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Evaluation of an Artificial Intelligence Model
for Identification of Mass Effect and Vasogenic Edema

on CT of the Head
Isabella Newbury-Chaet, Sarah F. Mercaldo, John K. Chin, Ankita Ghatak, Madeleine A. Halle, Ashley L. MacDonald,

Karen Buch, John Conklin, William A. Mehan Jr., Stuart Pomerantz, Sandra Rincon, Keith J. Dreyer, Bernardo C. Bizzo,
and James M. Hillis

ABSTRACT

BACKGROUND AND PURPOSE: Mass effect and vasogenic edema are critical findings on CT of the head. This study compared the
accuracy of an artificial intelligence model (Annalise Enterprise CTB) with consensus neuroradiologists’ interpretations in detecting
mass effect and vasogenic edema.

MATERIALS AND METHODS: A retrospective stand-alone performance assessment was conducted on data sets of noncontrast CT
head cases acquired between 2016 and 2022 for each finding. The cases were obtained from patients 18 years of age or older from
5 hospitals in the United States. The positive cases were selected consecutively on the basis of the original clinical reports using
natural language processing and manual confirmation. The negative cases were selected by taking the next negative case acquired
from the same CT scanner after positive cases. Each case was interpreted independently by up-to-three neuroradiologists to estab-
lish consensus interpretations. Each case was then interpreted by the artificial intelligence model for the presence of the relevant
finding. The neuroradiologists were provided with the entire CT study. The artificial intelligence model separately received thin
(#1.5mm) and/or thick (.1.5 and #5 mm) axial series.

RESULTS: The 2 cohorts included 818 cases for mass effect and 310 cases for vasogenic edema. The artificial intelligence model identi-
fied mass effect with a sensitivity of 96.6% (95% CI, 94.9%–98.2%) and a specificity of 89.8% (95% CI, 84.7%–94.2%) for the thin series,
and 95.3% (95% CI, 93.5%–96.8%) and 93.1% (95% CI, 89.1%–96.6%) for the thick series. It identified vasogenic edema with a sensitivity
of 90.2% (95% CI, 82.0%–96.7%) and a specificity of 93.5% (95% CI, 88.9%–97.2%) for the thin series, and 90.0% (95% CI, 84.0%–96.0%)
and 95.5% (95% CI, 92.5%–98.0%) for the thick series. The corresponding areas under the curve were at least 0.980.

CONCLUSIONS: The assessed artificial intelligence model accurately identified mass effect and vasogenic edema in this CT data
set. It could assist the clinical workflow by prioritizing interpretation of cases with abnormal findings, possibly benefiting patients
through earlier identification and subsequent treatment.

ABBREVIATIONS: AI ¼ artificial intelligence; AUC ¼ area under the receiver operating characteristic curve; CADt ¼ computer-assisted triage device; NPV ¼
negative predictive value; PPV ¼ positive predictive value

Mass effect and vasogenic edema are critical findings on CT
of the head and require emergent medical attention.1-3

Mass effect can be caused by various pathologies including tumor
and hemorrhage. It manifests on CT with effacement of the ven-
tricles, basal cisterns, or cerebral sulci; midline shift; and brain

herniation, including tonsillar herniation or uncal herniation.
Vasogenic edema can similarly be caused by various pathologies
and manifests as a deep white matter hypodensity extending into
subcortical white matter.

Like the identification of large-vessel occlusion and intracra-
nial hemorrhage on head CT,4,5 the identification of mass effect
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and vasogenic edema by artificial intelligence (AI) algorithms
could assist in clinical care by triaging suspected cases for
sooner interpretation and enabling sooner treatment. While
there have been at least 15 computer-assisted triage devices
(CADt) cleared by the US FDA for intracranial hemorrhage,
there are far fewer for mass effect and vasogenic edema.6-8 This
article describes the performance of the Annalise Enterprise
(CTB module) device, which is available in many non-US regu-
latory jurisdictions and can identify 130 different radiologic
findings on head CT.9 In the United States, the 2 findings of
mass effect and vasogenic edema have received FDA clearance
as separate devices including being the first CADt device to
identify vasogenic edema.10,11

This study was a stand-alone model performance assessment
for the identification of mass effect and vasogenic edema: It
compared the accuracy of the AI device with consensus neuro-
radiologists’ interpretations in detecting these findings. Similar
to a prior study for intracranial hemorrhage,12 the device was
provided separately with thin (#1.5mm) and/or thick (.1.5
and #5mm) axial series from each case so that the performance
on different section thicknesses could be calculated. The perform-
ance was also calculated for cases belonging to demographic and
technical subgroups to determine the generalizability of the
device.

