro-F1 = 0.541) alone. AI-
VTRAET alone demonstrated improved performance compared to AI-VTRA for BT-RADS 2 (no significant change). Overall, 
automated volumetrics yielded moderate performance (F1 > 0.7) for predicting neuroradiologist BT-RADS scores of 1, 2, and 4, and 
yielded moderate performance (F1 > 0.55) for predicting BT-RADS 3. These findings are aligned with the findings in the manuscript 
when assessed both IDH wildtype and IDH mutant. 

 

Supplementary Figure 2. Kaplan-Meier curves for IDH-wildtype (orange) and IDH-mutant (blue). 

AI-human major discrepancy analysis 

All major discrepancies between AI-VTRA and human assessments (defined as BT-RADS score of 4 assigned by one modality 
and BT-RADS score of 1 assigned by the other) were identified for further analysis. For each major discrepancy, MR images and 
corresponding reports were manually reviewed by a board certified neuroradiologist (author [REDACTED FOR REVIEW]) to determine 
the cause of the discrepancy. 23/2,446 (0.9%) of analyzed exam pairs yielded major discrepancies between AI and human assessments. Of 
these, 3 were scored as BT-RADS 1 by human and BT-RADS 4 by AI (1-4 discrepancy) and the remaining 20 were scored as BT-RADS 
4 by human and BT-RADS 1 by AI (1-4 discrepancy). Considering the 3 cases of 1-4 discrepancy, 2/3 (67%) were due human error from 
comparison to a prior other than the specified baseline, and 1/3 (33%) was due to poor AI segmentation of enhancement in the setting of 
bevacizumab therapy (Supplementary Figure 3). Considering the 20 cases of 4-1 discrepancy, 11/20 (55%) were due to mixed change (i.e. 
one enhancing lesion smaller and another larger) that was assigned as BT-RADS 4 by human. 8/20 (40%) of 4-1 discrepancies were found 
to have decreased volume of enhancement but increased overall lesion size (including FLAIR abnormality) in the setting of bevacizumab 
therapy. A single (5%) 4-1 discrepancy was due to human error from comparison to a prior other than the specified baseline (Supplementary 
Figure 4). 
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Supplementary Figure 3. All three examples of exams that were scored as BT-RADS 1 by a radiologist and BT-RADS 4 by the AI 
algorithm. Example 1: This exam was inappropriately scored as a BT-RADS 1 due to “decreased enhancement and FLAIR signal 
abnormality”. Review of imaging reveals grossly accurate segmentation and a significant increase in tumor enhancement consistent 
with a score of BT-RADS 4. It is possible that the interpreting radiologist mistakenly compared this exam to a prior other than the 
specified baseline exam. Example 2: This exam was inappropriately scored as a BT-RADS 1 due to “decrease in enhancing tumor” 
compared to an interval prior even though a significant increase in enhancement compared to the baseline prior was also 
described. Review of imaging reveals grossly accurate segmentation and a significant increase in tumor enhancement consistent 
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with a score of BT-RADS 4. Example 3: This exam was scored as a BT-RADS 1 due to “decreased enhancement”. Review of imaging 
and clinical history revealed a largely non-enhancing lesion in the setting of bevacizumab therapy. Automated segmentation was 
grossly inaccurate, particularly in areas of coagulative necrosis, and therefore the AI score of BT-RADS 4 was inaccurate. Review 
of imaging revealed no significant change in tumor related signal abnormality consistent with a score of BT-RADS 2. 

 

Supplementary Figure 4. Four examples of exams that were scored as a BT-RADS 4 by a radiologist and as a BT-RADS 1 by the AI 
algorithm. Example 1: This exam was scored as a BT-RADS 4 by a human due to “new subependymal enhancement”. The automated 
tumor segmentation is grossly accurate and shows an overall decrease in volume of FLAIR abnormality and enhancement consistent 
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with a score of BT-RADS 1. Example 2: This exam was scored as a BT-RADS 4 by a human due to “increase in enhancement”. Review 
of imaging and clinical history reveals enlargement of tumor related signal abnormality but decreased overall enhancement, which 
was presumably related to interval initiation of bevacizumab therapy. According to guidelines, this exam should have been scored 
as a BT-RADS 1B. Example 3: This exam was scored as BT-RADS 4 by a human; however, imaging clearly shows decreased FLAIR 
abnormality and enhancement. In this case the human reader mistakenly scored the exam compared to a different prior other 
than the specified baseline. Example 4: This exam was scored as a BT-RADS 4 by a human due to a new subependymal enhancing 
lesion. Review of the imaging reveals mixed change with overall decrease in FLAIR abnormality and enhancing tumor volume but 
emergence of a new small subependymal enhancing lesion. 

Intermediary Comparison 

Inter-rater variability of BT-RADS, considered as source of heterogeneity, has been previously reported by the Emory University 
neuroradiology group (Essien et al. AJNR Am J Neuroradiol. 2024;45(9):1308-1315. doi:10.3174/ajnr.A8322) and is quoted at Gwet index 
= 0.83 for a group of 6 neuroradiologist and trainee readers. Although we did not formally evaluate the inter-rater variability, we added 
the intermediary comparison as suggested to examine if the major source of heterogeneity came from the automated segmentation models. 
We utilized 497 manually reviewed and annotated MRIs for this heterogeneity analysis. Filtering these MRIs from the analytics cohort 
(2446 paired data from 634 patients) resulted in a subset of 313 paired data from 139 patients, each of which contains both the baseline 
and the comparison MRI annotated by human. We applied the same thresholds and methods from the main analysis to keep the results 
consistent. We denoted results from human-segmented data as H-VTRA as compared to AI-VTRA. We compared among H-VTRA, AI-
VTRA, and BT-RADS, and reported the main metric Macro-F1 scores, and confusion matrices (Supplementary Figure 5). We found that 
the classification performance was almost the same when compared to BT-RADS (H-VTRA vs BT-RADS: 0.608, AI-VTRA vs BT-
RADS: 0.602), and both have similar assessments (AI-VTRA vs H-VTRA: 0.920). These findings suggest that the segmentation model 
was not the major source of heterogeneity between AI and human assessments. 

