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REVIEW ARTICLE

Meningioma: Molecular Updates from the 2021
World Health Organization Classification of CNS Tumors and
Imaging Correlates

Neetu Soni, “Manish Ora, “ Girish Bathla, Denes Szekeres, ““’ Amit Desai, “Jay J. Pillai, and ““’ Amit Agarwal

ABSTRACT

SUMMARY: Meningiomas, the most common primary intracranial neoplasms, account for more than one-third of primary CNS
tumors. While traditionally viewed as benign, meningiomas can be associated with considerable morbidity, and specific meningioma
subgroups display more aggressive behavior with higher recurrence rates. The risk stratification for recurrence has been primarily
associated with the World Health Organization (WHO) histopathologic grade and extent of resection. However, a growing body of
literature has highlighted the value of molecular characteristics in assessing recurrence risk. While maintaining the previous classifi-
cation system, the 5th edition of the 2021 WHO Classification of Central Nervous System tumors (CNS5) book expands upon the
molecular information in meningiomas to help guide management. The WHO CNSS5 stratifies meningioma into 3 grades (1—3) based
on histopathology criteria and molecular profile. The telomerase reverse transcriptase promoter mutations and cyclin-dependent
kinase inhibitor 2A/B (CDKN2A/B) deletions now signify a grade 3 meningioma with increased recurrence risk. Tumor location also
correlates with underlying mutations. Cerebral convexity and most spinal meningiomas carry a 22q deletion and/or NF2 mutations,
while skull base meningiomas have AKTI, TRAF7, SMO, and/or PIK3CA mutations. MRI is the primary imaging technique for diagnosing
and treatment-planning of meningiomas, while DOTATATE PET imaging offers supplementary information beyond anatomic imaging.
Herein, we review the evolving molecular landscape of meningiomas, emphasizing imaging/genetic biomarkers and treatment strategies
relevant to neuroradiologists.

ABBREVIATIONS: AKTI = AKT serine/threonine kinase T; BAPI = BRCAl-associated protein T, CDK4/6 = cyclin-dependent kinases 4 and 6; CDKN2A/B =
cyclin-dependent kinase inhibitor 2A/B; CNS5 = Classification of Central Nervous System Tumors, fifth edition; KLF4 = Kruppel-like factor 4; mTOR = mamma-
lian target of rapamycin; NF2 = neurofibromatosis type 2; PIK3CA = phosphatidylinositol-4,5-Bisphosphate 3-Kinase catalytic subunit alpha; POLR2A = RNA
polymerase Il subunit A; pTERT = telomerase reverse transcriptase promoter; SMARCBI = SWItch/sucrose non-fermentable related, matrix associated, actin
dependent regulator of chromatin, subfamily b, member 1, SMO = smoothened, frizzled class receptor; SM = spinal meningioma; SUVmax = maximum standard
uptake value; TERT = telomerase reverse transcriptase; TRAF7 = tumor necrosis factor receptor—associated factor 7, WHO = World Health Organization

Meningiomas are the most common primary intracranial
extra-axial tumor, representing 37.6% of all intracranial
tumors in adults. The annual age-adjusted rate is 8.58 cases per
100,000 in the United States." Most (80.3%) meningiomas are
located in the cerebral meninges, 4.2% in the spinal meninges,
and approximately 14.7% lack a specified meningeal site."
Meningiomas are most frequently diagnosed between 40 and 70
years of age, with an age peak at around 65 years. Women are 2.3
times more likely to have benign (grade 1) meningiomas than
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men." Spinal meningiomas (SMs) account for 25%-46% of all
primary spinal tumors.” The SM incidence ranges between 0.193
and 0.33 cases/100,000 persons.” They have a strong female
predilection (75%-90%), with the peak incidence after 6 deca-
des.? The fifth edition of World Health Organization (WHO)
Classification of Central Nervous System Tumors (CNS5 here-
after) incorporates molecular information to categorize menin-
giomas into 3 grades: benign (grade 1), atypical (grade 2), and
anaplastic (or malignant, grade 3), applying atypical and anaplas-
tic criteria to each subtype. CNS5 has recommended using an
Arabic numeral grading system (1—3).*® Meningiomas origi-
nate from the arachnoid cells of the dura. They are generally be-
nign, incidentally diagnosed, extra-axial dural-based enhancing
masses at cerebral convexities, para-/suprasellar regions, tento-
rium, and occasionally intraventricular (Fig 1). Larger, sympto-
matic lesions present with mass effects, seizures, or increased
intracranial pressure.”'® SMs are commonly located in the tho-
racic (60-70%), followed by the cervical (20-30%) and lumbar
region (5-10%).>'"'? They present as gradual localized back
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FIG 1. lllustration depicting the common location of meningiomas and associated genetic/cytogenetic alteration and grades. NF2 and SMARCBI muta-
tions are more frequently seen in convexity meningiomas. Grade 2 and 3 meningiomas are more common along the convexity than the skull base. AKT],
KLF4, TRAF7, and POLR2A genetic changes are more frequently seen in skull base meningiomas. Grade 1is more common in the posterior fossa. Grade 2
(atypical) meningiomas are more frequently seen along the brain convexity and spine and can have a loss of a copy of chromosomes 1,10, or 14.