MATERIALS AND METHODS
Study Design
This retrospective stand-alone model performance study was
conducted using radiology cases from 5 hospitals within the
Mass General Brigham network between 2016 and 2022 using
methods similar to those found in a previously published study
about intracranial hemorrhage identification.12 The study
examined the performance for the binary detection of mass
effect and vasogenic edema by the AI model. It was approved by
the Mass General Brigham institutional review board with a
waiver of informed consent. It was conducted in accordance
with relevant guidelines and regulations including the Health
Insurance Portability and Accountability Act. This article follows
the Standards for Reporting Diagnostic Accuracy (STARD 2015;
https://www.equator-network.org/reporting-guidelines/stard/)
reporting guidelines.

Case Selection
The cohorts for mass effect and vasogenic edema were selected in
a consecutive manner on the basis of the original radiology
reports. The cohort size for each of the positive and negative cases
was based on powering calculations as described in the statistical
analysis section below. The positive cases were identified through
a natural language-processing search engine (Nuance mPower
Clinical Analytics; https://www.nuance.com/healthcare/diagnostics-
solutions/radiology-performance-analytics/mpower-clinical-analytics.
html) followed by a manual report review. The negative cases
were identified by taking the next negative case acquired on the
same CT scanner after the positive cases to avoid temporal and
technical bias. The next negative cases were taken after every Nth
positive case based on the ratio of positive-to-negative cases to
ensure that the principles of consecutive selection applied.

The cohort considered all CT head cases performed at a hos-
pital, including inpatients and outpatients; there were no limita-
tions on the original CT head clinical indication. The CT head
cases were obtained from patients at least 18 years of age. The CT
head cases were taken from unique patients; only the first CT
head from a given patient was included. It was possible for a case
to be included in both cohorts (ie, both mass effect and vasogenic
edema); there were 8 cases that were included in both cohorts.

All cases were de-identified and underwent an image-qual-
ity review by an American Board of Radiology–certified neuro-
radiologist. The relevant series for the model interpretations
were selected at the same time as described under the Series
Selection section below. The review was performed using the
FDA-cleared eUnity image visualization software (Version 6
or higher; Mach7) and an internal Web-based annotation sys-
tem that used the REDCap electronic data-capture tools hosted
at Mass General Brigam.13,14

Series Selection
The model was provided with a single selected series at the time of
model inference. These series were noncontrast thin (#1.5mm)
and/or thick (.1.5 and #5 mm) axial series for each CT head
case. The series were selected so that the thin series was the
thinnest available series #1.5mm; the thick series was
randomized between the thinnest and thickest available series
in the range .1.5 and #5 mm to ensure representation of

SUMMARY

PREVIOUS LITERATURE: The use of AI algorithms to triage and prioritize head CT cases with large vessel occlusion or intracranial
hemorrhage is well established. Mass effect and vasogenic edema are similarly critical findings that may require emergent atten-
tion, yet there are fewer AI algorithms that identify them. This algorithm, which received US Food and Drug Administration
clearance for the identification of both findings as part of CADt, was the first to do so for vasogenic edema.

KEY FINDINGS: This stand-alone model performance assessment demonstrated sensitivity and specificity of at least 89.8% for
the identification of each of mass effect and vasogenic edema by an AI algorithm. This performance occurred in both thin and
thick series, and a similar performance was maintained across various demographic and technical subgroups.

KNOWLEDGE ADVANCEMENT: The ability to identify these findings could assist the clinical workflow through prioritizing the
interpretation of abnormal cases. The growing number of findings identified by CADt devices also broadens the pool of patients
who could benefit from them.

2 Newbury-Chaet � 2024 www.ajnr.org

https://www.equator-network.org/reporting-guidelines/stard/
https://www.nuance.com/healthcare/diagnostics-solutions/radiology-performance-analytics/mpower-clinical-analytics.html
https://www.nuance.com/healthcare/diagnostics-solutions/radiology-performance-analytics/mpower-clinical-analytics.html
https://www.nuance.com/healthcare/diagnostics-solutions/radiology-performance-analytics/mpower-clinical-analytics.html


series thicknesses across the entire range. The series were
selected at the same time as the image-quality review. After series
selection, a DICOM metadata review was additionally performed
to ensure that the section thickness was within the appropriate
range and that there was a consistent section interval (with toler-
ance of60.2mm).

