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ORIGINAL RESEARCH
ARTIFICIAL INTELLIGENCE

Impact of SUSAN Denoising and ComBat Harmonization
on Machine Learning Model Performance for Malignant

Brain Neoplasms
Girish Bathla, Neetu Soni, Ian T. Mark, Yanan Liu, Nicholas B. Larson, Blake A. Kassmeyer, Suyash Mohan,

John C. Benson, Saima Rathore, and Amit K. Agarwal

ABSTRACT

BACKGROUND AND PURPOSE: Feature variability in radiomics studies due to technical and magnet strength parameters is well-known
and may be addressed through various preprocessing methods. However, very few studies have evaluated the downstream impact of
variable preprocessing on model classification performance in a multiclass setting. We sought to evaluate the impact of Smallest
Univalue Segment Assimilating Nucleus (SUSAN) denoising and Combining Batches harmonization on model classification performance.

MATERIALS AND METHODS: A total of 493 cases (410 internal and 83 external data sets) of glioblastoma, intracranial metastatic disease,
and primary CNS lymphoma underwent semiautomated 3D-segmentation post-baseline image processing (BIP) consisting of resampling,
realignment, coregistration, skull-stripping, and image normalization. Post-BIP, 2 sets were generated, one with and another without
SUSAN denoising. Radiomics features were extracted from both data sets and batch-corrected to produce 4 data sets: (a) BIP, (b)
BIP with SUSAN denoising, (c) BIP with Combining Batches, and (d) BIP with both SUSAN denoising and Combining Batches harmo-
nization. Performance was then summarized for models using a combination of 6 feature-selection techniques and 6 machine learn-
ing models across 4 mask-sequence combinations with features derived from 1 to 3 (multiparametric) MRI sequences.

RESULTS: Most top-performing models on the external test set used BIP1SUSAN denoising–derived features. Overall, the use of
SUSAN denoising and Combining Batches harmonization led to a slight but generally consistent improvement in model perform-
ance on the external test set.

CONCLUSIONS: The use of image-preprocessing steps such as SUSAN denoising and Combining Batches harmonization may be
more useful in a multi-institutional setting to improve model generalizability. Models derived from only T1 contrast-enhanced
images showed comparable performance to models derived from multiparametric MRI.

ABBREVIATIONS: BIP ¼ baseline image processing; CE ¼ contrast-enhanced; ComBat ¼ Combining Batches; ET ¼ enhancing tumor; GB ¼ glioblastoma;
ICC ¼ intraclass correlation coefficient; IMD ¼ intracranial metastatic disease; mAUC ¼ multiclass area under the receiver operating characteristic curve; ML ¼
machine learning; PCNSL ¼ primary central nervous system lymphomas; PTR ¼ peritumoral region; SD ¼ SUSAN denoising; SUSAN ¼ Smallest Univalue
Segment Assimilating Nucleus

G lioblastoma (GB), intracranial-metastatic disease (IMD), and
primary central nervous system lymphomas (PCNSL) are the

3 most common malignant intra-axial brain tumors. Because the

treatment strategies are different, their accurate noninvasive diagnosis
would be ideal but is difficult due to overlapping imaging appear-
ances, which are well-described in the neuroradiology literature.1–4

Several prior studies have addressed noninvasive image-based
differentiation among GB, IMD, and PCNSL using machine learn-
ing (ML), either as a binary or a 3-class problem.1–3,5 Many studies
have shown encouraging results, often better than human readers.
However, one of the potential drawbacks with these studies is the
variability in preprocessing steps that were followed before model
training, either at the image or at radiomics level.4

Even though some studies have previously addressed the
impact of various image-acquisition and processing parameters
on the radiomics feature repeatability and reproducibility, many
studies used healthy volunteers or phantoms.6–10 These studies
have shown baseline variability in radiomics features based on
acquisition parameters, scanner strength, acquisition protocols,
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slice thickness, and so forth, which may be improved with pre-
processing steps such as resampling, intensity normalization,
denoising, bias field correction, and harmonization.7,8,11,12 These
preprocessing methods can potentially improve the repeatability
and reliability of the radiomics results.13 However, the impact of
these processing parameters on the final model classification has
seldom been comprehensively evaluated with a large data set.

