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ORIGINAL RESEARCH
NEUROVASCULAR/STROKE IMAGING

Association between CT Perfusion Parameters and
Hemorrhagic Transformation after Endovascular Treatment
in Acute Ischemic Stroke: Results from the ESCAPE-NA1 Trial

Rosalie V. McDonough, Nathaniel B. Rex, Johanna M. Ospel, Nima Kashani, Leon A. Rinkel, Arshia Sehgal,
Joachim C. Fladt, Ryan A. McTaggart, Raul Nogueira, Bijoy Menon, Andrew M. Demchuk, Alexandre Poppe,

Michael D. Hill, Mayank Goyal,
on behalf of the ESCAPE-NA1 Investigators

ABSTRACT

BACKGROUND AND PURPOSE: Hemorrhagic transformation can occur as a complication of endovascular treatment for acute ischemic
stroke. This study aimed to determine whether ischemia depth as measured by admission CTP metrics can predict the development of
hemorrhagic transformation at 24 hours.

MATERIALS AND METHODS: Patients with baseline CTP and 24-hour follow-up imaging from the ESCAPE-NA1 trial were included.
RAPID software was used to generate CTP volume maps for relative CBF, CBV, and time-to-maximum at different thresholds.
Hemorrhage on 24-hour imaging was classified according to the Heidelberg system, and volumes were calculated. Univariable and
multivariable regression analyses assessed the association between CTP lesion volumes and hemorrhage/hemorrhage subtypes.

RESULTS: Among 408 patients with baseline CTP, 142 (35%) had hemorrhagic transformation at 24-hour follow-up, with 89 (63%)
classified as hemorrhagic infarction (HI1/HI2), and 53 (37%), as parenchymal hematoma (PH1/PH2). Patients with HI or PH had larger
volumes of low relative CBF and CBV at each threshold compared with those without hemorrhage. After we adjustied for baseline
and treatment variables, only increased relative CBF,30% lesion volume was associated with any hemorrhage (adjusted OR, 1.14;
95% CI, 1.02–1.27 per 10mL), as well as parenchymal hematoma (adjusted OR, 1.23; 95% CI, 1.06–1.43 per 10mL). No significant associa-
tions were observed for hemorrhagic infarction.

CONCLUSIONS: Larger “core” volumes of relative CBF,30% were associated with an increased risk of PH following endovascular
treatment. This particular metric, in conjunction with other clinical and imaging variables, may, therefore, help estimate the risk of
post-endovascular treatment hemorrhagic complications.

ABBREVIATIONS: AUC ¼ area under the curve; eTICI ¼ expanded TICI; EVT ¼ endovascular treatment; HI ¼ hemorrhagic infarction; IQR ¼ interquartile
range; PH ¼ parenchymal hematoma; rCBF ¼ relative CBF; sICH ¼ symptomatic intracerebral hemorrhage; Tmax ¼ time-to-maximum

Hemorrhagic transformation of ischemic stroke is common and
part of the natural history. A large percentage of hemorrhagic

transformations are asymptomatic, inconsequential to prognosis.1,2

They are associated with reperfusion therapy, thrombolysis, and
endovascular treatment (EVT) and appear within 24hours when
these therapies are performed.3 Radiologically, hemorrhagic trans-
formation can range in severity from small petechial hemorrhage
without noticeable mass effect to larger, space-occupying paren-
chymal hematoma (PH).4 The presence of PH is unequivocally
associated with worse outcomes and is symptomatic.5-7 PH occurs
more commonly when there is a lack of early reperfusion.

Larger volumes of increasing ischemia depth as measured
by the CTP parameters prolonged mean transit time, pro-
longed time-to-maximum (Tmax), and relative CBF (rCBF)
may indicate impaired collateral circulation and an increased
risk of hemorrhagic transformation.8-10 However, the current
literature presents conflicting data on optimal CTP parameter
thresholds for the prediction of hemorrhagic transformation,
most studies being based on retrospective or observational
analyses of small cohorts.11
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The aim of this study was to investigate the association
between CTP-derived lesion volumes and the occurrence of hem-
orrhagic infarction (HI) or PH at 24hours post-EVT using data
from a randomized controlled trial.

