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 ABSTRACT 

BACKGROUND AND PURPOSE: Intracranial steno-occlusive lesions are responsible for acute ischemic stroke. However, the clinical 

benefits of artificial intelligence-based methods for detecting pathologic lesions in intracranial arteries have not been evaluated. 

We aimed to validate the clinical utility of an artificial intelligence model for detecting steno-occlusive lesions in the intracranial 

arteries. 

MATERIALS AND METHODS: Overall, 138 TOF-MRA images were collected from two institutions, which served as internal (n = 62) 

and external (n = 76) test sets, respectively. Each study was reviewed by five radiologists (two neuroradiologists and three radiology 

residents) to compare the usage and non-usage of our proposed artificial intelligence model for TOF-MRA interpretation. They 

identified the steno-occlusive lesions and recorded their reading time. Observer performance was assessed using the area under the 

Jackknife free-response receiver operating characteristic curve and reading time for comparison. 

RESULTS: The average area under the Jackknife free-response receiver operating characteristic curve for the five radiologists 

demonstrated an improvement from 0.70 without artificial intelligence to 0.76 with artificial intelligence (P = .027). Notably, this 

improvement was most pronounced among the three radiology residents, whose performance metrics increased from 0.68 to 0.76 (P 

= .002). Despite an increased reading time upon using artificial intelligence, there was no significant change among the readings by 

radiology residents. Moreover, the use of artificial intelligence resulted in improved inter-observer agreement among the reviewers 

(the intraclass correlation coefficient increased from 0.734 to 0.752). 

CONCLUSIONS: Our proposed artificial intelligence model offers a supportive tool for radiologists, potentially enhancing the accuracy 

of detecting intracranial steno-occlusion lesions on TOF-MRA. Less-experienced readers may benefit the most from this model. 

 ABBREVIATIONS: AI = Artificial intelligence; AUC = Area under the receiver operating characteristic curve; AUFROC = Area under the 

Jackknife free-response receiver operating characteristic curve; DL = Deep learning; ICC = Intraclass correlation coefficient; IRB = 

Institutional Review Boards; JAFROC = Jackknife free-response receiver operating characteristic. 
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 SUMMARY SECTION 

PREVIOUS LITERATURE: Previous studies have utilized deep learning algorithms to detect intracranial steno-occlusive lesions, 

leveraging semi- or fully automated techniques and image reconstruction methods. Despite advancements, accurate detection and 

localization remain challenging due to the complex nature of intracranial arteries and limitations in existing methods, such as the 

time-consuming extraction of multiple arteries and the inability to accurately measure the width of occluded lesions. Our recently 
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proposed approach integrates classification and localization within established medical imaging networks, aiming to overcome these 

challenges by simultaneously segmenting blood vessels and detecting lesions without extensive image reconstruction or patch-based 

analysis. 

KEY FINDINGS: The use of our artificial intelligence model improved the detection accuracy of intracranial steno-occlusive lesions 

on TOF-MRA, with an improvement from 0.70 to 0.76 in the AUFROC for radiologists. Radiology residents, in particular, benefited 

significantly from AI assistance, highlighting its potential to enhance diagnostic accuracy. 

KNOWLEDGE ADVANCEMENT: Our study advances knowledge by demonstrating the clinical utility of an AI model in improving 

radiologists' accuracy in detecting intracranial steno-occlusive lesions. This suggests that AI can be a valuable support tool, especially 

for less-experienced readers, potentially increasing diagnostic performance and contributing to better patient outcomes. 

