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ORIGINAL RESEARCH
BRAIN TUMOR IMAGING

Ten Years of VASARI Glioma Features: Systematic Review
and Meta-Analysis of Their Impact and Performance

Aynur Azizova, Yeva Prysiazhniuk, Ivar J.H.G. Wamelink, Jan Petr, Frederik Barkhof, and Vera C. Keil

ABSTRACT

BACKGROUND: Visually Accessible Rembrandt (Repository for Molecular Brain Neoplasia Data) Images (VASARI) features, a vocabulary to
establish reproducible terminology for glioma reporting, have been applied for a decade, but a systematic performance evaluation is lacking.

PURPOSE: Our aim was to conduct a systematic review and meta-analysis of the performance of the VASARI features set for gli-
oma assessment.

DATA SOURCES:MEDLINE, Web of Science, EMBASE, and the Cochrane Library were systematically searched until September 26, 2023.

STUDY SELECTION:Original articles predicting diagnosis, progression, and survival in patients with glioma were included.

DATA ANALYSIS: The modified Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was applied to evaluate the
risk-of-bias. The meta-analysis used a random effects model and forest plot visualizations, if $5 comparable studies with a low or
medium risk of bias were provided.

DATA SYNTHESIS: Thirty-five studies (3304 patients) were included. Risk-of-bias scores were medium (n¼ 33) and low (n¼ 2).
Recurring objectives were overall survival (n¼ 18) and isocitrate dehydrogenase mutation (IDH; n¼ 12) prediction. Progression-free
survival was examined in 7 studies. In 4 studies (glioblastoma n¼ 2, grade 2/3 glioma n¼ 1, grade 3 glioma n¼ 1), a significant associ-
ation was found between progression-free survival and single VASARI features. The single features predicting overall survival with
the highest pooled hazard ratios were multifocality (hazard ratio ¼ 1.80; 95%-CI, 1.21–2.67; I2 ¼ 53%), ependymal invasion (hazard ra-
tio ¼ 1.73; 95% CI, 1.45–2.05; I2 ¼ 0%), and enhancing tumor crossing the midline (hazard ratio ¼ 2.08; 95% CI, 1.35–3.18; I2 ¼ 52%).
IDH mutation-predicting models combining VASARI features rendered a pooled area under the receiver operating characteristic
curve of 0.82 (95% CI, 0.76–0.88) at considerable heterogeneity (I2 ¼ 100%). Combined input models using VASARI plus clinical and/or
radiomics features outperformed single data-type models in all relevant studies (n¼ 17).

LIMITATIONS: Studies were heterogeneously designed and often with a small sample size. Several studies used The Cancer Imaging
Archive database, with likely overlapping cohorts. The meta-analysis for IDH was limited due to a high study heterogeneity.

CONCLUSIONS: Some VASARI features perform well in predicting overall survival and IDH mutation status, but combined models
outperform single features. More studies with less heterogeneity are needed to increase the evidence level.

ABBREVIATIONS: AUC ¼ area under the receiver operating characteristic curve; HR ¼ hazard ratio; IDH ¼ isocitrate dehydrogenase; OS ¼ overall survival;
VASARI ¼ Visually Accessible Rembrandt [Repository for Molecular Brain Neoplasia Data] Images

MRI is the essential pillar of preoperative glioma diagnosis
and later therapy assessment. While there is consensus

regarding a standardized neuro-oncologic imaging protocol,1

reporting of image aspects of glioma (radiophenotype) is less
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standardized. Criteria, as defined by Response Assessment in
Neuro-Oncology (RANO 2.0),2 comprise only limited standards
relying on quantitative measurements dedicated to the follow-up
setting. In a study setting, however, a controlled reporting vocab-
ulary is needed to identify reproducible imaging glioma bio-
markers or generate data input suitable for artificial intelligence
approaches.

Approximately a decade ago, The Cancer Genome Atlas pro-
ject of the National Cancer Institute addressed this problem by
suggesting a controlled vocabulary for glioma imaging called
Visually Accessible Rembrandt (Repository for Molecular Brain
Neoplasia Data) Images (VASARI).3 The VASARI set combines
different MRI features (Online Supplemental Data), such as
enhancement pattern and tumor location. A consensus group
defined the features on the basis of expert opinion and literature.
The VASARI project incorporated standard MRI sequences,
including DWI, but excluded advanced imaging techniques like
PWI. The current set comprises 30 semantic features, 3 of which
apply to postoperative situations. All features are rated on the ba-
sis of scoring systems (Online Supplemental Data).