Smallest Univalue Segment Assimilating Nucleus (SUSAN)
denoising is often used to help reduce image noise and improve
SNR, given its ability to simultaneously detect and preserve edges
in an image.13,14 The technique works on a pixel-by-pixel basis
and smooths out pixel intensities on the basis of a thresholding
method. Combining Batches (ComBat), on the other hand, is a
data-driven postprocessing method that was initially used to
correct “batch effects” in genomic studies.11,15 More recently, it
has been used to address scanner effects to improve downstream
analysis in radiomics studies. Unlike other preprocessing meth-
ods, ComBat is applied to already-extracted features at the radio-
mics level rather than the image level. Between 2017 and 2022, at
least 51 articles reported the use of ComBat in radiomic studies
on MRI (36%), CT (34%), and PET imaging (28%) with 41%
reporting higher performance and 18% not reporting any addi-
tional benefit with ComBat.15,16

We aimed to investigate if the application of SUSAN denois-
ing (SD), working at the image level to reduce noise, and ComBat
harmonization, working at feature level to harmonize radiomic
features, either alone or in combination, would improve the clas-
sification performance for a 3-class problem (GB versus IMD ver-
sus PCNSL) involving malignant brain neoplasms compared with
models not using either of these methodologies. Similar to the
prior seminal work by Moradmand et al,13 image resampling,
coregistration, skull-stripping, and intensity normalization were
considered as baseline image processing and were common to all
feature sets. Herein, we present our findings on multiple ML
models derived from single or multiparametric conventional MR
images (derived from a combination of T2WI, FLAIR, ADC, and
T1 contrast-enhanced [CE] sequences) with (a) baseline image
processing (BIP), (b) BIP with SD, (c) BIP with ComBat harmo-
nization, and (d) BIP with both SD and ComBat harmonization.

MATERIALS AND METHODS
Data Collection
The dual-institutional study was approved by the respective insti-
tutional review boards and informed consent was waived, given
the retrospective nature of the study. For the training data, insti-
tutional cancer registries from the first hospital were searched
for patients with GB, PCNSL, and IMD (from a lung, breast, or
melanoma primary) between 2010 and 2020 who underwent
CE brain MRI. Inclusion criteria were the following: 1) at least
1 enhancing lesion of .1 cm, 2) the availability of index pre-
therapy MRI, 3) the availability of required sequences, 4) histo-
logic confirmation (for GB and PCNSL cases) or either histologic
confirmation or known systemic malignancy with imaging
appearance consistent with metastatic disease (for IMD cases),
and 5) the absence of motion degraded images. This search
yielded a total of 547 cases (GB: 231; IMD: 247; PCNSL: 69).
Cases were excluded if there was $1 missing sequence (axial T1,

T2, FLAIR, ADC, and T1-CE) (n¼ 30), failure of any of the
below-described image-preprocessing steps (n¼ 15), or any of
the masks for the lesions not being available (n¼ 92). The latter
was to avoid imputing values that could confound the impact of
preprocessing steps. A total of 410 cases were eventually included
in the internal data set (GB: 171; IMD: 188; PCNSL: 51).

In addition, the external test set, obtained from another insti-
tution, included a total of 83 cases (GB: 25; IMD: 32; PCNSL: 26).
Cases were again collected using the same inclusion criteria and
processed using identical pipelines as detailed below. The overall
study workflow is provided in Fig 1.

Image Acquisition
Images were acquired on either a 1.5T (Aera, Avanto; Siemens)
or 3T (Magnetom Skyra, Magnetom Trio; Siemens) system. The
typical scanner parameters of the sequences used at both institu-
tions are provided in the Online Supplemental Data. T1-weighted
CE images were acquired 3–5minutes after administration
of gadobenate dimeglumine (MultiHance; Bayer Healthcare
Pharmaceuticals) or gadobutrol (Gadavist; Bayer Healthcare
Pharmaceuticals) injected at the dose of 0.1mL/kg body weight.