 9 

INTRODUCTION 10 

Acute ischemic stroke is the second leading cause of death and a major cause of disability worldwide.1, 2 One of the primary underlying 11 

factors responsible for ischemic stroke is intracranial steno-occlusive lesions.3-5 Thus, the prompt and precise identification of steno-12 

occlusive lesions is of paramount importance in diagnosing patients with ischemic stroke and in selecting appropriate therapeutic 13 

strategies.6, 7 14 

TOF-MRA is one commonly used non-invasive imaging technique for evaluating intracranial arteries.6 However, accurate detection 15 

and the precise localization of steno-occlusive lesions present a challenge because of the intricate shapes of intracranial arteries. Meticulous 16 

evaluation requires considerable time and effort, which leads to an increased workload and the subsequent risk of detection failure.  17 

Methods using deep learning (DL) algorithms have emerged to detect steno-occlusive lesions automatically in intracranial arteries.6, 8-18 
10 Previous approaches have utilized semi- or fully automated labeling and techniques such as straightened multi-planar reformatted (MPR) 19 

images, along with extracting blood vessels in advance of measuring the width, aiming to detect stenoses. Despite advancements, the 20 

detection of steno-occlusive lesions in intracranial arteries remains challenging due to the time-consuming nature of extracting multiple 21 

arteries with MPR, loss of vascular bifurcation, and inability to measure the width of occluded lesions even with pre-extracted blood 22 

vessels. Our novel approach leverages multi-task learning to segment blood vessels and detect lesions simultaneously, without the need 23 

for extensive image reconstruction or patch-based analysis.10  This method aids in enhancing lesion detection efficiency by integrating 24 

classification and localization modules, thus offering a comprehensive solution to the limitations identified in prior studies. However, the 25 

clinical benefits of such artificial intelligence (AI) methods have not yet been evaluated sufficiently. 26 

Therefore, we aimed to investigate the potential benefits and limitations of an AI-based model to aid radiologists in detecting steno-27 

occlusive lesions. Specifically, we assessed the model’s lesion detection accuracy and its impact on interpretation time compared to those 28 

of conventional methods. 29 

 30 

MATERIALS AND METHODS 31 

This multicenter retrospective study was approved by the Institutional Review Boards (IRBs) of the Seoul National University Bundang 32 

Hospital (SNUBH) and Seoul St. Mary’s Hospital (SSMH), both of which waived the requirement for informed consent (IRB Nos.: B-33 

2204-753-106 and KC20RIDI0197, respectively). 34 

Study Cohort 35 

Sixty-two individuals were collected from the SNUBH database between October 2014 and August 2019 as an internal test set, 36 

including 30 with intracranial stenosis or occlusion (stenosis group) and 32 without steno-occlusive lesions (healthy group). The inclusion 37 

criteria for the stenosis group were as follows: 1) age >18 years, 2) TOF-MRA and DSA performance within 1 month’s interval, and 3) 38 

moderate or severe degree stenosis according to the DSA report (>50% stenosis using the Warfarin vs. Aspirin for Symptomatic 39 

Intracranial Disease method as follows: % stenosis = (1-[Dstenosis/Dnormal]) × 100). The inclusion criteria for the healthy group were as 40 

follows: 1) age >18 years, 2) TOF-MRA performance, and 3) normal MRA findings according to the radiologic report.  41 

In addition, 76 individuals were collected as an external test set from the SSMH database from January 2016 to December 2019, 42 

comprising 30 with intracranial stenosis or occlusion (stenosis group) and 46 without steno-occlusive lesions (healthy group). The inclusion 43 

criteria for the SSMH cohort were as follows: 1) age >18 years and 2) TOF-MRA results.  44 

Patients in the stenosis group were randomly selected. For the healthy group, the patients were randomly chosen among individuals 45 

who underwent brain MRI as part of health screenings and received normal MRA reports. In total, we collected 138 individuals from two 46 

institutions, with 60 in the stenosis group and 78 in the healthy group.  47 

TOF-MRA Acquisition 48 

For SNUBH, three-dimensional TOF-MRA examinations were performed using a 1.5-T (Amira, Siemens Healthcare, Erlangen, 49 

Germany; or Intera, Philips Healthcare, Best, Netherlands) or 3.0-T scanner (Achieva or Ingenia, Philips Healthcare). The scan parameters 50 

were as follows: repetition time (TR), 20 ms to 27 ms; echo time (TE), 3.45 ms to 7.15 ms; flip angle (FA), 18° to 25°; field of view 51 