MATERIALS AND METHODS
Patient Sample
Data are from the Safety and Efficacy of Nerinetide in Subjects
Undergoing Endovascular Thrombectomy for Stroke (ESCAPE-
NA1) trial, registered under clinicaltrials.gov with the identifier
NCT02930018.12 ESCAPE-NA1 was a double-blind, multicenter
randomized controlled trial that aimed to evaluate the efficacy
of nerinetide in patients with acute ischemic stroke who under-
went EVT.

Patients were randomly assigned to receive either IV nerine-
tide or a placebo in addition to best medical management, includ-
ing IV alteplase if deemed appropriate. The inclusion criteria for
the parent trial were as follows: 1) 18 years of age or older with a
large-vessel occlusion (intracranial ICA, MCA M1 or all M2
branches), 2) baseline NIHSS score of more than five, 3) time
from the last seen well to randomization within 12hours, 4) func-
tional independence before the stroke, 5) moderate-to-good collat-
eral circulation, and 6) ASPECTS of .4. All patients underwent
NCCT and single-phase or multiphase CTA at baseline.

For the current study, only patients who had baseline CTP
imaging, performed as part of clinical routine at each respective
site but not mandated by the trial, were included in the analysis.
The participating sites obtained appropriate ethics and local regu-
latory approval, and informed consent was obtained from the
participants, legally authorized representatives, or investigators,
following the requirements of national laws or regulations, includ-
ing 2-physician consent when necessary.

Imaging Analysis
All imaging data were evaluated by a central imaging core lab,
which was blinded to treatment allocation and clinical outcomes.
The baseline NCCT scan was used to assess the ASPECTS.
Collateral circulation was evaluated on CTA and categorized as
poor, moderate, or good. The location of the occlusion was
reported as the terminal ICA, M1 segment of the MCA, or M2
segment of the MCA.

Perfusion source images were processed using RApid process-
ing of PerfusIon and Diffusion (RAPID software, Version 5.2.2;
iSchemaView) to generate rCBF, CBV, and Tmax volumes. Each
volume was provided at specific standard thresholds. The output
DICOM files were converted to NIfTI format by using dcm2niix
(http://www.github.com/rordenlab/dcm2niix) and underwent auto-
mated segmentation using color-based thresholding in Python
(Version 3.10). The segmentation volumes were extracted using
3D Slicer, Version 5.0.2 (http://www.slicer.org). These additional
processing steps were performed to provide more detail regarding
the affected brain regions at each threshold, allowing more pre-
cise segmentation/volume calculation. Key Python functions
necessary for reproduction of feature extraction and processing
are detailed on Github (https://github.com/naterex23/RAPID_
Perfusion_Processing), and an additional Python source code is
available on reasonable request.

Secondary CTP-based metrics, including the hypoperfusion
intensity ratio, mismatch, and mismatch ratio, were calculated.
The hypoperfusion intensity ratio represents the volume of Tmax
.10 seconds divided by the volume of Tmax .6 seconds. The
mismatch is calculated as the volume of Tmax.6 seconds minus
the volume of rCBF,30%, and the mismatch ratio is the volume
of Tmax.6 seconds divided by the volume of rCBF,30%.

The evaluation of the expanded TICI (eTICI) was performed
on the final intracranial DSA run. The presence and volumes of
any hemorrhagic transformation were determined as described
by Ospel et al.7 Briefly, hemorrhagic transformation was assessed
through visual inspection of the 24-hour follow-up imaging by an
interventional neuroradiologist (M.G., with 24 years of experi-
ence) and a general radiologist (J.M.O., with 4 years of experi-
ence). Discrepancies were resolved by consensus. Hemorrhagic
transformation was classified into 4 subtypes: HI types 1 and 2
and PH types 1 and 2, according to the Heidelberg criteria.4 Due
to their infrequency, remote parenchymal hematomas (n¼ 3)
were included in the PH groups. For this analysis, HI-1 and HI-2
were combined, as were PH-1 and PH-2. Symptomatic intracere-
bral hemorrhage (sICH) was defined as any hemorrhage associ-
ated with clinical evidence of neurologic worsening, with the
hemorrhage considered the main cause of the decline.13

Outcome Measures
The primary outcome was the presence of any intracranial hem-
orrhage at 24 hours. Secondary outcomes included the presence
of HI1 or HI2 and the presence of PH1 or PH2. sICH was ana-
lyzed as a safety outcome.