Image Preprocessing
Following image anonymization and conversion of the DICOM
images to NIfTI format, BIP was performed on all images as
follows: 1) resampling (1 � 1 � x 1 mm3); 2) reorientation to
the left-posterior-superior coordinate system; 3) alignment of
T1 precontrast images to the SRI24 atlas; 4) coregistration; 5)
skull-stripping; and 6) intensity normalization to [0.255] (details
in the Online Supplemental Data).

SD was also performed, thereby creating 2 sets of cases, one
with and other without SD (BIP6SD).

Tumor Segmentation
Semiautomated 3D volumetric tumor segmentation was per-
formed on axial T1-CE and FLAIR images by 2 board-certified
radiologists (N.S. and G.B.) in consensus using LOGISMOS
(https://iibi.uiowa.edu/research/logismos-image-segmentation), as
detailed previously.17 In patients with multiple lesions, only the
largest lesion was segmented. Two ROIs (masks) were segmented
using T1-CE and FLAIR images: 1) Enhancing Tumor (ET,
enhancing tumor inclusive of any necrotic/hemorrhagic intratu-
moral components on T1-CE images) and 2) region of FLAIR ab-
normality, including tumor and peritumoral region (PTR). The
PTR mask for each lesion was generated by subtracting the ET
from the corresponding FLAIR mask.

In addition to the segmentation of the internal and external
cohorts, approximately 17% of the internal patient cohort was ran-
domly resegmented (n¼ 69, GB: 30; IMD: 28; PCNSL: 11). This
segmentation was used for the ML pipelines as described below.

Model Development
Feature Extraction and Harmonization. For each tumor, radio-
mic features were extracted from the ET and PTR masks using
PyRadiomics Version 3.0 (https://pypi.org/project/pyradiomics/).18

This was done for both data sets, with and without denoising.
Radiomic features were harmonized by implementing the
neuroCombat package in R, Version 4.2.2 statistical and computing
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software (http://www.r-project.org/), under default settings for
both data sets, thereby resulting in 4 data sets for model training
(BIP, BIP1SD, BIP1ComBat, BIP1SD1ComBat).19 Details
about extracted features and harmonization are provided in
the Online Supplemental Data. Because there were several pos-
sible mask and sequence combinations, a few select mask-
sequence combinations were chosen on the basis of prior liter-
ature to assess the classification performance. The following
abbreviations follow “sequence_mask” nomenclature through-
out the text unless stated otherwise. ([1] CE_ET and FLAIR [F]
_PTR; [2] CE_ET and T2_PTR; [3] CE_ET, ADC [A]_ET and
F_PTR; [4] CE_ET only).1,2,20

Feature Selection
Feature selection and reduction methods included the following: 1)
a linear combination filter, 2) correlation-based filtering, 3) princi-
pal components analysis, 4) supervised least absolute shrinkage
and selection operator variable selection, and 5) intraclass correla-
tion coefficient (ICC) filtering based on the resegmentation analy-
sis (detailed description in Online Supplemental Data). In
addition, the entire feature set without a priori feature selection
was used.

Model Training
ML algorithms used included kernel support vector machines using
the polynomial and Gaussian kernels, multinomial elastic net,
extreme gradient boosting, generalized boosted regression models,
and random forest. These ML models were chosen given their
diverse nature and common use in neuro-oncology ML literature.

Model training was performed using masks derived from 1 to
3 different sequences, either alone or in combination, across a

total of 4 sequence permutations as mentioned earlier. To assess
performance on the internal data set, we performed 5-fold nested
cross-validation, and performance was summarized using the
mean of the leave-out outer-fold discrimination statistics. The
top-performing algorithms for each of the 4 sequence permuta-
tions were then trained on the complete internal data set before
performance evaluation on the external test set.