(FOV), 132 mm to 230 mm; section thickness, 0.5 mm to 1.6 mm; matrix, 256 to 704×163 to 360. 52 
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For SSMH, 3D TOF-MRA was performed using a 1.5-T (Avanto, Siemens Healthcare; Achieva, Philips Healthcare) or 3.0-T (Verio 53 

or Vida, Siemens Healthcare; Ingenia, Philips Healthcare) scanner. The scan parameters were as follows: TR, 17.9 ms to 25 ms; TE, 3.5 54 

ms to 7 ms; FA, 18° to 23°; FOV, 170 mm to 240 mm; section thickness, 0.4 mm to 1.2 mm; matrix, 384 to 512×214 to 331. 55 

AI Model 56 

We used a DL algorithm to detect steno-occlusive lesions using traces of intracranial arteries (Figure 1). Our model utilizes an image 57 

segmentation model such as U-Net11 as a backbone, augmented by additional modules to detect steno-occlusive lesions. Specifically, we 58 

designed a backbone model termed Spider U-Net, which is a modified version of U-Net that adds a long short-term memory network. The 59 

vessel segmentation performance of Spider U-Net outperformed that of U-Net.12 A multitask learning method based on Spider U-Net 60 

demonstrated that the detection performance of steno-occlusive lesions while extracting blood vessels was higher than that while detecting 61 

steno-occlusive lesions without extracting blood vessels.10 The model used a training set from SNUBH similar to that used previously and 62 

demonstrated superior overall detection performance compared to other models.10 Details of the model have been published elsewhere.10, 63 
12 Code details can be accessed through the following link: https://github.com/djchoi1742/MRA_ICAD. 64 

 65 

 66 

FIG 1. Representative image of our proposed model. (a) Initial TOF-MRA shows multiple steno-occlusive lesions, including left 67 

middle cerebral artery occlusion. (b) Our proposed artificial intelligence (AI) model identified steno-occlusive lesions, shown as 68 

red and yellow markings on the heat map.  69 

 70 

 71 

Image Interpretation and Observer Performance Study 72 

A neuroradiologist (L.S., with 13 years of clinical experience), a board-certified radiologist (H.L., with 5 years of clinical experience), 73 

and a neurosurgeon (T.K., with 13 years of clinical experience) thoroughly reviewed all TOF-MRA examinations and accessible DSA 74 

studies, establishing a reference standard by consensus for the number and location of steno-occlusive lesions. The reference standards for 75 

steno-occlusive lesion detection were confined to the distal ICA, A1-2 segments of ACA, M1-2 segments of MCA, P1-2 segments of PCA, 76 

V4 segments of the vertebral artery, and the basilar artery. 77 

Five radiologists, including two neuroradiologists (S.H.B. and S.J.C., with 10 and 9 years of experience in neuroradiology, respectively) 78 

and three radiology residents (J.H.J., H.C., and H.U.C., with 4, 3, and 3 years of clinical experience, respectively), participated as observers. 79 

The radiologists who determined the reference standard did not participate. Each reviewer conducted two separate assessments of all TOF-80 

MRA studies (n = 138) across two sessions. The studies were randomly divided into two blocks (Block A and Block B, each containing 81 

69 studies). During the first session, studies in Block A were reviewed with AI assistance, and those in Block B were reviewed without 82 

AI. To mitigate bias and memory recall effects, a compulsory 4-week washout period was placed between the sessions. After this interval, 83 

the review conditions were swapped: during the second session, studies initially reviewed with AI (Block A) were assessed without AI, 84 

and vice versa for Block B (Figure 2). The reviewers were blinded to the patient information and reference standards. They were instructed 85 

https://github.com/djchoi1742/MRA_ICAD
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to assess whether there is stenosis or occlusion in the intracranial artery using a commercial picture archiving and communication system 86 

(PACS) (RadiAnt viewer, Medixant, Poland). Upon conducting an AI-assisted review, the heat map generated by the AI model was 87 

superimposed onto the maximum intensity projection (MIP) TOF-MRA images. The heatmap images were reviewed using an additional 88 

viewer (Windows Photo Viewer, Microsoft, Redmond, WA, USA). The participants were instructed to mark a stenotic or occlusive lesion 89 

by recording the coordinates of the central portion of the lesion. The confidence rating for each lesion ranged from 1 (very uncertain) to 5 90 