Numerous studies have applied the VASARI set since its
proposal.4-38 Applications range from human radiologic evalua-
tions using single features5-8 to multivariable machine learning
approaches.21,27-29 Clinical research questions cover glioma sub-
type discrimination13,14,16,17 and noninvasive image-based sur-
vival prediction.7,10,13,22 Various VASARI features were identified
as prognostic factors, including tumor location, involvement of
eloquent brain areas, ependymal or pial invasion, as well as diag-
nostic indicators, such as the definition of the enhancing margin
and the proportion of necrotic or enhancing tumor, in these stud-
ies. However, these applications have never been systematically
evaluated, perhaps explaining why using the VASARI features set
is not recommended by any clinical or scientific guideline.
Because complete feature rating is time-consuming, a critical
analysis identifying the most powerful features and models is piv-
otal for future study designs and potential clinical use. Recent,
however not VASARI-centered, publications indicated pial and

subependymal invasion (features 18 and 19) as negative for sur-
vival.39 A meta-analysis may confirm the hypothesis of features
18 and 19 as particularly promising predictive VASARI features.

This systematic review and meta-analysis aimed to gauge the
performance of the VASARI set for glioma evaluation to identify
a subset of the most diagnostic and prognostic predictive features
to warrant use in trials or even clinically.

MATERIALS AND METHODS
This study was registered in PROSPERO (ID for the published
protocol: CRD42023392548) and was conducted according to
Preferred Reporting Items for Systematic Review and Meta-
Analysis (PRISMA).40 The research question was “What is the
VASARI features’ performance in predicting diagnosis, progres-
sion, and survival in patients with glial tumors?” using the partici-
pants, index tests, and target conditions criteria.41

Data Sources and Screening Step
The search string had 2 components: VASARI and tumor types,
including high-grade and low-grade oligodendroglioma, astrocy-
toma, and glioblastoma. Inclusion criteria were the following: 1)
participants: adult or pediatric patients with glial tumors; 2) inter-
vention/index test: human or automated methods using multi-
parametric conventional MRI as a source for VASARI; 3)
comparison: standard interpretation of images with or without
VASARI; 4) outcomes: prediction of the diagnosis, including his-
tologic tumor grades and certain well-known mutations (isoci-
trate dehydrogenase [IDH], 1p/19q codeletion, telomerase
reverse transcriptase promoter, and O[6]-methylguanine-DNA
methyltransferase methylation status), progression, or survival;
and 5) study design: original articles with a retrospective or pro-
spective design.

Exclusion criteria were the following: 1) studies not per-
formed on living humans; 2) studies with ,10 participants
(considered case series); 3) studies exclusively predicting other
genetic/molecular alterations than indicated in the inclusion

SUMMARY

PREVIOUS LITERATURE: The VASARI feature set for standardized glioma reporting has been applied by numerous studies to
address different research questions. Applications range from human radiologic evaluations by using single features to multivari-
able machine-learning approaches. Clinical research questions encompass glioma subtype discrimination and noninvasive image-
based survival prediction. Prediction of overall survival and IDH mutation status was among the most explored research ques-
tions. Several studies have identified multifocality, ependymal invasion, and enhancing tumor crossing the midline as unfavorable
overall survival predictors. Enhancement quality, proportion of enhancing tumor, proportion of necrosis, and proportion of
edema were identified as the main indicators of IDH mutation status.

KEY FINDINGS: This meta-analysis identified 3 robust VASARI features (multifocality, ependymal invasion, enhancing tumor cross-
ing midline) to predict overall survival. Meta-analysis for IDH-predicting models showed a pooled AUC of 0.82 with considerable
heterogeneity between studies. Combined models, including VASARI features next to clinical, genomics, and radiomics features,
usually outperformed VASARI-only models.