Statistical Analysis
Multiclass discrimination performance measures in leave-out test
data were computed using the mlr3measures R package (https://
cran.r-project.org/web/packages/mlr3measures/index.html), includ-
ing a multinomial log loss, multiclass Brier score, and the multi-
class area under the receiver operating characteristic curve
(mAUC) defined by Hand and Till.21,22 Brier scores were calcu-
lated using the originally outlined definition, which is extensible
to multiclass problems and has a range of 0–2. A purely “nonin-
formative” model that always assigns uniform probabilities to
all classes under a 3-class problem will correspond to a Brier
score of 0.666. All statistical analyses and ML model fitting were
performed using R 4.2.2.22

RESULTS
The patient demographic details, scanner, and class distributions
for the internal data, resegmented data, and external data are pro-
vided in Table 1. Figure 2 (violin plots) depicts the range of
mAUC for all 4 image-processing pipelines for the different fea-
ture sets derived from the 4 mask-sequence combinations for the
external data. A similar representation of model performance on
the internal data set is provided in the Online Supplemental Data.

FIG 1. Schematic depicting the study workflow.
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In general, models using 3 masks (CE_ET, A_ET and F_PTR),
showed slightly better performance (maximal mAUC: 0.873–
0.886), which was, nevertheless, comparable with the other
models, including those using only the CE_ET masks (maximal
mAUC: 0.856–0.859). Table 2 shows the top 3 models for each
mask-sequence combination for the external data. The top 3
models for the internal data are provided in the Online
Supplemental Data. Figure 3 shows the maximum mAUC for the
internal and external data for the various models based on the
ML algorithm. A histogram plot showing differences between in-
ternal and external data model performance for the different
pipelines is presented in Fig 4 and shows a minimal mean drop
in the mAUC between the internal and external validation data
sets across all 4 processing pipelines with a mean drop of,0.1 in
the mAUC across all pipelines.

In general, the addition of SD to the preprocessing led to
slightly improved performance over BIP, with improvement in
the mAUC ranging between 0.009 and 0.040 on the external data
set (Table 3). Most of the top 3 performing models for each

mask-sequence combination used SD, while only 1 of the models
in the same list was derived from only BIP data (Table 2). Most
interesting, none of the top 3 models from all 4 mask-sequence
combinations used ComBat on the internal data set, while 4 of
the models among the top performers for each mask-sequence
combination on the external test set used ComBat, which may
suggest that ComBat may be helpful when testing models on
data derived in a multi-institutional setting. The change in
mAUC on the external data set when comparing BIP only
with BIP1 ComBat—derived models for the 4 mask-sequence
combinations ranged between �0.037 and 10.033 (Table 3).
Of note, all 3 top-performing models using the CE_ET and
T2_PTR used ComBat (Table 2).

Bootstrapping of the mAUC was also performed using the
various pipelines under the same image preprocessing as a single
cluster, and 5000 bootstrap samples were drawn for the percen-
tile-based 95% CI limit calculations. These did not reveal any
significant differences between the pipelines (Online Supplemental
Data). However, each cluster had about 144 ML pipelines (4
sequence combinations, 6 feature selections, and 6 ML models)
and was evaluating the class difference in the image-processing
pipelines as a whole and not just the top-performing models.

We further performed the nonparametric Kruskal-Wallis test
to assess the impact of image preprocessing on feature impor-
tance. This was done for the top 15 radiomic features across all
pipelines that corresponded to a P value, .01 in at least 1 analysis.
Results are presented in the Online Supplemental Data for internal
and external data sets, respectively. For the internal data set, these
showed that ComBat tended to attenuate associations among these
features, whereas the application of SUSAN had mixed results
(Online Supplemental Data).

To evaluate any differences in prediction performance between
disease classes (GB versus IMD versus PCNSL), we evaluated
individual 1-versus-rest AUC values by class. Violin plots (Online

Supplemental Data) suggest that there
may be some evidence that SUSAN
helps with PCNSL-specific discrimination
performance, but this suggestion is dif-
ficult to assess systematically, given
the additional confounders.