Ground Truth Interpretations
Ground truth interpretations were performed by up to 3
American Board of Radiology–certified neuroradiologists. They
answered whether the relevant finding was “Present” or
“Absent.” The definition provided to the neuroradiologists for
mass effect was “mass effect as evidenced by effacement of ven-
tricles, basal cisterns or cerebral sulci, midline shift, or brain
herniation (eg, tonsillar herniation or uncal herniation).” The
definition of vasogenic edema was “deep white matter hypo-
density extending into subcortical white matter.” The neurora-
diologists also answered whether a “parenchymal abnormality
including ischemia/mass/cyst/encephalomalacia” was present.
They provided their interpretations independently, without
access to the original radiology reports and in different work-
list orders. They used the same image-visualization software and
annotation system as used in the image-quality review. They had
access to the entire CT head case (ie, they were not restricted to the
series selected for model inference). For determining consensus
interpretations for the presence of mass effect or vasogenic edema,
we used a “21 1” strategy: The first 2 neuroradiologists interpreted
every case and a third neuroradiologist then interpreted cases with
discrepant interpretations. A parenchymal abnormality was

considered present if either of the first 2 neuroradiologists
annotated it as present; the third neuroradiologist was not
asked about its presence.

Model Inference
The evaluated AI model was Version 3.1.0 of the Annalise
Enterprise CTB Triage Trauma device (https://annalise.ai/
annalise-triage/). It is the same AI model used by the Annalise
Enterprise (CTB module) device, which is commercially avail-
able in some non-US markets and whose development has been
previously described.9 In brief, it consists of an ensemble of 5
neural networks with 3 heads: one for classification, one for left-
right localization, and one for segmentation. It can identify 130
different radiologic findings and was trained on .200,000 CT
head cases, which were each labeled by at least 3 radiologists.
These training cases came from 8 different scanner manufac-
turers and .90 different scanner models. The training cases
were completely independent of the cases used for this stand-
alone model performance study.

The Annalise Enterprise CTB Triage Trauma device provides
only binary classification output about the identification of find-
ings, which is consistent with FDA regulations for CADt devi-
ces. The model was installed at Mass General Brigham for use in
this study and received only the DICOM-formatted CT head
cases. It output a classification score between 0 and 1 for mass
effect and vasogenic edema. A binary output for these findings
could be derived using prespecified operating points. As part of
model inference, the device contains multiple filters to look at
attributes of the series to be interpreted to ensure that the model

967 total cases considered for cohort

Thin series  Thick series  

816 total cases

Model inference

inference

Model inference

inference

FIG 1. Cohort selection diagram for mass effect.
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does not perform inference on unsuitable images; in these situa-
tions, the device does not produce an output, which is referred to
as “unsuccessful model inference” within this study. While not
part of the current study, internal bench testing indicated a model
turn-around time of 81.6 seconds (95% CI, 80.3–82.9 seconds).10,11

Statistical Analysis
The statistical analysis was performed in R (Version 4.0.2; http://
www.r-project.org) on the full analysis set. The predefined end
points included the areas under the receiver operating character-
istic curves (AUCs) for the identification of mass effect and
vasogenic edema for each of the thin and thick series. The
AUCs were calculated using the consensus annotations and
the classification scores from the AI model. The prespecified
end points also included the sensitivity and specificity at
predetermined operating points; this article reports the

performance at operating points that have received FDA clear-
ance. They were calculated by comparing the binary model
output at each operating point with the consensus annotations
(ie, by calculating the number of true-positive, false-negative,
true-negative, and false-positive cases).

The positive predictive values (PPVs) and negative predictive
values (NPVs) were calculated as exploratory analyses at assumed
prevalences of 0.05, 0.10, 0.15, and 0.20. The sensitivities and
specificities were calculated as exploratory analyses for the sub-
groups of presence or absence of a parenchymal abnormality.
The AUCs, sensitivities, and specificities were calculated as ex-
ploratory analyses for the subgroups of sex, age, ethnicity, race,
and CT scanner manufacturer. These parameters were derived
from clinical databases or DICOM fields for each radiology case.
Any missing data were treated as “unknown” or “unavailable,”
and no data were imputed.
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FIG 2. Performance for mass effect. Receiver operating characteristic curves for the thin series (A) and thick series (B). The shaded region
reflects the bootstrapped 95% CIs. The selected point on each graph reflects the performance at the operating points described in the text.
Sample images for a true-positive case with parenchymal abnormality (C), a true-positive case without parenchymal abnormality (D), and a true-
negative case with parenchymal abnormality (E). The model classification score output is provided for each case.
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All CIs were calculated using bootstrapped intervals with
2000 resamples. The sample sizes for each of the findings were
powered on the basis of preliminary model results at a balanced
operating point to ensure that the lower bound of the 95% CI for
sensitivity was.80%, and for specificity,.80%.