FIG 2. “Mutation map” of skull base meningiomas with a regional propen-
sity of meningiomas dependent on specific mutations. Meningiomas arising
from the sphenoid wing have KLF4/TRAF7 mutations, midline tumors have
AKTI/TRAF7 mutations, and tumors originating from the olfactory groove
tend to have SMO mutations. Meningiomas along the posterior skull base
commonly have a loss of chromosome 22-loss (NF2). Adapted from
Baranoski J. Smarcbl-Mutant Intracranial Meningiomas: A Distinct Subtype
of Nf2-Mutant Tumors, 2015. Yale Medicine Thesis Digital Library. 1947.
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pain, sometimes radiating to the extremities. Cord or nerve root
compression may lead to weakness, numbness, and tingling,"".

Meningiomas are associated with genetic syndromes, includ-
ing most frequent Neurofibromatosis type 2 (NF2), and rare syn-
dromes such as Gorlin, Li Fraumeni, NF1, and Von Hippel-Lindau.
Mutations in the SMARCEI, SWItch/sucrose non-fermentable
related, matrix associated, actin dependent regulator of chro-
matin, subfamily b, member 1 (SMARCBI), BRCAI-associated
protein 1 (BAPI), SUFU, PTEN, and CREBBP genes are linked
to various syndromes that increase individual sensitivity to
radiation." The tumor location correlates with mutation spec-
tra, with 22q deletion and/or NF2 mutations common in the
convexity and SMs. Skull base meningiomas typically have AKT
serine/threonine kinase 1 (AKT1), tumor necrosis factor recep-
tor-associated factor 7 (TRAF7), smoothened, frizzled class recep-
tor (SMO), and phosphatidylinositol-4,5-Bisphosphate 3-Kinase
catalytic subunit alpha (PIK3CA) mutations (Fig 2).'* High-grade
meningiomas predominantly originate from the convexity and
non-skull base areas (Fig 3).1572% Grade 1 meningiomas displace
the brain and are easily separable, while higher grades are invasive,
adhering to dural sinuses, skull, scalp, and skin.”*' Extracranial
metastases to the lung, pleura, bone, or liver are sporadic (0.67%)
and are more common with grade 2 (2%) and 3 (9%) meningio-
mas.”* The incidence of WHO grade 1, 2, and 3 meningioma is
80.5%, 17.7%, and 1.7% respec‘[ively.1

Management depends on tumor location, grade, and symp-
toms. Gross total resection is the primary treatment for most
symptomatic and grade 1 meningiomas, and adjuvant radiation
therapy is performed for grade 2 or 3.” Incomplete resection or
aggressive histopathologies are associated with recurrence and



transformation into a higher grades.”** Benign meningiomas
have excellent 10-year survival (83.7%), with better outcomes in
the young. Malignant meningioma has a poor outcome (61.7%
10-year survival).! Recurrences are common in grades 2 (50%)
and 3 (90%).”

TRAF7

SMARCB1

FIG 3. “Mutation map” of convexity meningiomas with the regional
propensity of meningiomas dependent on a specific mutation. Menin-
giomas along the falx and midline parasagittal region tend to have the
SMARCBI mutation. Meningiomas along the posterior cerebral convexity
tend to have NF2/chromosomal 22 with higher chances of TRAF muta-
tion along the anterior cerebral convexity. Adapted from Baranoski J,
Smarcbl-Mutant Intracranial Meningiomas: A Distinct Subtype of Nf2-
Mutant Tumors, 2015. Yale Medicine Thesis Digital Library. 1947.