KNOWLEDGE ADVANCEMENT: Future studies should adhere to the original VASARI scoring definitions to minimize between-study
heterogeneity. Given the time-consuming nature of manual extraction, it is crucial to develop automatic extraction technology.
Reducing the feature set to the most promising ones can decrease the workload when radiologist input is required.
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criteria; 4) non-peer-reviewed journals, conference abstracts,
review papers, preprints; and 5) publications not in English.

A database search was performed on September 26, 2023,
using MEDLINE (PubMed), the Web of Science, EMBASE, and
the Cochrane Library. The search protocol is presented as Online
Supplemental Data. One author screened the titles and abstracts
(A.A., 7 years of radiology experience) for inclusion criteria after
excluding duplicates using rayyan software (https://rayyan.ai/
reviews). Additionally, the reference lists of included articles were
screened by title and abstract (hand search). Uncertain cases were
evaluated in consultation with another author (V.C.K., 11 years
of neuroradiology experience).

Data Extraction
To guarantee identical rating standards, we used 5 studies to pilot
the extraction process by 2 authors (A.A., V.C.K.). Two authors
then performed data extraction for the remaining studies (A.A., for
radiologic content, and Y.P., a second-year PhD student in neuro-
science with expertise in statistics). The Online Supplemental Data
list the data-extraction components.

Systematic Review Quality Assessment
The quality of each study was evaluated by 2 authors (A.A., V.C.K.)
using the modified Quality Assessment of Diagnostic Accuracy
Studies-2 (QUADAS-2; https://www.bristol.ac.uk/population-
health-sciences/projects/quadas/quadas-2/) tool,42 encompass-
ing 5 domains for assessing the risk of bias and 3 domains for
evaluating applicability concerns (Online Supplemental Data).
Discrepancies were resolved by consensus. Five studies, also used
to pilot data extraction, were piloted for quality control assess-
ment to identify systematic discrepancies in QUADAS-2 tool use.

Meta-Analysis and Statistics
Studies examining patient cohorts with a similar tumor type, sta-
tistical models with comparable inputs, and reported identical
end points of interest were grouped. The availability of $5 stud-
ies with most QUADAS-2 categories scoring low or medium risk
of bias was the liberal minimum for a meta-analysis. Otherwise, a
narrative synthesis summarized the findings. If studies with over-
lapping cohorts were available, the total sample size was deter-
mined by including the largest cohort from overlapping studies
(Online Supplemental Data). In case of missing data, other
reported metrics (standard errors, sample sizes)43 served to derive
parameters when feasible. Alternatively, corresponding authors
were contacted and requested to provide supplementary informa-
tion. Meta-analyses were conducted in R (Version 4.3.0.; http://
www.r-project.org/) using generic inverse-variance and random
effect models to account for methodologic between-study hetero-
geneity. To mitigate interpretability concerns arising from poten-
tial collinearity within VASARI data sets, the meta-analysis of
hazard ratios (HRs) used metrics derived solely from univariable
Cox proportional models. Heterogeneity was assessed with
Higgins I2 statistics, considering values above 50% as significant
heterogeneity. All tests were 2-sided. Because this is a meta-analy-
sis, no correction was done for multiple testing. Forest plots were
used to visualize results, complemented by pooled statistics with
corresponding confidence and prediction intervals. The best-

performing VASARI model was chosen if .1 model had been
tested. The criteria for performance of meta-regression, sensitiv-
ity analysis, and nonreporting bias analysis were the availability
of at least 10 studies to ensure the reliability of conclusions drawn
from these analyses according to the Cochrane Handbook for
Systematic Reviews of Interventions.44

RESULTS
Overview
Figure 1 visualizes the literature selection. Thirty-five studies (29–
335 patients) fulfilled the inclusion criteria (Online Supplemental
Data). Eleven studies used The Cancer Imaging Archive cohort,
possibly covering overlapping cohorts. The overlap-corrected
number of recruited patients was 3304 (Online Supplemental
Data). The overall risk-of-bias scores were medium (n¼ 33) and
low (n¼ 2; Online Supplemental Data). Only 2 studies applied the
2021 World Health Organization Classification of Central
Nervous System Tumors (WHO CNS 5)38 or reported IDH wild-
type glioblastoma only.16 The remaining 33 studies explicitly used
the 2016 or 2007 WHO CNS classifications (n¼ 519,22,26,27,30) or
did not mention it (n¼ 284-1517,18,20,21,23–25,28,29,31-37), resulting in
applicability uncertainties regarding patient selection. One study38

was vague in the use of the reference standard.