(absolutely certain). The overall reading time was recorded for each case. During the review, they were encouraged to evaluate both the 91 

source and MIP TOF-MRA images.  92 

 93 

 94 

FIG 2. A diagram illustrating the observer performance study. Each observer conducted two separate TOF-MRA reviews 95 

across two reading sessions; one without AI and another with AI. There was a washout period of 4 weeks or longer between 96 

these sessions.  97 

 98 

The observers’ performances were stratified into neuroradiologist and radiology resident groups and were combined eventually. An 99 

overlap between the lesions marked by the observer (indicated by the coordinates) and reference standard (annotated across the entire 100 

length) was classified as a true-positive finding; else, it was classified as a false-positive finding. 101 

Statistical Analysis 102 

We performed a Jackknife free-response receiver operating characteristic (JAFROC) analysis to evaluate the reviewers’ localization 103 

performance on a per-lesion basis.13 The area under the JAFROC (AUFROC) indicates the probability that the lesion rating marked in the 104 

diseased case is greater than the highest rating in the healthy case. We calculated the AUFROC according to AI use and performed a 105 

comparison test using the Dorfman-Berbaum-Metz method.14 Comparisons based on AI use were calculated as fixed-reader random cases; 106 

for pooled reviewers, they were calculated as random-reader random cases. We computed the area under the receiver operating 107 

characteristic curve (AUC) to measure the performance on a per-patient basis. We calculated the average of the reviewers’ ratings per 108 

patient. Similar to JAFROC, we performed a comparison test of the AUC using identical method for each reviewer and pooled reviewers. 109 

We calculated the sensitivity and specificity to measure the diagnostic accuracy of the reviewers. The sensitivity was calculated for 110 

each lesion and per patient. Sensitivity per lesion was calculated under a cut-off of the sum of the 1 – false-positive fraction, and the lesion 111 

localization fraction was maximized. The sensitivity per patient was calculated using an optimal cut-off to maximize Youden’s J statistic.15 112 

Specificity was calculated for each patient.  113 

We used the intraclass correlation coefficient (ICC)16 to measure interobserver agreement among the reviewers. The ICC values < 0.5, 114 

0.5 to 0.75, 0.75 to 0.9, or ≥ 0.9 indicated poor, moderate, good, or excellent agreement, respectively.17 We calculated the ICC based on 115 

AI use. All statistical analyses were performed using the R statistical software version 3.6.3 (The R Foundation for Statistical Computing, 116 

Vienna, Austria). Statistical significance was set at P < 0.05. 117 



 Copyright 2023 by American Society of Neuroradiology. 

 

5 

 

 

 118 

RESULTS 119 

Patients 120 

Table 1 summarizes the demographic and lesion characteristics of the study cohort. The median age was 58 years (range, 28–84 years), 121 

and the male-to-female ratio was 1:1. Sixty patients in the stenosis group had 115 steno-occlusive lesions (1.92 lesions per patient). In the 122 

internal test set, steno-occlusive lesions were caused by atherosclerosis (n = 26), Moyamoya disease (n = 3), and dissection (n = 1), and in 123 

the external test set, by atherosclerosis (n = 27) and Moyamoya disease (n = 3). The patients predominantly had a single lesion, accounting 124 

for 55% of the cases (33/60). The lesion distribution did not differ between the right and left sides (51 vs. 61, P = .345). We recorded 91 125 

(79.1%) and 24 (20.9%) lesions in the anterior and posterior circulations, respectively. In the anterior circulation, they were predominantly 126 

located in the middle cerebral artery, accounting for 53.8% (49/91) of the total lesions. No significant difference was observed in the 127 

patient ratios of 1.5T (n = 12) compared to 3T (n = 48) between the two test sets (P = 0.748).  128 