Statistical Analysis
Baseline characteristics and treatment factors of the participants
were described using descriptive statistics as appropriate to the
type and distribution of the data. Comparisons were made
between participants with and without any hemorrhage at fol-
low-up imaging.

Unadjusted comparisons of CTP-derived lesion volumes at
baseline between patients with and without outcomes of interest
were made using nonparametric tests. Adjusted effect size esti-
mates for associations of CTP-derived lesion volumes and out-
comes were obtained using multivariable logistic regression. The
multivariable regression models were adjusted for age, sex,
baseline glucose level, NIHSS, ASPECTS, collateral score, alte-
plase administration, successful reperfusion (eTICI 2c/3), time
to reperfusion, and procedural complications. Separate models
were constructed for the RAPID-generated CTP parameters
rCBF,30%, Tmax. 6 seconds, and CBV,38%. These specific
rCBF and Tmax thresholds were chosen because they represent
the RAPID standard output for core and penumbra, respec-
tively, while CBV,38% was chosen as a midrange indicator of
ischemia depth.

Statistical analyses were performed using STATA 17 software
(Stata Corp), and a level of P, .05 was considered statistically
significant. No imputation was performed for minimal missing
data. Finally, because this was an exploratory subgroup analysis,
no formal power analysis was performed, and all results are con-
sidered exploratory.
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RESULTS
Patient Characteristics
Presence of Any Hemorrhage. Among the 1105 patients enrolled
in the trial, baseline CTP source imaging was available for 421.
Eight patients were excluded from the CTP analysis due to low
scan quality, and 5 patients had isolated subarachnoid bleeds,
resulting in a total of 408 patients included in the analysis
(Figure). The median age of the patients was 70.1 years (inter-
quartile range [IQR], 60.3–79.8 years), with 50% of them being
women. Hemorrhage on follow-up imaging, observed in 142
patients (35%), was determined by segmented volumes from ei-
ther CT (72 patients, 51%) or MR imaging (70 patients, 49%) at
24 hours. The Online Supplemental Data provide an overview of
baseline clinical, imaging, treatment, and outcome variables for
patients with and without hemorrhage, further stratified by the
type of bleed (HI1/HI2 or PH1/PH2).

Patients with evidence of any intracranial hemorrhage on
follow-up imaging (n¼ 142) had higher admission blood glu-
cose levels (median, 7.1mg/dL [IQR, 6.2–9.0mmol/L] versus
6.6 mmol/L [IQR, 5.8–7.6mmol/L]; respectively, P, .001),
higher baseline NIHSS scores (median, 18 [IQR, 15–21] versus
17 [IQR, 12–20]; P¼ .007), lower baseline ASPECTS (median,
8 [IQR, 6–8] versus 8 [IQR, 7–9]; P, .001), and worse collat-
eralization (15 of 141 participants [10.6%] versus 44 of 261
participants [16.7%] with good collateral vessels; P¼ .022).
Regarding treatment, patients with evidence of any intracranial
hemorrhage had longer onset-to-reperfusion times (median,
332.5minutes [IQR, 214–550.5 minutes] versus 210minutes
[IQR, 158.5–297minutes]; P, .001) and achieved successful
recanalization less frequently (52 of 142 participants [36.6%]
versus 131 of 263 participants [49.8%]; P¼ .012). There were
no differences in alteplase administration observed (Online
Supplemental Data).