Survival Prediction
Fifteen4,5,7-11,15,18,21,24,27,29,34,35 of 18 overall survival (OS)-pre-
dicting studies exclusively involved glioblastomas. Results for
univariable analyses indicating the per-feature performance of
the VASARI set are shown in Fig 2A. Eleven glioblastoma studies
found a significant association between OS and different
VASARI features.5,7-10,15,18,24,29,34,35 Comparing single-data-
type models with only 1 input datum type (e.g., clinical, patho-
logic, FET-PET/CT, or genomics data), VASARI-based models
outperformed others in 2 studies.21,27 However, a clinical model
(age and Karnofsky performance status) slightly outperformed a
VASARI-only model in the study by Peeken et al18 (C-indices ¼
0.64; 95% CI, 0.55–0.72 versus 0.66; 95% CI, 0.58–0.73).
Compared with VASARI-only models, several studies9,15,18,21,27

stressed the superiority of predictive models trained on com-
bined features, including VASARI plus clinical, genomics, treat-
ment, and/or radiomics features. Peeken et al18 concluded that a
combined model (VASARI, clinical, age, and Karnofsky per-
formance status) and pathologic features (O[6]-methylguanine-
DNA methyltransferase methylation) performed better than the
VASARI-only model (C-indices ¼ 0.72; 95% CI, 0.61–0.80 ver-
sus 0.64; 95% CI, 0.55-0.72). Mazurowski et al4 showed the
added value of VASARI features (VASARI1clinical: area under
the receiver operating characteristic curve [AUC] 0.81; 95% CI,
0.71–0.90; C-index¼ 0.69; 95% CI, 0.63–0.75) compared with
clinical-only, including age, sex, and Karnofsky performance
status (AUC ¼ 0.62; 95% CI, 0.49–0.74; C-index 0.58; 95% CI,
0.50–0.66; both P, .01).

Three OS-predicting studies recruited grade 2 and 3 gliomas
(Fig 2A). Zhou et al13 found a significant association between OS
and 10 VASARI features in a univariable analysis of which only 1
feature, definition of the nonenhancing margin, was significant in
multivariable analyses. They demonstrated that a well-defined
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FIG 1. PRISMA flow chart describing the literature-selection process.

FIG 2. The association between different VASARI features and OS (A), progression-free survival (B), and IDHmutation status (C) listed per study
involving glioblastoma and grades 1–4 glioma cohorts. Green indicates tested and significant feature; red, tested and nonsignificant feature or
feature with statistical results not provided; gray, features not tested. The list of VASARI features and their detailed descriptions, along with re-
spective scoring systems for each feature are in the Online Supplemental Data.
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nonenhancing margin correlated with longer OS than an ill-
defined nonenhancing margin. Lee et al22 showed that the per-
formance of clinical features (age, Karnofsky performance status,
and extent of resection) plus molecular subtype (IDH mutation
and 1p/19q codeletion status) model increased when extending it
with VASARI features (C-indices ¼ 0.84; 95% CI, 0.75–0.90 ver-
sus 0.91; 95% CI, 0.86–0.96). Similar results were found by Park
et al,26 improving the integral AUC (initially 0.74; 95% CI, 0.69–
0.81) of the clinical model (age, Karnofsky performance status,
extent of resection, and histologic grade) by adding VASARI
features (LASSO model 0.77; https://tullo.ch/articles/lasso-
estimator; 95% CI, 0.74–0.85; elastic net model ¼ 0.78; 95% CI,
0.74-0.85).

Glioblastoma was included in 5 of 7 progression-free survival
predicting studies, with 2 studies10,18 showing a significant associ-
ation with single VASARI features (Fig 2B). Peeken et al21 eval-
uated the performance of a combined model (VASARI plus
clinical age, sex and Karnofsky performance status) plus patho-
logic (O[6]-methylguanine-DNA methyltransferase methylation,
IDH mutation status, and Ki 67 proliferation index) showing
superior performance compared with single-data-type models
including their VASARI-only model (C-index validation set ¼
0.68; 95% CI, 0.57–0.78 versus 0.61; 95% CI, 0.50-0.72, P ¼ .014,
respectively). In that study, VASARI features showed the highest
performance in the validation set among single-data-type models
(C-index ¼ 0.61; 95% CI, 0.50-0.72). They were also the domi-
nant variable in the combined model (VASARI plus clinical plus
pathologic features).