Observer Performance Assessments 129 

Table 2 summarizes results of the per-lesion and per-patient analyses. In the per-lesion analysis, AI-assisted review exhibited a higher 130 

pooled AUFROC (0.76; 95% CI, 0.67, 0.85) than non-AI-assisted review (0.70; 95% CI: 0.56, 0.81) (P = .027). The pooled AUFROC for 131 

all residents increased from 0.68 (95% CI: 0.56, 0.77) to 0.76 (95% CI: 0.67, 0.85) (P = .002), whereas that for all neuroradiologists did 132 

not demonstrate a statistically significant increase. In terms of per-patient analysis, the AUC for all reviewers improved marginally, but 133 

did not reach statistical significance. Figure 3 illustrates the pooled JAFROC curves for all reviewers, neuroradiologists, and radiology 134 

residents. 135 

 136 

 137 

FIG 3. Pooled Jackknife free-response receiver operating characteristic (JAFROC) curves of all reviewers (a), 138 

neuroradiologists (b), and radiology residents (c). With AI, the area under the pooled JAFROC (AUFROC) for all reviewers 139 

improved significantly from 0.70 to 0.76 (P = .027). Similarly, the use of AI improved AUFROC for radiology residents from 140 

0.68 to 0.76 (P = .002). The AUFROC for neuroradiologists did not show statistical difference between the results without 141 

and with AI. 142 

 143 

Table 3 presents the results in the internal (SNUBH) and external (SSMH) test sets. Notably, all resident groups in both test sets exhibit 144 

significant differences between AUFROCs with and without AI. From a lesion-based perspective, the sensitivity of the four reviewers 145 

(Reviewers 2, 3, 4, and 5) improved upon using AI (Table 4). However, we observed a marginal reduction in the sensitivity reported by 146 

Reviewer 1 (with AI: 80.9% vs. without AI: 80.0%). Supplementary Table 1 presents a comparison of the lesion detection sensitivity with 147 

and without AI, based on the lesion number and circulation type. Overall, AI use led to a marginal improvement in sensitivity across the 148 

subgroups. Notably, with AI-assistance, an increased number of lesions correlated with a greater increase in sensitivity. For example, in 149 

cases with more than two lesions, the sensitivity improved from 62.8% to 73.7% with AI. Similar trends were observed in both the anterior 150 

and posterior circulation groups. The interobserver agreement among the reviewers was increased from 0.734 (95% CI: 0.670, 0.792) 151 

without AI to 0.752 (95% CI: 0.693, 0.805) with AI (Supplementary Table 2). 152 

The average reading time for all five reviewers was longer in AI readings than in non-AI readings (71.8 ± 37.0 s with AI vs. 63.5 ± 153 

31.7 s without AI, P = .044). Specifically, AI use increased the reading time for neuroradiologists (45.4 ± 19.5 s with AI vs. 37.6 ± 16.5 s 154 

without AI, P <.001). However, the reading time for radiology residents did not demonstrate a statistically significant difference (89.5 ± 155 

49.9 s with AI vs. 80.7 ± 43.0 s without AI, P = .118) (Table 5).  156 
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 157 

DISCUSSION 158 

In this study, we assessed the impact of AI on observer performance in detecting steno-occlusive lesions in the intracranial arteries using 159 

data from two separate institutions. We found that the pooled AUFROC for the five radiologists demonstrated improvement, increasing 160 

from 0.70 without AI to 0.76 with AI (P = .027). This improvement was particularly pronounced among radiology residents (AUFROC 161 

improved from 0.675 to 0.763, P=.002). For the neuroradiologists, there was a trend toward improvement with the AUFROC increasing 162 

from 0.726 to 0.750; however, this change was not statistically significant (P > .05). The average reading time of the five reviewers was 163 

slightly longer when using AI assistance than that without AI. However, this difference was not statistically significant when the analysis 164 

was limited to radiology residents. 165 

The Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis trial suggested that TOF-MRA for evaluating intracranial 166 

artery stenosis has a relatively lower positive predictive value than DSA.18 In line with a previous study, our findings demonstrated low 167 

sensitivity of observers without AI-assistance in detecting intracranial stenosis. DSA is the gold standard for evaluating intracranial artery 168 

stenosis; however, it poses risks of radiation, nephrotoxicity caused by iodinated contrast agents, and thromboembolic complications. 169 