DISCUSSION

Updates in Recent WHO Guidelines

The CNS5 classification integrates molecular biomarkers for
grading, which can supersede histologic features (Fig 4).°
Grade 3 criteria are based on the telomerase reverse transcrip-
tase promoter (pTERT) mutation and homozygous deletion of
cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) with a
high mitotic rate (=20/10 high power fields) and anaplastic
histopathologic features (sarcoma/carcinoma/melanoma-like
morphology) irrespective of histotype. Atypical or anaplastic
meningiomas are defined across all histologic subtypes. Choroid
and clear cell meningiomas are designated grade 2 due to a higher
recurrence rate. Similarly, papillary and rhabdoid meningiomas
can be grade 1, 2, or 3 and should not be graded on the basis of
histology alone. CNS5 classification no longer uses other “atypi-
cal” features to designate grade 2 for other morphologic subtypes.
The term “anaplastic” is replaced by grading based on molecular
features that can categorize a tumor as grade 3, even without evi-
dent anaplastic histology characteristics.® Rhabdoid and papillary
variants may not meet CNS5 anaplastic grading without high-
grade features, despite some studies cautioning against grading
them similar to non-rhabdoid tumors due to potential aggressive
behavior.”® The introduction of genome-wide DNA methylation
arrays has further refined classification.”’” A molecular-morpho-
logic integrated score allocates points to the histologic grade, epi-
genetic methylation family, and specific copy-number variations.
It is more accurate in the prognostic stratification of meningiomas.”®

Histopathological grading and its limitation

Meningiomas are characterized histopathologically by whorls

of tumor cells, nuclear pseudo-inclusions, pseudo-syncytial

growth, and concentric calcifications, called “psammoma
bodies.”? Immunohistochemical markers,

| 2016 WHO classification system for grading meningiomas ( histopathological) |

including epithelial membrane antigen,

somatostatin receptor 2A (SSTR), proges-
terone (70-80%), and estrogen receptors
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FIG 4. Chart illustration of the grading of meningiomas according to the 2016 WHO classification
scheme and the changes made in the 2021 CNS5 classification, with the CNS5 addition of new
molecular entities for grading and removal of a few grade 3 histologic subtypes.

(5-30%) aid in differentiating meningio-
mas from other dural-based lesions.
Supplementary Table 1 provides essential
and desirable diagnostic criteria for me-
ningioma. Under the WHO 2016 classi-
fication, meningiomas were graded (I-
III) based on the mitotic index, histo-
logic features (sheeting, hypercellular-
ity, prominent nucleoli, and necrosis)
and specific histotype. Meningothelial
morphology is the most common histo-
logic subtype and are usually grade 1.
Presence of 4-19 mitotic figures per 10
high-power fields (HPF) is grade 2,
whereas 20 or more mitotic figures is a
criterion for grade 3. Histologic features
like sheeting of tumor cells, spontane-
ous necrosis and brain invasion are find-
ings of grad 2 lesion (Fig 5).*> CNS5
outlines brain invasion criteria, necessi-
tating tumors to breach the pia mater
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FIG 5. Transcalvarial frontal atypical, grade 2 meningioma in a 54-year-old man. Sagittal Tl-weighted
(A) and contrast-enhanced (B) images reveal a large frontal convexity meningioma with intraosseous
components and transcalvarial extension into the scalp (B, arrow). Mild hyperostosis of the adjacent
calvaria along with a “hair-on-end” periosteal reaction along the outer table is seen on CT (C, arrow).
Tumor shows meningothelial morphology, with, however, other features such as focal spontaneous
necrosis (D, asterisk) and peripheral nests of tumor cells (D, arrows). A high Ki-67 rate in hot spot
areas and areas of tumor that are devoid of progesterone receptors is also noted, supportive of the
diagnosis of atypical meningioma (WHO grade 2). Mitotic count of 4 mitoses per 10 high-power fields
is noted, on its own fulfilling the criteria for a diagnosis of an atypical meningioma.

rather than merely indent the brain or extend along perivascular
spaces.® Brain invasion is regarded as an unfavorable feature in
CNS5; however, it is not uniformly accepted.31 Apart from mitotic
figures (20 or more/10 HPF), presence of overtly malignant cytol-
ogy, like sarcomatous or melanomatous, is an independent criteria
for grade 3 meningiomas (Fig 6). WHO grading predicted recur-
rence risk, but consistent grading reproducibility remained chal-
lenging, with 87.2% interobserver agreement in a multicenter trial.
Grade II tumors exhibit a higher inter-observer discrepancy
(12.2%) compared to Grade I (7%) and Grade III (6.4%) tumors.>
Besides, some Grade II tumors behave similarly to grade I or III,
leading to unexpected outcomes highlighting limitations of classi-
cal histological grading.*** Clinical and radiological features inad-
equately distinguish grade I from atypical grade 2 meningiomas.
Atypical meningiomas progress rapidly, display aggressive imag-
ing, and tend to recur early.** Differentiation between atypical and
anaplastic meningioma is challenging due to the continuum of
increasing anaplasia. Interobserver reproducibility is better for the
mitotic count than for anaplasia.”