Two of 7 progression-free survival–predicting studies involved
grade 2 and 313 or grade 3 gliomas22 (Fig 2B). Lee et al22 showed
that adding VASARI features increased the performance of the
combined model (clinical plus molecular) with C-indices ¼ 0.79
(95% CI, 0.71-0.85) versus 0.84 (95% CI, 0.79–0.91).

IDH Mutation Status Prediction
Reported tumor entities were glioblastoma5,14,29,30 and grade 2 to 4
gliomas13,17,20,25,28,32,36,37 (Online Supplemental Data). Individually
evaluated VASARI features are shown in Fig 2C. Five stud-
ies5,13,28,29,32 found no association between IDH mutation and
individual VASARI features. Among other studies, the main
features that were more consistently identified as significant
predictors of IDH mutation status were enhancement quality
(feature 4),17,20,30,36,37 proportion of enhancing tumor (feature
5),17,20,30,37 proportion of necrosis (feature 7),17,30,36,37 and
proportion of edema (feature 14).14,17,20,36 There was a nega-
tive correlation between these features and the presence of an
IDHmutation.

A higher performance of combined models was shown in sev-
eral studies.13,20,28,32 Su et al20 showed that a VASARI model
(using feature 6: proportion of nonenhancing tumor) outper-
formed the diffusion texture analysis model with an AUC of 0.92
(95% CI, 0.80–0.98 versus 0.72; 95% CI, 0.57-0.85). The propor-
tion of nonenhancing tumor was significantly higher in IDH-mu-
tant high-grade gliomas compared with IDH wild-type high-
grade gliomas. However, the combined model (proportion of
nonenhancing tumor plus ADC entropy) was the best-performing
model (AUC ¼ 0.95; 95% CI, 0.85–0.99). Sun et al32 determined

an imaging model (VASARI features plus the T2 FLAIR mis-
match sign) as the best single data-type model (AUC ¼ 0.75;
95% CI, 0.60–0.89) in the test set.

Other Studies
Six studies predicted histologic tumor grade12,13,19,33,37,38 or fur-
ther mutations (1p/19q codeletion, n¼ 3;13,17,32 O[6]-methylgua-
nine-DNA methyltransferase methylation, n¼ 2;16,29 telomerase
reverse transcriptase promoter, n¼ 316,23,30) or the presence of
true progression (n¼ 3),6,13,31 respectively. The characteristics of
these studies are summarized in the Online Supplemental Data.

Meta-Analysis
Survival Prediction. The meta-analysis of individual VASARI fea-
tures to predict OS in glioblastoma studies identified 8 features
with a HR above 1.25 (Fig 3; HR range ¼ 1.32–2.08) and 7 equal
to or below it (Fig 4; HR range ¼ 0.89–1.25). The HR cutoff of
1.25 was arbitrarily defined for visual representation. Enhancing
tumor crossing the midline (feature 23, pooled HR ¼ 2.08; 95%
CI, 1.35–3.18), multifocality (feature 9, pooled HR ¼ 1.80; 95%
CI, 1.21–2.67), and ependymal invasion (feature 19, pooled HR ¼
1.73; 95% CI, 1.45–2.05) were the strongest predictors.

Figure 5 gives a detailed overview of HRs for individual
VASARI features, including those features that were not selected
for the meta-analysis, lacking the mandatory minimum number
of 5 articles. Meta-regressions were not possible due to a lack of
homogeneous articles.

Meta-analysis of progression-free survival–predicting studies
could not be conducted because only 2 studies10,18 met the neces-
sary prerequisites for this analysis. An overview of HRs for indi-
vidual VASARI features used in these 2 studies is provided in the
Online Supplemental Data.

IDH Status Prediction
IDH status studies displayed a very heterogeneous design regard-
ing prediction models and VASARI features (Fig 6). None of
these studies used the same feature combination, allowing only a
general approach (Are multivariable VASARI feature models
powerful in predicting IDH status?). These studies13,17,20,25,28,32,37

included grade 1-4 gliomas. The AUC of these models was good,
ranging from 0.73 to 0.92 (Fig 6). Meta-regressions were not pos-
sible due to a lack of homogeneous articles.