Therefore, the accurate and reliable assessment of intracranial steno-occlusive lesions using noninvasive angiography is essential. Our 170 

results suggest that AI use can improve the accuracy of detecting intracranial steno-occlusive lesion by radiologists upon evaluating TOF-171 

MRA.  172 

The performance of the radiology residents significantly improved with the use of AI. The AUFROC calculated with AI assistance by 173 

radiology residents was comparable to that of neuroradiologists. Moreover, unlike that of the neuroradiologists, the reading time for 174 

radiology residents did not extend between the reading sessions with and without the use of AI. Specifically, their average reading time 175 

for the healthy group remained unchanged, while for the stenosis group, they allocated more time when using AI. In contrast, 176 

neuroradiologists experienced increased reading times with AI for both stenosis and healthy groups. Thus, the use of AI assistance has 177 

greater utility for relatively less experienced observers, such as radiology residents or specialists from other fields, highlighting its utility 178 

in supporting diagnostic accuracy without compromising efficiency.  179 

Radiologists encounter diagnostic errors that include visual perception and cognitive errors.17, 19 The “satisfaction of search” is a 180 

prevalent cognitive error, which signifies halting visual exploration upon identifying an initial abnormality during image interpretation.19 181 

Without AI, the sensitivity for detecting steno-occlusive lesions decreased with increased number of lesions. However, AI use helped 182 

maintain the sensitivity, despite statistical insignificance (Supplementary Table 1). Integrating AI can enhance the radiologists’ 183 

performance by sustaining vigilance. 184 

Furthermore, we observed an improvement in the interobserver agreement among the reviewers, increasing from a moderate to a good 185 

level (ICC increased from 0.734 to 0.752). This improvement could potentially elevate the level of consensus between radiologists, thereby 186 

alleviating the interobserver variability associated with MRA in determining intracranial stenosis. Similarly, Lin et al. demonstrated that 187 

AI use not only enhances accuracy but also reduces the interobserver variability in delineating nasopharyngeal carcinoma for radiation 188 

therapy.20  189 

In our previous study, we validated the stand-alone performance of our algorithm exclusively in patients with steno-occlusive lesions, 190 

achieving an AUC of up to 0.874 and an AUFROC of up to 0.855.10 To assess the clinical utility of our model, we conducted this observer 191 

performance study using a study cohort including both healthy individuals and patients with steno-occlusive lesions from two different 192 

institutions. Despite a slightly lower performance on the external test set compared to the internal test set, the significant improvement in 193 

residents' performance on both test sets underscores the generalizability of our AI model. In accordance with the recently published 194 

guidelines, the evidence of this study can be classified as Level 5A, signifying a retrospective study that integrates internal and external 195 

data for the purpose of concluding performance assessment.21, 22  196 

Our study has several limitations. First, only patients in the SNUBH stenosis group underwent confirmatory DSA. The reference 197 

standard assessment for participants in the healthy group from SNUBH and all participants from SSMH was based on expert consensus. 198 

The small caliber of the intracranial arteries and the limited spatial resolution of TOF-MRA may have under- or overestimated the stenosis 199 

degree. However, the observers were instructed to grade each stenotic lesion using a 5-point Likert scale consistently. Thus, JAFROC 200 

analyses could mitigate potential calibration issues, where the optimal threshold was applied individually. Second, we measured the reading 201 

time to simulate a clinical reading session; however, the need for an additional viewer to detect the AI suggestions may have introduced a 202 

bias in accurate time measurement. The observed increase in reading time could be a natural consequence of the additional steps required. 203 