Molecular and Genomic Characteristics in Meningiomas
and Their Clinicopathologic Correlation

The clinicopathologic relevance of genetic alterations in meningio-
mas suggests certain alterations in specific subtypes and locations

4 Soni ®2025 www.ajnr.org

(Table). Additionally, higher-grade me-
ningiomas exhibit more frequent abnor-
malities.” NF2 alteration and/or 22
monosomy involves all grades and likely
early tumor development events.*® NF2
alterations are prevalent in fibroblastic
and transitional meningiomas (70%) and
rare in meningothelial, secretory, and
microcystic subtypes.””*® Sporadic NF2
mutations are implicated in 40%-60%
of meningiomas, while 50%-75% of those
with germline mutations develop me-
ningiomas.*** Many patients with NF2
have multiple meningiomas in addition
to vestibular schwannomas (Online
Supplemental Data).*" Meningiomas in
patients with NF2 tend to have distinct
clinical and genetic profiles compared
with sporadic cases. Molecular research
has identified additional meningioma
mutations, including SMARCEI (clear
cell subtype), BAPI (rhabdoid and pap-
illary subtypes), Kriippel-like factor 4
(KLF4)/TRAF7 mutations, pTERT muta-
tion, CDKN2A/B deletion, H3K27me3
loss, and methylome profiling*® pTERT
alterations increase telomerase reverse
transcriptase (TERT) expression and telo-
mere length as a diagnostic marker for
WHO grade 3 meningioma.”*>** pTERT
mutations have higher malignant transfor-
mation, early recurrence, and worse sur-
vival than their wild-type counterparts
(2.7 versus 10.8 years).44 A meta-analy-
sis (59 pTERT-mutated and 618 pTERT wild-type meningiomas)
observed poor survival in pTERT-mutated meningiomas (58 ver-
sus 160 months).*

pTERT mutations may be acquired during lower-to-higher-
grade progression. In a study of 40 patients, pTERT mutation
was associated with higher recurrence (1.7; 95% CI, 0.65-4.44)
and mortality (x2.5; 95% CI, 1.01-6.19) than pTERT wild-type
(Fig 7).* The CDKN2A/B tumor-suppressor gene deletion
indicates aggressive grade 3 tumors.">*® In a study of 528
patient with meningiomas, 4.9% showed CDKN2A/B deletions
in grades 2 (27%) and 3 (73%), with a median progression time of
8 months. CDKN2A/B deletions showed worse outcomes even
without pTERT mutations.*® The deletion of CDKN2A/B can be a
crucial factor in upgrading the tumor from a histologic grade
1 to an anaplastic grade 3 (Fig 8).*” Cyclin-dependent kinases
4 and 6 (CDK4/6) inhibitors, upstream regulators of crucial
cell cycle pathways, could be a potential target for systemic
treatments of high-grade meningiomas.*® The PBRMI muta-
tion is common in papillary meningiomas.** BAPI mutations
are present in approximately 10% of rhabdoid meningiomas
and have an aggressive clinical behavior.*>°

Gene profiling is superior to routine histopathology in predict-
ing recurrence risk. Four exclusive pathways drive meningioma



FIG 6. An anaplastic (malignant) grade 3 meningioma along the right middle cranial fossa floor.
Coronal T2-weighted (A) and coronal and axial contrast-enhanced (B and C) images depict the me-
ningioma with strongly suggestive imaging features of parenchymal invasion, including poor interface
between the tumor and cortex (A, arrow) and nodules as foci of cortical enhancement (B and C,
white arrows) along with linear leptomeningeal enhancement (B, black arrow). Histopathology
shows frank anaplasia cells with numerous pleomorphic cells giving this tumor a sarcomatoid appear-
ance (D, arrows) with a grade 3 classification. Mitotic count of 22 mitoses per 10 high-power fields
was noted, on its own fulfilling the criteria for the diagnosis of an anaplastic meningioma.