Finally, bar plots (Online Supplemental
Data) were constructed to quantify the
sources of variability attributable to class
and batch (ie, scanner type) on the
multivariate radiomics feature distri-
butions using principal variance com-
ponent analysis. These showed that
features derived from the CE_ET mask
in general trended toward stronger
class signal.

DISCUSSION
In this study, we investigated the
impact of preprocessing steps (SD and
ComBat harmonization) on the eventual
classification performance in a 3-class
(GB versus IMD versus PCNSL)

FIG 2. Violin plots for all 4 feature sets using the external data show the range of mAUC across
different pipelines. Feature set 1: CE_ET and F_PTR; 2: CE_ET and T2_PTR; 3: CE_ET, A_ET and
F_PTR; 4: CE_ET only. A indicates ADC; F, FLAIR.

Table 1: Patient demographic details, scanner, and class distri-
butions in the internal and external data sets

Internal (n= 410) External (n= 83)
Scanner
1.5T 371 (90.4%) 51 (61.4%)
3T 39 (9.5%) 32 (38.6%)

Age (yr)
Mean (SD) 62.2 (12.3) 62.6 (12.2)
Range 11.0–90.00 26.0–83.0

Sex
Female 196 (47.8%) 40 (48.2%)
Male 214 (52.1%) 43 (51.8%)

Class
GB 171 (41.7%) 25 (30.1%)
IMD 188 (45.8%) 32 (38.6%)
PCNSL 51 (12.4%) 26 (31.3%)
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problem involving malignant brain tumors. This was done across
4 mask-sequence combinations using several ML pipelines and
feature-reduction methods. We found that even though the mean
mAUC across the various pipelines was similar (BIP, BIP1 SD,
BIP1ComBat, BIP1SD1ComBat), several of the top 3 models
across all mask-sequence combinations on the external test set
used SD. Similarly, 4 of the top models across the various mask-
sequence combinations used ComBat harmonization on the

external data set, including all 3 top-performing models which
used a peritumoral mask derived from T2WI (Table 2). The vari-
ability in model performance for the top-performing models in
the external data is exemplified in table 3 which shows perform-
ance metrics for the same tumor-mask combination and ML
pipelines but variable application of SD and ComBat.

These findings contrast with the top-performing models on
the internal data set, in which most of the models used neither

Table 2: Summary of top 3 performing models in the external data set for each feature set
Feature Set Processing Algorithm Feature Selection mAUC LogLoss Brier Score

CE_ET and F_PTR SD/none SVM-P ICC 0.833 0.871 0.521
SD/ComBat GBRM LinearComb 0.832 0.860 0.507
SD/none SVM-RBF Corr 0.831 0.835 0.519

CE_ET and T2_PTR None/ComBat ENET None 0.841 0.922 0.492
None/ComBat SVM-P LASSO 0.840 0.896 0.505
None/ComBat SVM-P linearComb 0.839 0.915 0.509

CE, ET, A, ET and F, PTR SD/none SVM-P ICC 0.886 0.712 0.414
SD/none SVM-P PCA 0.874 0.699 0.398
None/none SVM-P ICC 0.873 0.764 0.433

CE_ET SD/none SVM-P ICC 0.859 0.789 0.472
SD/none SVM-P None 0.856 0.800 0.499
SD/none SVM-P LASSO 0.856 0.786 0.494

Note:—ENET indicates multinomial elastic net; GBRM, generalized boosted regression mode; LASSO, least absolute shrinkage and selection operator; PCA, principal component
analysis; SVM-P, support vector machine-polynomial kernel; SVM-RBF, support vector machine-Gaussian kernel; LinearComb, Linear combination filter; A, ADC; F, FLAIR; Corr,
Correlation filter.