RESULTS
Mass Effect
A cohort of 818 CT head cases was selected for the mass effect
cohort (Fig 1). This cohort resulted in 650 thin series and 816
thick series for which the model could be evaluated.

Thin Series. The model successfully performed inference on 632
(97.2%) thin series. This cohort for analysis included 306 (48.4%)
women and 326 (51.6%) men, the mean age was 67.2 (SD, 17.5)
years, and there were 495 (78.3%) positive cases and 137 (21.7%)
negative cases (Online Supplemental Data). The AImodel identified

mass effect with an AUC of 0.987 (95% CI, 0.979–0.993) (Fig 2A
and Table 1). At an operating point of 0.221484, the sensitivity
was 96.6% (95% CI, 94.9%–98.2%) and the specificity was 89.8%
(95% CI, 84.7%–94.2%). At an assumed prevalence of 0.10, the
PPV was 51.2% (95% CI, 40.9%–66.7%) and NPV was 99.6%
(95% CI, 99.4%–99.8% (Table 2). The performance was main-
tained in the presence or absence of a parenchymal abnormality
with the model achieving a sensitivity and specificity of at least
80% for both subgroups (Table 3). The performance was
broadly consistent across sex, age, ethnicity, race, and manufac-
turer with all subgroups with at least 5 cases having a sensitivity
and specificity of at least 80% (Online Supplemental Data).

Thick Series. The model successfully performed inference on 770
(94.4%) thick series. This cohort for analysis included 356
(46.2%) women and 414 (53.8%) men, the mean age was 66.5
(SD,17.3) years, and there were 596 (77.4%) positive cases and

Table 1: Model performance summary for identifying mass effecta

Metric
Mass Effect Vasogenic Edema

Thin Series Thick Series Thin Series Thick Series
Positive N 495 596 61 100
Negative N 137 174 108 201
AUC (95% CI) 0.987 (0.979–0.993) 0.983 (0.975–0.991) 0.980 (0.961–0.993) 0.988 (0.977–0.995)
Sensitivity (95% CI) 96.6 (94.9–98.2) 95.3 (93.5–96.8) 90.2 (82.0–96.7) 90.0 (84.0–96.0)
Specificity (95% CI) 89.8 (84.7–94.2) 93.1 (89.1–96.6) 93.5 (88.9–97.2) 95.5 (92.5–98.0)

Note:—N indicates number of cases.
a At operating point 0.221484 on the thin series and operating point 0.160195 on the thick series and for identifying vasogenic edema at operating point 0.145352 on the
thin series and at operating point 0.145352 on the thick series.

Table 2: PPVs And NPVs at different levels of assumed prevalence for identifying mass effect and vasogenic edemaa

Assumed Prevalence
Thin Series Thick Series

PPV (95% CI) NPV (95% CI) PPV (95% CI) NPV (95% CI)
Mass effect
0.05 33.2 (24.7–48.7) 99.8 (99.7–99.9) 42.1 (31.6–58.7) 99.7 (99.6–99.8)
0.10 51.2 (40.9–66.7) 99.6 (99.4–99.8) 60.6 (49.4–75.0) 99.4 (99.2–99.6)
0.15 62.5 (52.4–76.1) 99.3 (99.0–99.6) 70.9 (60.8–82.7) 99.1 (98.8–99.4)
0.20 70.3 (60.9–81.8) 99.1 (98.6–99.5) 77.6 (68.7–87.1) 98.8 (98.3–99.2)

Vasogenic edema
0.05 42.3 (29.1–68.9) 99.4 (99.0–99.9) 51.4 (38.7–72.1) 99.5 (99.1–99.7)
0.10 60.7 (46.4–82.4) 98.8 (97.9–99.7) 69.1 (57.1–84.5) 98.9 (98.1–99.5)
0.15 71.1 (57.9–88.1) 98.2 (96.7–99.6) 78.0 (67.9–89.6) 98.2 (97.0–99.2)
0.20 77.7 (66.1–91.3) 97.4 (95.3–99.4) 83.4 (75.0–92.5) 97.4 (95.9–98.8)

a These measurements are based on the same operating points used to determine sensitivity and specificity in Table 1.