development: heightened hedgehog signaling (SMO, SUFU,
PRKARIA), TRAF7, KLF4, and RNA polymerase II subunit A
(POLR2A) mutations.'®”' In non-NF2-mutant meningiomas,
AKT1, PIK3CA, TRAF7, KLF4, and SMO mutations are associ-
ated with classification and grading.'>'®'®'*** AKTI and SMO
mutations characterize meningothelial meningiomas.*> KLF4 and
TRAF?7 alterations are linked to secretory meningiomas (Fig 9).>
Foramen magnum meningiomas (4/7, 57%) often have AKT1 muta-
tions, making them suitable for targeted therapy.'® SMO-mutated ol-
factory groove meningiomas showed higher recurrence rates and
larger tumor volumes in the anterior skull base than AKTI-mutated
and wild-type meningiomas."””** Non-NF2-mutant meningiomas
commonly present as benign, chromosomally stable, medial skull
base tumors, contrasting with NF2-mutant tumors, which tend to be
atypical, genomically unstable, and localized to the convexities.'>"
PIK3CA-mutant meningiomas showed limited chromosomal
instability. Progesterone and cyproterone antiandrogen therapy
showed higher PIK3CA mutation rates in skull base meningio-
mas.”*>> Meningiomas with POLR2A mutations are benign, ex-
hibit distinct meningothelial histology, and tend to originate
from the tuberculum sellae.”’ Hedgehog tumors are typically
midline, while non-NF2 tumors occur at the anterior skull base.
KLF4-mutant meningiomas display more peritumoral edema.
SMARCBI meningiomas have a higher Ki-67 index.”® Radiation-
induced meningiomas are often aggressive. These tumors usually
lack NF2 mutations, and chromosome 1p loss plays an important
role, followed by changes in 9p, 19q, and 22q locations.””

H3K27 trimethylation inhibits tu-
regulating DNA
repair and gene silencing.”® Loss of

morigenesis by

H3K27me3 trimethylation expres-
sion is rare (<5%).””°" H3K27me3
loss is prevalent in grade 3 (37%) com-
pared with grade 2 (20%) meningio-
mas, correlating with rapid progression
and poor prognosis.’>°" Global meth-
ylation profiling predicts recurrence
risk independent of histopathologic
grade, resection extent, and copy-num-
ber alterations.”® Marastoni and Barresi®’
proposed 3 classes to supplement WHO
grading for prognostication. The first
group lacks NF2 alterations and chromo-
somal instability, with mutations in
AKT1I, TRAF7, or KLF4 showing the best
prognosis and response to cytotoxic
drugs. The second group with intermedi-
ate prognosis has NF2 alterations and
mild chromosomal instability. The third
group with poor outcomes exhibits NF2
alterations, high chromosomal instability,
and resistance to cytotoxic treatment,
possibly with pTERT mutations and
CDKN2A/B deletion.”” Low-grade me-
ningiomas usually have isolated monos-
omy 22 or a balanced genome. In
contrast, high-grade atypical and ana-
plastic meningiomas often have additional partial-arm chromo-
somal gains and losses, including loss of 1p, 6q, and 14q. Loss
of 1p has been linked to higher rates of tumor recurrence and
progression.””** The histologic subtypes of SMs are generally
similar to cranial meningiomas. Genetic factors include NF2,
SMARCBI, and TRAF7 gene alterations. NF2 homozygous de-
letion occurs in 80% of nonfamilial meningiomas and 100% of
patients with NF2.>° NF2-mutant tumors are noted in the tho-
racic spine, with female predominance. AKTI-mutant tumors,
mainly meningothelial, are more common in the cervical spine.
SMARCEI mutation is associated with multiple SMs and a clear-
cell subtype.®**> The Table summarizes commonly identified
germline and somatic mutations in meningiomas by WHO grade,
location, and clinical significance.

Imaging

On CT, meningiomas are sharply circumscribed homogene-
ous, iso- to hyperdense dural-based masses with homogeneous
contrast enhancement, often with calcification and adjacent
hyperostosis or osteolysis. Hyperostosis (25%-49%) is common
with convexity (Fig 5) and sphenoid wing meningiomas.*® MRI
is the preferred imaging method, providing essential features
like tumor size, location, invasion, and recurrence, potentially
eliminating the need for biopsy.”®” Meningiomas typically are
isointense to gray matter, with a contrast-enhancing dural tail
sign often seen in reactive fibrovascular tissue, not necessarily
indicating dural involvement. Vasogenic edema may be seen
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Commonly identified germline and somatic mutations in meningiomas with corresponding WHO grade, location, and clinical

significance

Genetic
Mutation Name

WHO
Grade

Typical
Location

Clinical Significance

NF2

TRAF7

TERT

CDKN2A/B

SMO/SUFU

KLF4

POLR2A
AKTI

PIK3CA

Hedgehog

1-3

-3

Parafalcine, posterior
fossa—falcotentorial

Central and lateral skull base

Any location

Any location

Olfactory groove meningiomas,
anterior skull base

Central and lateral skull base

Parasellar/tuberculum sellae
Anterior and middle skull base,
posterior fossa

Anterior and middle skull base

Midline anterior skull base

Most common

70% of fibroblastic and transitional meningiomas

Sporadic mutations present in 40%—60% of meningiomas

50%—75% of patients with germline mutations develop meningiomas

Associated with larger, more aggressive course

2nd most common

Secretory subtype

High likelihood of hyperostosis

Meningiomas tend to be benign, chromosome-stable

Commonly seen in higher grade, particularly grade 3

Associated with shorter time to progression, shorter overall survival, and
higher recurrence