These aspects warrant future studies using software implemented into the in-hospital PACS software to eliminate the need for a separate 204 

viewer and more accurately reflect the impact of reading time. Third, the scope of our model was confined to the distal ICA, A1-2 segments 205 

of ACA, M1-2 segments of MCA, P1-2 segments of PCA, V4 segments of the vertebral artery, and the basilar artery. This focus was 206 

necessitated by the inherent spatial resolution limitations of TOF-MRA. In addition, the relatively small sample size limits the depth of 207 

subgroup analyses, such as diagnostic performance according to vascular subsegments. Consequently, this constraint may limit the utility 208 

of our model in detecting steno-occlusive lesions in the distal branches of intracranial arteries. A future study with a larger patient cohort 209 

may be needed to enable detailed subgroup analyses. 210 

 211 
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CONCLUSIONS 212 

Our study suggests that the proposed AI model offers a supportive tool for radiologists, potentially enhancing the accuracy of detecting 213 

intracranial steno-occlusive lesions on TOF-MRA. Although the value for neuroradiologists may be limited, less-experienced readers may 214 

benefit from this model. 215 
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 264 

Table 1: Patient demographics and lesion characteristics. 265 

 Positive for steno-occlusive lesion Negative for 

steno-occlusive 

lesion 

All 

Internal 

test set  

External 

test set  

Subtotal 

No. of patients* 30 30 60 78 138 

Age, yr  (range) 58 (28–

78) 

58 (38–

80) 

58 (28–

80) 

58 (29–84) 58 (28–84) 

Sex (female ratio) 18 (0.60) 13 (0.43) 31 (0.52) 38 (0.49) 69 (0.50) 

Proportion of 3T 0.83 0.77 0.80   

Underlying causes      

Atherosclerosis 26 27 53   

Moyamoya disease 3 3 6   

Dissection 1 0 1   

No. of lesions 67 48 115   

1 12 21 33   

2 9 3 12   

3 2 3 5   

4 5 3 8   

5 1 0 1   

6 1 0 1   

Lesion laterality      

Right 30 21 51   

Left 35 26 61   

BA 2 1 3   

Lesion segment      

Anterior 55 36 91   

ACA 15 2 17   

MCA 27 22 49   

Distal ICA 13 12 25   

Posterior 12 12 24   
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Note. ICA, internal carotid artery; VA, vertebral artery; BA, basilar artery; ACA, anterior cerebral artery; 266 

MCA, middle cerebral artery; PCA, posterior cerebral artery 267 

*Numbers in parentheses are interquartile ranges or percentages. 268 

VA 4 6 10   

BA 2 1 3   

PCA 6 5 11   



 Copyright 2023 by American Society of Neuroradiology. 

 

11 

 

 

Table 2: Diagnostic performance of reviewers. 

Note: AUFROC, Area under the Jackknife free-response receiver operating characteristic curve; AUC, area under the receiver operating characteristic curve 

An asterisk is added to the P-values at a significance level of 0.05. 

  

 AUFROC (per-lesion) AUC (per-patient) 

Reviewers Without AI With AI P-value Without AI With AI P-value 

Neuroradiologists       

Reviewer 1 0.807 0.812 0.892 0.902 0.898 0.874 

Reviewer 2 0.644 0.687 0.389 0.899 0.910 0.710 

All neuroradiologists 0.726 0.750 0.423 0.900 0.904 0.779 

Radiology residents       

Reviewer 3 0.555 0.675 0.023* 0.894 0.906 0.758 

Reviewer 4 0.770 0.854 0.023* 0.894 0.942 0.081 

Reviewer 5 0.700 0.759 0.218 0.928 0.919 0.716 

All residents 0.675 0.763 0.002* 0.905 0.922 0.420 

All reviewers 0.695 0.758 0.027* 0.903 0.915 0.364 
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Table 3: Diagnostic performance in the internal (SNUBH) and external (SSMH) test sets.  

Note: AUFROC, Area under the Jackknife free-response receiver operating characteristic curve 

An asterisk is added to the P-values at a significance level of 0.05. 

 

  

 AUFROC (per-lesion) 

 Internal test set  External test set  

Reviewers Without AI With AI P-value Without AI With AI P-value 

All neuroradiologists 0.774 0.774 0.985 0.671 0.717 0.410 

All residents 0.705 0.787 0.034* 0.637 0.732 0.033* 

All reviewers 0.733 0.782 0.110 0.650 0.726 0.086 



 Copyright 2023 by American Society of Neuroradiology. 

 

13 

 

 

Table 4: Results of diagnostic accuracy of reviewers. 