Table 3: Sensitivity and specificity for subgroups based on the presence or absence of a parenchymal abnormalitya

Positive N Negative N Sensitivity (95% CI) Specificity (95% CI)
Mass effect: thin series
Parenchymal abnormality present 319 32 98.4 (96.9–99.7) 81.2 (65.6–93.8)
Parenchymal abnormality absent 176 105 93.2 (89.2–96.6) 92.4 (86.7–97.1)

Mass effect: thick series
Parenchymal abnormality present 391 39 98.2 (96.9–99.5) 84.6 (71.8–94.9)
Parenchymal abnormality absent 205 135 89.8 (85.4–93.7) 95.6 (91.9–98.5)

Vasogenic edema: thin series
Parenchymal abnormality present 57 28 89.5 (80.7–96.5) 82.1 (67.9–96.4)
Parenchymal abnormality absent 4 80 100.0 (100.0–100.0) 97.5 (93.8–100.0)

Vasogenic edema: thick series
Parenchymal abnormality present 94 37 89.4 (83.0–94.7) 83.8 (70.3–94.6)
Parenchymal abnormality absent 6 164 100.0 (100.0–100.0) 98.2 (95.7–100.0)

Note:—N indicates number of cases.
a These measurements are based on the same operating points used to determine sensitivity and specificity in Table 1.
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174 (22.6%) negative cases (Online Supplemental Data). The AI
model identified mass effect with an AUC of 0.983 (95% CI,
0.975–0.991) (Fig 2B and Table 1). At an operating point of
0.160195, the sensitivity was 95.3% (95% CI, 93.5%–96.8%) and
the specificity was 93.1% (95% CI, 89.1%–96.6%). At an assumed
prevalence of 0.10, the PPV was 60.6% (95% CI, 49.4%–75.0%)
and NPV was 99.4% (95% CI, 99.2%–99.6%) (Table 2). The per-
formance was maintained in the presence or absence of a paren-
chymal abnormality with the model achieving a sensitivity and
specificity of at least 80% for both subgroups (Table 3). The per-
formance was broadly consistent across sex, age, ethnicity, race,
and manufacturer with all subgroups with at least 5 cases having
a sensitivity and specificity of at least 80% (Online Supplemental
Data).

Vasogenic Edema
A cohort of 310 CT head cases was selected for the vasogenic
edema cohort. This cohort resulted in 174 thin series and 309
thick series for which the model could be evaluated (Fig 3).

Thin Series. The model successfully performed inference on 169
(97.1%) thin series. This cohort for analysis included 77 (45.6%)
women and 92 (54.4%) men, the mean age was 65.6 (SD, 19.7)
years; there were 61 (36.1%) positive cases and 108 (63.9%) nega-
tive cases (Online Supplemental Data). The AI model identified
vasogenic edema with an AUC of 0.980 (95% CI, 0.961–0.993;
Fig 4A and Table 1). At an operating point of 0.145352, the sensi-
tivity was 90.2% (95% CI, 82.0%–96.7%) and the specificity was
93.5% (95% CI, 88.9%–97.2%). At an assumed prevalence of 0.10,
the PPV was 60.7% (95% CI, 46.4%–82.4%) and NPV was 98.8%

(95% CI, 97.9%–99.7%) (Table 2). The performance was main-
tained in the presence or absence of a parenchymal abnormality
with the model achieving a sensitivity and specificity of at least
80% for both subgroups (Table 3). The performance was broadly
consistent across sex, age, ethnicity, race, and manufacturer with
all subgroups with at least 8 cases having a sensitivity and speci-
ficity of at least 80% (Online Supplemental Data).