Mutations associated with shorter time to recurrence

Classification criteria for WHO grade 3 meningiomas

Higher recurrence rates among olfactory groove meningiomas

Larger tumor volume among anterior skull base meningiomas

Linked to development of isolated familial and multiple meningiomas

Secretory subtype

Larger peritumoral brain edema

Results in up-regulation of HIF-1a pathway

May respond to mTOR inhibition

Found almost exclusively in WHO grade 1 meningiomas (meningothelial)

Meningothelial

Mutations occur with higher frequency among skull base meningiomas

Associated with shorter time to recurrence

Low recurrence risk

Progesterone and cyproterone antiandrogen therapy show higher PIK3CA
mutation rates in skull base meningiomas

Low-grade and less aggressive

Parafalcine and lateral skull
base

SMARCBI 1-3
SMARCE]

Clear cell type
SMARCBI has been linked to multiple meningiomas

SMARCET mutations linked with familial multiple spinal meningiomas
Higher recurrence risk, faster growth

BAPI 3
PBRMI

Rhabdoid and papillary subtypes
Aggressive clinical behavior (consistent with CNS5 WHO grade 3)

Note:— HIF-1-a indicates hypoxia-inducible factor 1.

both with and without brain invasion. Prominent peritumoral
edema is seen in secretory (Fig 9), angiomatous/microcystic, lym-
phoplasmacytic-rich, and high-grade meningiomas.’>*® Perfusion
imaging generally reveals high relative CBF and relative CBV using
the dynamic susceptibility contrast technique.®” On MRS, high
alanine and low NAA levels are seen.”” The primary imaging
differential includes primary brain tumors, inflammation, infec-
tions, and metastasis.””’" A large study (1000 cases) found that
only 2% of resected dural masses were nonmeningiomas.”” In a
series by Nagai Yamaki et al,”> approximately 7.2% (25/348) of
cases were meningioma mimics, including hemangiopericy-
toma/solitary fibrous tumor (48%), lymphoma (12%), and
schwannoma. The authors highlighted 5 imaging red flags that
can alert radiologists to consider meningioma mimics: 1) bone
erosion (22.2%), 2) the dural displacement sign (36%), 3) marked
T2 hypointensity (32%), 4) marked T2 hyperintensity (12%),
and 5) absence of a dural tail (48%).”>

Quantitative and qualitative MRI features can offer insights
into tumor grades and clinical outcomes.”*”> A systematic review
of 35 studies by Spille et al*’ noted that irregular tumor shape,
non-skull base location, heterogeneous enhancement, and tu-
mor-brain interface disruptions were associated with grade 2

6 Soni ©2025 www.ajnr.org

and 3 histology. Tumor and edema size usually correlates with
recurrence, while heterogeneous contrast enhancement, cyst
formation, T2-weighted intensity, and tumor capsule enhance-
ment lack predictive value. A blurry brain/tumor surface with
disruption of the peritumoral CSF cleft is supportive, however
not definitive, of brain invasion (Fig 6).”° High-grade tumors
show necrosis, hemorrhage, heterogeneity, nonspherical shape,
and larger volumes. Radiomic (quantitative) and semantic (qualita-
tive) classifiers demonstrated significant grade predictability (Area
under curve semantic = 0.76 and Area under curve radiomic =
0.78).”* Similarly, clinical and radiologic features, such as symp-
toms, brain edema, shorter doubling time, and older age, predict
high-grade meningiomas.”” Preoperative ADC values differ-
entiate low-grade and high-grade meningiomas. In a meta-
analysis of 25 studies with 1552 meningiomas (1102 low-
grades, 450 high-grades), high-grade tumors had lower ADC
values (0.79 versus 0.92). The ADC threshold achieved 69%
sensitivity, 82% specificity, and an AUC of 0.84 for grade differ-
entiation.”® Tumor volume is the primary predictor of higher-grade
meningioma. Tumor necrosis and location along the falx or
convexity may also independently predict higher-grade menin-
giomas.79 A combination of MR DTI parameters (Apparent



FIG 7. Right intraorbital CNS WHO grade 3 meningioma with activation of the TERT promoter. A menin-
gioma is initially classified as grade 2 (atypical) based on histopathologic features; however, it was
upgraded to grade 3 on the basis of detection of TERT activation on chromosomal microarray.
Preoperative contrast-enhanced MRI at presentation (A) and at 6 months’ follow-up (B) reveals rapid
enlargement of the intraorbital meningioma (arrows). The patient had multiple postoperative recur-
rences during the next 18 months. Preoperative contrast-enhanced MRI (C and D) performed at 3-month
intervals shows rapid enlargement of recurrent enhancing tumor along the orbital roof (C and D, arrows).