FIG 3. Maximum mAUC heatmaps for the internal and external data for the various models based on the ML algorithm. svmRBF indicates sup-
port vector machine-Gaussian kernel; XGB, extreme gradient boosting; RF, random forest; GBRM, generalized boosted regression mode; ENET,
multinomial elastic net; MAX, maximum; svmPoly, support vector machine-polynomial kernel.
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SD nor ComBat harmonization. Our findings suggest that the use
of preprocessing pipelines such as SD and ComBat harmoniza-
tion may be more helpful in a multi-institutional setting and pos-
sibly helpful in improving model generalizability. A precise
explanation of how these image preprocessing steps impacted
model performance is, however, difficult to separate out, given
the multiple confounders. This difficulty is partly because the
classification performance is also considerably affected by
the specific feature-selection techniques and ML model used.
Additionally, comparison with baseline preprocessing also
muddies the waters in the sense that the baseline steps such as
resampling and intensity normalization by themselves can
affect radiomics features and therefore impact classification
performance. A few potential insights into the impact of image
preprocessing and model performance may be obtained through

the Online Supplemental Data, which evaluates the impact of
image preprocessing on important radiomics features as well as
the class-wise impact of image preprocessing on 1-versus-others
AUC. From the Online Supplemental Data, it is evident that
preprocessing steps can variably alter the feature importance of
various radiomic features, which can potentially impact how they
are valued in ML pipelines. Additionally, as shown in the Online
Supplemental Data, SD can potentially improve the model classi-
fication performance for PCNSL regardless of the sequences
used, likely also impacting the overall model performance.

Another takeaway from the study is that even though models
using 3 mask-sequence combinations tended to perform mar-
ginally better for GB versus IMD versus PCNSL, the perform-
ance was overall similar to models using data from the CE_ET
mask only. As shown in the Online Supplemental Data, the

radiomics features of the CE_ET
mask tend to more dependent on the
underlying disease class rather than
those from other sequences, which
may partly explain why T1-CE-
derived features may perform compa-
rably with other multiparametric
sequence-derived models. This finding
is in line with previous studies and
may imply that using a single mask-
sequence combination may yield simi-
lar results and be easier to implement
logistically in the clinical setting.1,2

Previous studies have evaluated the
impact of preprocessing steps on the
radiomics features, generally in terms
of feature robustness and reproducibil-
ity. Several of these studies have been
performed on phantoms or healthy vol-
unteers and primarily focused on iden-
tifying reproducible features.7,9,23 Some
of the prior studies also used patient-
level data and assessed the impact of

FIG 4. Histogram plot showing mean differences between the internal and external data model
performance for the different pipelines. The red line depicts the mean difference in model
performance.

Table 3: Top performing model for each feature set, along with the 3 other data-preprocessing results using the same modeling
strategy (external data)

Feature Set Processing Algorithm Feature Selection mAUC LogLoss Brier Score Best Model
CE_ET and F_PTRa None/none SVM-P ICC 0.818 0.929 0.548 False

SD/noneb SVM-P ICC 0.833 0.871 0.521 True
None/ComBat SVM-P ICC 0.808 1.029 0.588 False
SD/ComBat SVM-P ICC 0.817 0.949 0.564 False

CE_ET and T2_PTRa None/none ENET None 0.808 0.904 0.520 False
SD/none ENET None 0.817 0.867 0.499 False
None/ComBatb ENET None 0.841 0.922 0.492 True
SD/ ComBat ENET None 0.835 0.891 0.487 False

CE_ET, A_ET and F_PTRa None/none SVM-P ICC 0.873 0.764 0.433 False
SD/noneb SVM-P ICC 0.886 0.712 0.414 True
None/ComBat SVM-P ICC 0.836 0.872 0.520 False
SD/ ComBat SVM-P ICC 0.873 0.749 0.444 False

CE_ETa None/none SVM-P ICC 0.819 0.881 0.499 False
SD/Noneb SVM-P ICC 0.859 0.789 0.472 True
None/ComBat SVM-P ICC 0.821 0.962 0.531 False
SD/ ComBat SVM-P ICC 0.842 0.850 0.512 False

Note:—ENET indicates multinomial elastic net; SVM-P, support vector machine-polynomial kernel, LogLoss, ??????; A, ADC; F, FLAIR
aRow indicates models using BIP only, but with otherwise the same modeling strategy.
bRow indicates the top-performing model for each feature set.
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image-preprocessing steps on evaluating patient survival, glioma
grades, or the impact on tumor subregions.12,13,24,25 However,
none of the prior studies, to the best of our knowledge, have
extensively evaluated the impact of preprocessing steps on even-
tual classification performance in a multiclass problem (of GB
versus IMD versus PCNSL) in neuro-oncology. Even though the
variation in radiomics features with differences in sequence pa-
rameters, vendors, scanner strength, and slice thickness are
known, their impact on eventual classification problems in a GB
versus IMD versus PCNSL scenario remains less well-explored.