 

Supplementary Figure 5. Confusion matrices for pairwise comparison among H-VTRA, AI-VTRA, and BT-RADS. Macro-F1 scores 
were included in the subplot titles. 

 

Supplementary Table 1. Performance metrics (Macro-F1, Micro-F1, sensitivity, specificity, and precision) for AI-VTRA/AI-VTRAET 
predictions of radiologist-based response assessment in IDH-wildtype patients (N=479). 

 

 Imaging improvement 
 (BT-RADS 1) 

No significant imaging 
change (BT-RADS 2) 

Imaging worsening  
(BT-RADS 3) 

Imaging worsening 
equivalent to RANO 
progression (BT-RADS 4) 

 AI-VTRAET AI-VTRA AI-VTRAET AI-VTRA AI-VTRAET AI-VTRA AI-VTRAET AI-VTRA 

Macro-F1  0.749 0.756 0.756 0.741 0.559 0.580 0.696 0.696 

Micro-F1 0.856 0.868 0.768 0.758 0.673 0.664 0.812 0.812 

Sensitivity 0.768 0.710 0.768 0.707 0.235 0.311 0.597 0.597 

Specificity 0.869 0.893 0.768 0.786 0.908 0.853 0.854 0.854 

Precision 0.474 0.506 0.645 0.644 0.578 0.533 0.442 0.442 

 

Supplementary Table 2. Class distribution of BT-RADS and AI-VTRA scores with respect to each comparison pair (N=2,446) in the dataset. 

Score  BT-RADS N (%)  AI-VTRA N (%) 

1  324 (13%)  449 (18%) 

2  968 (40%)  1070 (44%) 

3  788 (32%)  443 (18%) 

4  366 (15%)  484 (20%) 
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Supplementary Table 3. Detailed Relationship between BT-RADS score and AI-VTRAFLAIR, AI-VTRAET, and AI-VTRA for each glioblastoma 
MRI follow up assessment category. AI-VTRA is a composite metric derived from AI-VTRAFLAIR, AI-VTRAET. % VD is the percentage change 
of VD. Abs VD is the absolute change of VD. 

Assessment 
Category 

BT-RADS 
(human) 

AI-VTRA  

(AI) 

AI-VTRAFLAIR AI-VTRAET AI-VTRA  

Imaging 
improvement 

1 % VDFLAIR ≤ -40% 

AND 

Abs VDFLAIR ≥ 1mL 

% VDET ≤ -10% 

AND 

Abs VDET ≥ 1mL 

AI-VTRAET = 1 

OR 

(AI-VTRAET = 2 

AND 

AI-VTRAFLAIR =1) 

No significant 
imaging 
change 

2 -40% < % VDFLAIR < 40% 

OR 

Abs VDFLAIR < 1mL 

-10% < % VDET < 10% 

OR 

Abs VDET < 1mL 

AI-VTRAET = 2 

OR 

(AI-VTRAET = 1 

AND 

AI-VTRAFLAIR = 3) 

Imaging 
worsening 

3 % VDFLAIR ≥ 40% 

AND 

Abs VDFLAIR ≥ 1mL 

10% <= % VDET < 40% 

AND 

Abs VDET ≥ 1mL 

AI-VTRAET = 3 

OR 

(AI-VTRAET = 2 

AND 

AI-VTRAFLAIR = 3) 

Imaging 
worsening 

equivalent to 
RANO 

progression 

4 N/A % VDET ≥ 40% 

AND 

Abs VDET ≥ 1mL 

AI-VTRAET = 4 

 

Supplementary Table 4. Full metrics table (Macro sensitivity, specificity, precision, and F1) of AI-VTRAET, and AI-VTRA when compared 
with the reference standard BT-RADS score at the empirical thresholds. 

Metrics AI-VTRAET  AI-VTRA  

Macro-F1 0.535 0.548 

Macro-Sensitivity 0.590 0.585 

Macro-Specificity 0.853 0.852 

Macro-Precision 0.541 0.540 
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Supplementary Table 5. Imaging parameters, including field of view (FOV), resolution, bandwidth (BW), slice thickness, TR, and TE, for 
T2 flair, T1-weighted pre-contrast, T2, T1-weighted post-contrast used in the study. 

Scanner Plane FOV  

(mm) 

Resolution 
(mm/pixel) 

BW Slice 
Thickness 
(mm) 

TR TE 

Siemens 1.5T T2 flair 256 1 592 1 5000 355 

T1-weighted pre-
contrast 

256 1 360 1 2200 3.11 

T2 240 0.5 191 4 3000 103 

T1-weighted 
post-contrast 

256 1 360 1 2200 3.95 

Siemens 3T T2 flair 256 1  1 5000 390 

T1-weighted pre-
contrast 

256 1  1 2110 3.95 

T2 240 0.5  4 3000 103 

T1-weighted 
post-contrast 

256 1  1 2110 3.95 

GE 1.5T T2 flair 240 1.03 91 1 6200 90 

T1-weighted pre-
contrast 

256 1 31 1 7.7 min* 

T2 240 0.47 50 4 3137 102 

T1-weighted 
post-contrast 

256 1 31 1 7.7 min* 

*Minimum allowed by the scanner 