DISCUSSION
This study shows that VASARI features have primarily been used
to predict OS and IDH mutation status. A meta-analysis of OS-
predicting studies revealed that the 3 most robust single features
in determining OS were multifocality (pooled HR ¼ 1.80), epen-
dymal invasion (pooled HR ¼ 1.73), and enhancing tumor cross-
ing the midline (pooled HR ¼ 2.08), confirming our hypothesis
that some features are stronger predictors than others. In a meta-
analysis of IDHmutation–predicting VASARI models that incor-
porated different combinations of single VASARI features, the
pooled AUC was 0.82, with considerable variability among single
studies. Combined models incorporating different nonimaging
data types outperformed single-data-type models, including
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VASARI-only models, in determining survival, mutation status,
or grades of glial tumors.

The survival rates of patients with gliomas remain low despite
an aggressive treatment strategy. This outcome is likely the main
reason why prognosis prediction was found to be the primary
objective of the included studies. Multifocal tumor distribution
(feature 9) and ependymal invasion (feature 19) were among the
most unfavorable OS predictors,10,15,18,29 which could be priori-
tized in studies when evaluating all 30 features is impractical.
Thomas et al45 also demonstrated a significant correlation between
multiple lesions and other negative prognostic indicators, such as
a low Karnofsky performance score and resection volume. Lim et
al46 found that newly diagnosed glioblastoma with ependymal
invasion and cortical involvement were more likely to have multi-
focal distribution and noncontiguous tumor recurrence with the
initial lesion. The midline crossing enhancing tumor (feature 23)
had the highest pooled HR of 2.08 and was the strongest OS-limit-
ing predictor. Wangaryattawanich et al10 observed a 9.2-month
OS difference (4.8 versus 14months, P ¼ .001) and a 4.2-month
progression-free survival difference (2.4 versus 6.6 months, P ,

.001) in cases separated by whether the enhancing tumor was
crossing the midline (feature 23); similar results were shown by
Colen et al,8 with mean OS of 5.9 versus 14.3months (P, .001).

According to the 2021 WHO CNS classification, the IDH
mutation status is crucial to classifying adult-type diffuse glio-
mas.47 The term “IDH-mutant glioblastoma” has been changed to
“IDH-mutant astrocytoma” requiring IDH wild-type status for
glioblastomas. Our study identified 4 VASARI features (enhance-
ment quality,17,20,30,36,37 proportion of enhancing tumor,17,20,30,37

proportion of necrosis,17,30,36,37 and proportion of edema14,17,20,36)
as the main indicators of IDH mutation status. However, it was
not possible to quantitatively evaluate the impact of these features
on IDH status prediction due to the limited number of studies
and their methodologic differences.

Combined feature models, including various variables, such
as clinical, imaging/VASARI, radiomics, genomics, or pathologic
features, predicting OS, or other objectives, outperformed single-
data-type models, showing the importance of a multidisciplinary
approach in decision-making. The input used for these models
varied among studies. However, certain factors were frequently
chosen, such as age and Karnofsky performance score for clinical
models,4,18,22,26 IDH mutation, 1p/19q codeletion, and O(6)-
methylguanine-DNA methyltransferase or histologic grade18,21,22

for pathologic/genomics models, and shape or texture features
for radiomics models.24,31,32,34 Nevertheless, the methodologic
heterogeneity among those studies, such as different sample sizes

FIG 3. Meta-analysis of OS-predicting studies with a pooled HR .1.25. Note that the list of VASARI features and their detailed descriptions,
along with respective scoring systems for each feature are provided in Online Supplemental Data. f indicates VASARI feature; f3, eloquent brain;
f9, multifocality; f11, thickness of enhancing margin; f13, definition of nonenhancing margin; f19, ependymal invasion; f21, deep white matter inva-
sion; f23, enhancing tumor crosses the midline; f24, satellites.
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and VASARI features or differently structured multivariable
models, lowers evidence and precludes translation from the
research field to clinical application.