Patient A Patient A

.

Patient B

Patient B

FIG 8. Histologic grade 1 skull base meningiomas in 2 different patients (patients A and B) with
upgrading to grade 3 (anaplastic) in patient B based on CDKN2 deletion. Axial (A) contrast-enhanced
MR in patient A reveals a left middle cranial fossa meningioma (arrow) with no recurrence and min-
imal residual activity on the 1-year postresection follow-up DOTATATE scan (B, arrow). A right
sphenoid wing meningioma with intraorbital extension is seen on axial contrast-enhanced MRI (C,
arrow) in patient B. Tumor recurrence was noted at the T-year postresection follow-up DOTATATE
scan (D, arrows), consistent with high-grade morphology. Despite histologic grade 1, the meningi-
oma was upgraded to grade 3 (anaplastic) on the basis of identification of a CDKN2 deletion.

diffusion coefficient minimum, fractional
anisotropy, axial diffusivity, and radial
diffusivity) accurately differentiates high-
grade from low-grade meningiomas with
96.2% accuracy.®” On MRS, higher-grade
tumors have high lipid and lactate peaks.
However, they do not reliably differenti-
ate typical and atypical meningiomas.®’
FDG-PET/CT predicts recurrence.
Lesions with minimal tracer uptake sug-
gest favorable surgical outcomes, while
hypermetabolism indicates atypical or
recurrent meningiomas.*> Galium 68
(°Ga) DOTATATE PET/CT can help
differentiate meningioma mimics, detect
recurrence, plan radiation therapy, and
monitor posttreatment effects (Figs 8
and 10).37*® Sommerauer et al*” found
a strong correlation between the maxi-
mum standard uptake value (SUVmax)
and the tumor growth rate for grade 1
and 2 meningiomas. In contrast, grade
3 meningiomas showed lower SUVmax
without a correlation with the tumor
growth rate. Afshar-Oromieh et al*®
observed ®*Ga-DOTATOC uptake in
all meningiomas (190), missing 10%,
mainly along petroclival and falx cere-
bri. ®*Ga DOTATATE PET/CT shows
higher sensitivity (98.5% versus 53.7%)
and specificity (86.7% versus 93.3%) for
osseous involvement compared with
MRI with transosseous meningiomas
having larger volume (12.8 versus
3.3mL; P < .001) and being more avid
(SUVmax, 14.2 versus 7.6; P = .01 1).89
Somatostatin receptor PET for resid-
ual tumor assessment surpasses intrao-
perative estimation via Simpson grading
or MRL In a post hoc analysis by Teske
et al” involving 46 patients with 49 grade
1 meningiomas, progression occurred in
14% of patients. ®*Ga DOTATATE-posi-
tive PET (SUVmax > 2.3) was linked
with progression (P = .015) and poor
progression-free survival (P = .029),
whereas MRI was not. All 20 patients
with negative findings on PET remained
**Ga-DOTATATE
PET/MRI shows promise for planning

recurrence-free.

and assessing focal radiation treatment
for atypical and anaplastic meningio-
mas. A significant post-radiation ther-
apy decrease in DOTATATE avidity
(somatostatin receptor 2 expression)
correlates with progression-free survival,
highlighting its potential in evaluating
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FIG 9. Secretory meningioma with a TRAF7 mutation in a 71-year-old
woman. Sagittal FLAIR (A), axial T2-weighted (B), and sagittal contrast-
enhanced (C) images reveal a small meningioma along the left greater
wing of the sphenoid bone (arrows). Extensive parenchymal edema is
noted in the right temporal lobe, disproportionate to the size of the
meningioma. Histopathology revealed a secretory histologic subtype,
with clusters of eosinophilic globules highlighted by pseudopsam-
moma bodies (D, arrows) with low mitotic activity (<1 mitosis in 10
high-power fields) and no atypical features, supporting a CNS WHO
grade 1 designation. Next-generation sequencing studies demon-
strated a pathogenic variant in TRAF7 (c.1136-1G>A).

radiation therapy response.** Incorporating ®*Ga DOTATATE
PET into future trials could aid the clinician’s decision-making
and enhance patient outcomes.®> The Online Supplemental Data
detail 15 meningioma subtypes, covering histology, molecular char-
acteristics, key imaging features, and clinical significance.