 Sensitivity (per-lesion) Sensitivity (per-patient) Specificity 

Reviewers Without AI With AI P-value Without AI With AI P-value Without AI With AI P-value 

Neuroradiologists  

Reviewer 1 80.9% 

(93/115) 

80.0% 

(92/115) 

0.500 88.3% 

(53/60) 

81.7% 

(49/60) 

0.778 92.3% 

(72/78) 

94.9% 

(74/78) 

0.372 

Reviewer 2 67.0% 

(77/115) 

68.7% 

(79/115) 

0.444 90.0% 

(54/60) 

85.0% 

(51/60) 

0.710 91.0% 

(71/78) 

89.7% 

(70/78) 

0.500 

All neuroradiologists 73.9% 

(170/230) 

74.8% 

(171/230) 

0.500 90.0% 

(107/120) 

83.3% 

(100/120) 

0.746 91.7% 

(143/156) 

92.3% 

(144/156) 

0.500 

Radiology residents  

Reviewer 3 55.7% 

(64/115) 

68.7% 

(78/115) 

0.028 81.7% 

(49/60) 

86.7% 

(52/60) 

0.308 96.2% 

(75/78) 

93.6% 

(73/78) 

0.642 

Reviewer 4 75.7% 

(87/115) 

86.1% 

(99/115) 

0.033 90.0% 

(54/60) 

95.0% 

(57/60) 

0.244 87.2% 

(68/78) 

88.5% 

(69/78) 

0.500 

Reviewer 5 67.0% 

(77/115) 

73.0% 

(84/115) 

0.194 88.3% 

(53/60) 

81.7% 

(49/60) 

0.778 92.3% 

(72/78) 

93.6% 

(73/78) 

0.500 

All residents 66.1% 

(228/345) 

75.9% 

(261/345) 

0.067 86.7% 

(156/180) 

87.8% 

(158/180) 

0.500 91.9% 

(215/234) 

91.9% 

(215/234) 

0.500 
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Note. The count and number of target groups are shown in parentheses.  

  

All reviewers 69.2% 

(398/575) 

75.3% 

(432/575) 

0.188 87.7% 

(263/180) 

86.0% 

(258/180) 

0.500 91.8% 

(358/390) 

92.1% 

(359/390) 

0.500 



This preprint represents the accepted version of the article and also includes the supplemental material; it differs from the printed version 

of the article. 
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Table 5: Results of reviewer performance test (reading time). 

 

 

 

 

 

 
  

 Reading time [seconds] 

 Without AI With AI P-value 

Total 63.5±31.7 71.8±37.0 0.0442 

Neuroradiologists 37.6±16.5 45.4±19.5 0.0004 

Radiology residents 80.7±43.0 89.5±49.9 0.1179 

Normal Group 45.3±17.9 50.3±20.1 0.1033 

Neuroradiologists 28.8±9.8 34.7±9.6 0.0002 

Radiology residents 56.3±24.4 60.7±27.9 0.2959 

Disease Group 87.0±30.4 99.8±35.3 0.0353 

Neuroradiologists 49.0±16.5 59.3±20.4 0.0031 

Radiology residents 112.3±41.3 126.8±47.5 0.0770 
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SUPPLEMENTAL FILES 
Supplementary Table 1. Subgroup analysis of diagnostic accuracy  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The count and number of target groups are shown in parentheses. 

 

 

 

  

 Sensitivity (per-lesion) 

Group Without AI With AI 

Number of lesions 

1 68.8% (22/32) 70.0% (22/32) 

≧2 69.4% (58/83) 77.3% (64/83) 

≦2 75.5% (44/58) 76.9% (45/58) 

≧3 62.8% (36/57) 73.7% (42/57) 

Circulation 

Anterior  73.2% (67/91) 78.9% (72/91) 

Posterior 54.2% (13/24) 61.7% (15/24) 
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Supplementary Table 2. Interobserver variability in reviewers 

 

 

 

Note. ICC: intraclass correlation coefficient. 95% confidence intervals are given in parentheses. 

 

 

 Without AI With AI 

ICC 0.734 (0.670–0.792) 0.752 (0.693–0.805) 