On the basis of the results of our study, several recommenda-
tions can be made to improve the generalizability of glioma
research using VASARI features. The number and choice of
applied VASARI features differed among studies, and some
VASARI features were independently modified from their origi-
nal definition in different studies. The postoperative features 26–
28 and feature 15 (edema crossing the midline) were rarely used,
making their significance challenging to estimate. Some studies
modified VASARI features (using features 4–7, 14, and 17) from
the original scoring system, hindering generalizability. Future
studies should adhere to the original VASARI scoring system
and, if feasible, evaluate all VASARI features to find relevant fea-
tures for a particular objective. Because the manual extraction of
VASARI features is time-consuming. Therefore, automatic
extraction technology should be developed, which may also help
minimize the heterogeneity described. When a radiologist’s input
is needed, reducing the entire feature set to only the most promis-
ing features, such as multifocality, ependymal invasion, and
enhancing tumor crossing the midline for overall survival predic-
tion, as identified in this meta-analysis, may alleviate the

workload. It lies in the nature of the exhaustive VASARI feature
set to include collinearity among several features and features
that leave a higher chance of interrater disagreement. A reduction
of features for research purposes according to reproducibility and
predictive value appears to be the proximate consequence.

Our study has several limitations. Studies were heterogeneous
in design, and some had a small sample size, with a mean of 124
cases. Some studies used The Cancer Imaging Archive database,
leading to partially overlapping cohorts, which we attempted to
correct. The meta-analysis was limited due to a high study hetero-
geneity. Metaregression, sensitivity analysis, and nonreporting
bias analysis could not be performed due to the limited number
of studies and the diversity in reported predictive models and
used feature sets. Studies reporting the performance of VASARI-
based OS-predicting models had substantial methodologic heter-
ogeneity, because each study used a different set of VASARI fea-
tures. Model end points were also heterogeneous. Most of the
studies reported a regression model predicting a continuous OS
parameter (in days or months); some used classification with dif-
ferent thresholds to predict a more-or-less favorable OS outcome.
Other reasons for heterogeneity were using different statistical
models (random survival forest, Cox proportional regression, or
clustering analysis) and inconsistent use of VASARI feature-

FIG 4. Meta-analysis of OS-predicting studies with a pooled HR # 1.25. Note that the list of VASARI features and their detailed descrip-
tions, along with respective scoring systems for each feature are provided in the Online Supplemental Data. f indicates VASARI feature;
f4, enhancement quality; f8, cysts; f10, T1/FLAIR ratio; f16, hemorrhage; f18,pial invasion; f20, cortical involvement; f22, nonenhancing tumor
crosses midline.
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selection methods for single-data-type models. Statistical data,
needed for a meta-analysis, such as confidence intervals or
standard errors, were inconsistently reported. Although we
attempted a meta-analysis for IDH-predictive VASARI models,
these models used different combinations of VASARI features,
making it difficult to establish an added value of the VASARI
model. Additionally, most studies did not provide molecular
diagnostics for glioma grading. Although expected for studies
published before 2021, this issue was one of the main reasons

most studies were assigned the “medium” QUADAS-2 category
for risk-of-bias assessment with applicability concerns in patient
selection.

CONCLUSIONS
This meta-analysis reveals that certain features in the VASARI set
have promise in predicting OS and IDH mutation status.
However, the added value of VASARI for predicting tumor grade,
true progression, and the status of other mutations remains

FIG 5. Color table describing HRs of single VASARI features in OS-predicting studies using univariable Cox proportional models. Thresholds
of single HRs were defined arbitrarily, and each color represents a different range: blue, HR ,0.75; green, HR 0.75 to ,0.85; light red, HR
0.85–1.25; orange, HR .1.25–2.5; dark red, HR .2.5. Values highlighted in bold indicate HRs with statistical significance (P value, .05). The list
of VASARI features and their detailed descriptions, along with respective scoring systems for each feature, are provided in the Online
Supplemental Data.
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uncertain, mainly due to insufficiently comparable studies. The
discriminatory power of individual VASARI features differs con-
siderably. A core set of promising features, as emerged from this
meta-analysis, may be worth prioritizing for scientific evaluation
and considered in clinical use, to avoid using the exhaustive list
of VASARI features, which is too time-consuming for daily
practice.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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