Prognosis and Treatment Strategies for Meningioma

Integrating histologic grading with genetic and epigenetic profiles
provides a more accurate prognostic stratification, but it is not
widely used in clinical practice.”’ The extent of resection is a sig-
nificant clinical predictor of recurrence and overall survival. The
location, invasion, attachment to critical intracranial structures,
and availability of expert neurosurgical services influence resec-
tion.”” Preoperative embolization of meningiomas reduces major
surgical complications and improves follow-up.”® Advances in
radiation therapy and image guidance allowed the safer deliv-
ery of higher doses without compromising treatment tolerance
to unacceptable levels.”’ High-grade meningiomas receiving
adjuvant radiation therapy showed a higher overall recurrence
rate than the stereotactic radiosurgery group (38% versus 25%,
P=.01)."* Stereotactic radiosurgery effectively controls cere-
bellopontine angle meningiomas with minimal complications.
Gendreau et al®” (meta-analysis of 6 studies, 406 patients)
found 95.6% tumor control with low cranial nerve deficits. In
SMs, complete surgical resection is the preferred treatment
with low recurrence (1.3%—6.4%). Radiation therapy is used
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FIG 10. Rapid multifocal recurrence of CDKN2A/B-deleted CNS WHO
grade 3 meningioma along the left sphenoid wing. The meningioma
was initially classified as grade 2 (atypical) on the basis of histopatho-
logic features; however, it was upgraded to grade 3 on the basis of
detection of a homozygous deletion of CDKN2A/B on next-generation
sequencing. Contrast-enhanced axial MRI depicts the left sphenoid
wing meningioma (A, arrow) with intraosseous extension (asterisk).
Rapid multifocal recurrence is noted on PET (DOTATATE) MRI (B-D,
arrows) within a few months postresection.

after subtotal resection and for grade 2 and 3 SMs.'"'* Patients

with SMs have better 10-year survival than those with their be-
nign (95.6% versus 83.2%) and malignant (73.4% versus
55.7%) cerebral counterparts.

Meningioma recurrence has limited treatment options, with
increasing neurologic worsening in patients undergoing first, sec-
ond, and third surgeries. Repeat surgery should be considered
when assessing the benefit-to-risk ratio.”® Despite advances in
genomic and DNA methylation classification, treatment progress
is slower.””> Somatostatin analogs, despite initial promise in
recurrent and unresectable cases, in subsequent trials did not
corroborate the benefits.”” In Phase II trials, peptide receptor
radionuclide therapy (with *°Y- and '"7Lu-DOTATOC) has
demonstrated disease stabilization in progressive meningio-
mas.”® Systemic treatments, including antiangiogenic treat-
ments and mammalian target of rapamycin (mTOR) inhibitors,
have limited utility and are used for recurrent or progressive
meningiomas.”” NF2 inactivation and mTOR overexpression
focused on mTOR inhibitors (everolimus, combined with
octreotide)'®® or bevacizumab.'®! PRRT has extended the
6-month PFS for grades 1 (89.7%) and 2 (57.1%) meningio-
mas.'% Limited treatment options and variable success rates
have prompted several ongoing trials. These trials evaluate
the possible therapeutic effects of immunotherapy, small
molecule inhibitors, radionuclide therapy, and electrical field
therapy for recurrent meningiomas (Online Supplemental
Data). Management should be tailored individually, consid-
ering genetic changes that may favor systemic therapies. New
WHO CNS5 grading and classification systems potentially
influence management and outcomes like recurrence rates,



albeit limited by the cost and availability of technologies such
as DNA methylation and next-generation sequencing.

CONCLUSIONS

Most meningioma molecular biomarkers need further evaluation
in prospective clinical trials. Their inclusion in the meningioma
diagnosis and management may guide future targeted therapies.
Adding CDKN2A/B and pTERT mutations in CNS5 classification
is a step forward, particularly for grade 3 meningiomas. However,
imaging biomarkers, including functional imaging like PET/CT,
are still in their infancy in predicting tumor grades and histo-
pathologic subtypes. CNS5 classification with multimodality
imaging may improve the prediction of the clinical course of
meningiomas. This has yet to yield meaningful therapeutic
advancements. Ongoing effort aims to translate molecular
knowledge into clinical management.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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