Thick Series. The model successfully performed inference on
301 (97.4%) thick series. This cohort for analysis included 148
(49.2%) women and 153 (50.8%) men, the mean age was 64.6
(SD, 19.9) years, and there were 100 (33.2%) positive cases and
201 (66.8%) negative cases (Online Supplemental Data). The AI
model identified vasogenic edema with an AUC of 0.988 (95%
CI, 0.977–0.995) (Fig 4B and Table 1). At an operating point of
0.145352, the sensitivity was 90.0% (95% CI, 84.0%–96.0%)
and the specificity was 95.5% (95% CI, 92.5%–98.0%). At an
assumed prevalence of 0.10, the PPV was 69.1% (95% CI,
57.1%–84.5%) and NPV was 98.9% (95% CI, 98.1%–99.5%)
(Table 2). The performance was maintained in the presence or
absence of a parenchymal abnormality with the model achieving
a sensitivity and specificity of at least 80% for both subgroups
(Table 3). The performance was broadly consistent across sex,
age, ethnicity, race, and manufacturer with all subgroups with at
least 2 cases having a sensitivity and specificity of at least 80%
(Online Supplemental Data).

DISCUSSION
This retrospective stand-alone model performance study assessed
the ability of an AI device to identify mass effect and vasogenic

Thin series  Thick series  

Model inference

inference

Model inference

inference

FIG 3. Cohort selection diagram for vasogenic edema.
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edema on head CT. For mass effect, the AI device achieved an
AUC of 0.987 on the thin series and an AUC of 0.983 on the
thick series. For vasogenic edema, it achieved AUC 0.980 on thin
series and AUC 0.988 on thick series. These AUCs, as well as the
lower bounds of their 95% CIs, are in excess of the benchmark
AUC of 0.95 that the FDA uses for CADt devices cleared under
the QFM product code.15 Both devices also had operating points
that corresponded to a sensitivity and specificity of at least
89.8%. These sensitivities and specificities, as well as the lower
bounds of their 95% CIs, are in excess of the benchmark sensitivity
of 80% and specificity of 80% that the FDA commonly uses for
CADt devices cleared under the QAS product code (which was the
product code through which these 2 findings were cleared).10,11,16

The proposed benefit of CADt devices is that they are
“intended to aid in prioritization and triage of radiological medical
images”17 such that clinicians will be aware of abnormal studies

sooner and can commence subsequent management steps. There
are 2 other CADt devices that the FDA has approved for the iden-
tification of mass effect. The NinesAI device detects mass effect
with a sensitivity 96.4% and a specificity 91.1%.7 The qER device
detects mass effect with sensitivity 96.39% and specificity 96.00%
and midline shift with a sensitivity 97.34% and specificity
95.36%.6 The current results are consistent, while noting that the
cohorts for the assessment of each algorithm are different and
therefore prevent direct comparison.

One of the ongoing challenges with CADt devices cleared by
the FDA is that the regulation states that the “device does not
mark, highlight, or direct users’ attention to a specific location in
the original image.”17 This assessment was, therefore, based on
only the binary identification of mass effect or vasogenic edema
and did not incorporate a localization or segmentation analysis.
As we have described previously, a localization output including
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a segmentation or heat-map could assist with explainability by
demonstrating what the model has identified, especially when a
user suspects the algorithm has falsely identified a finding (ie, a
false-positive case).12,18,19 The growing number of head CT find-
ings that can be identified by CADt devices paves the way for the
application of AI in radiology to use cases requiring a broader
identification of findings such as report writing.

This device demonstrated robust performance across sex, age,
ethnicity, race, and manufacturer subgroups. It achieved a sensi-
tivity and specificity of at least 80% whenever there were at least 8
cases within a subgroup. This performance suggests that the
device is generalizable for different patient demographics and
technical parameters. The device will, however, encounter new
scenarios when used in the clinical environment, and its
ongoing performance should continue to be monitored. The
device reassuringly also appeared to differentiate between an
underlying parenchymal abnormality and mass effect or vaso-
genic edema, as suggested by its ability to maintain a specificity
of.80% even when a parenchymal abnormality was present.

As we have described for similar stand-alone model perform-
ance assessments, a key limitation of this study is that it is retro-
spective and outside the clinical workflow.12,18 It, therefore,
establishes the accuracy of the model in identifying mass effect
and vasogenic edema but does not assess its impact on the clinical
workflow, including for benefit on patients’ outcomes. We view
this initial step as a prerequisite to ensure that the device has the
potential to provide clinical benefit. Further evaluation will be
required to prove such a benefit.

CONCLUSIONS
This stand-alone model performance assessment investigated the
ability of an AI device to identify mass effect and vasogenic
edema on head CT. It demonstrated performance that exceeded
the FDA benchmarks for CADt devices. Its use could lead to
improved care and outcomes for patients with these findings.
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