In the current study, models using SD or ComBat on the in-
ternal data set did not outperform models using neither of these
preprocessing steps. A potential explanation may be that within
the same institution, there is limited protocol and scanner hetero-
geneity, and the effect of the additional preprocessing steps on
model performance may be negligible. Additionally, the BIP in
our study involved resampling and intensity normalization. Bologna
et al,6 previously noted that image-preprocessing steps such as
normalization, resampling, Gaussian filtering, and bias field cor-
rection improved the stability of features on the T1 and T2WI
phantom data. Similarly, Carré et al24 noted that intensity nor-
malization considerably improved the robustness of first-order
features and subsequent model classification performance for
glioma grading. Similarly, Li et al11 and Um et al12 noted that
resampling voxels to 1 � 1 � 1 mm could remove some of the
scanner effects. Because our BIP included resampling and image
normalization, it is possible that the additional benefits of fur-
ther preprocessing were not apparent on the internal data set,
which is expected to be less heterogeneous.

On the other hand, in the external data set, the additional
postprocessing steps, especially SD, were likely useful across vari-
ous mask-sequence combinations. All top 3 models using the
T2_PTR mask used ComBat on the external data set, which may
suggest that ComBat harmonization may be more important in
models using features derived from T2WI in a multi-institutional
setting. As shown in the Online Supplemental Data, ComBat
does seem to disproportionately improve the feature importance
of T2_PTR-derived sequences, possibly helping explain why it
was useful. One difference between the 2 institutions is that the
T2 WI internal data set was acquired before and the external data
set was acquired after contrast injection. Although this does not
visibly change the appearance of the T2-based images, it is possi-
ble that it may affect the underlying radiomics features.

Limitations of our study include the retrospective nature and
a modest sample size. We also did not evaluate the effect of other
preprocessing steps such as bias field correction or various types
of image and feature normalization methods, including more
recently described deep learning approaches.26,27 Such a task
would further complicate the current analysis by introducing the
confounding effect of additional variables, which may be better
evaluated separately in future studies. Our choice of choosing
only noise filtering/SD and Combat harmonization was based on
selecting a preprocessing step that works at the image level and
another that works at radiomics feature level. We also did not
perform any bias field correction as part of BIP on our data.
However, both Um et al12, and Li et al11 noted that bias field cor-
rection had no impact on radiomics feature reproducibility in

their analysis when there were no obvious bias field effects on the
MR images. Next, we also did not compare our performance with
that of expert readers because the primary focus of the study was
to assess the impact of image preprocessing on eventual model
performance. Additionally, given that feature selection and ML
models work in different ways and can have considerable vari-
ability by themselves, independent of the image preprocessing
steps, an exhaustive assessment of each ML pipeline was beyond
the scope of current work. We, therefore, focused on broad
trends in model-classification performance instead of trying to
select a clear winner. Finally, not all cases of IMD in our study
were pathologically proved, being not practically feasible in a
clinical setting. We, therefore, relied on the availability of addi-
tional imaging and follow-up data, including clinical records and
institutional cancer registries to identify patients with IMD.

CONCLUSIONS
Imaging-preprocessing steps such as SD and ComBat harmoniza-
tion may help achieve marginally improved classification per-
formance in a multi-institutional setting. Their impact is likely
negligible in a single-institution setting where scanner and proto-
col heterogeneity are likely limited. Finally, models derived from
multiparametric MRI show classification performance similar to
that of models derived only from the T1-CE sequences.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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