Hemorrhage Subtypes. Within this cohort, most observed hem-
orrhages were classified as either HI1 (52 of 142, 36.6%) or HI2
(37, 26.0%). PH1 and PH2 accounted for 23.2% (33 of 142) and
14.1% (20 of 142), respectively. At 24hours, sICH was present in
14 of 142 (9.9%) patients (Online Supplemental Data). When
stratifying according to bleeding type, the significant differences

in baseline characteristics between cohorts with any hemorrhage
versus none and patients with HI1/HI2 versus none remained,
except for the rate of successful reperfusion, which was no longer
significant in the latter (35 of 89 [39.3% versus 49.8%], respec-
tively; P¼ .110) (Online Supplemental Data).

For patients with PH1/PH2, the baseline ASPECTS was lower
(7.5 [IQR, 6–8] versus 8 [IQR, 7–9]; P¼ .041). In terms of proce-
dural characteristics, patients with PH1/PH2 had lower rates of
successful reperfusion (17 [32.1%] versus 131 [49.8%]; P¼ .023)
and longer onset-to-reperfusion times (median, 394 minutes
[IQR, 261–578 minutes] versus 311 minutes [IQR, 209–540
minutes]; P, . 001) compared with those without any hemor-
rhage. Overall, few differences were observed between patients
with and without sICH, with the former group generally having
higher baseline systolic blood pressure (median, 157mm Hg
[IQR, 140–190 mm Hg] versus 144mm Hg [IQR, 129–161 mm
Hg]; P¼ . 027) (Online Supplemental Data).

Perfusion-Based Characteristics
Presence of Any Hemorrhage. Significant differences in volume
were observed at the rCBF,30% and CBV,38% thresholds
between patients with any hemorrhage and those without at fol-
low-up (Online Supplemental Data). In both cases, the hemor-
rhage group exhibited larger deficit volumes (rCBF,30%; median,
17.9mL [IQR, 6.4–43.9 mL] versus rCBF,30%: 6.1mL [IQR, 0.0–
22.5 mL]; P, . 001, and CBV,38%: median, 17.4mL [IQR, 5.1–
45.4 mL] versus CBV,38%: 6.9mL [IQR, 0.0–32.7 mL]; P, . 001,
respectively). Although Tmax. 6-second volumes were numeri-
cally larger in the hemorrhage group, the difference was not signifi-
cant (Online Supplemental Data).

Univariable regression analyses revealed significant associa-
tions between both rCBF,30% (OR, 1.17; 95% CI, 1.09–1.26; P
, .001, area under the curve [AUC], 0.64) and CBV,38% (OR,
1.09; 95% CI, 1.03–1.16; P¼ .003, AUC, 0.61) thresholds and the
presence of any hemorrhage at follow-up (Table 1). After adjusting
for predefined variables, only the associations between rCBF,30%
and hemorrhage at follow-up remained. Once again, no significant
associations were found for Tmax. 6 seconds (Table 2).

Hemorrhage Subtypes. Both HI1/HI2 and PH1/PH2 groups dif-
fered with respect to rCBF,30% and CBV,38% compared with

FIGURE. Flow chart of inclusion.

Table 1: Unadjusted associations between standard CTP param-
eters and the presence of any type of hemorrhage, HI1/HI2,
and PH1/PH2, at follow-upa

Variable OR LCL UCL P Value AUC (95% CI)
Any hemorrhage

rCBF,30% 1.17 1.09 1.26 ,.001 0.64 (0.59–0.70)
Tmax. 6s 1.00 0.97 1.03 .787 0.52 (0.46–0.58)
CBV,38% 1.09 1.03 1.16 .003 0.61 (0.56–0.67)

HI1 and HI2
rCBF,30% 1.18 1.09 1.28 ,.001 0.65 (0.58–0.71)
Tmax. 6s 1.00 0.97 1.04 .747 0.52 (0.45–0.59)
CBV,38% 1.10 1.03 1.17 .004 0.61 (0.55–0.68)

PH1 and PH2
rCBF,30% 1.15 1.04 1.28 .007 0.64 (0.56-0.72)
Tmax. 6s 1.00 0.97 1.04 .747 0.52 (0.44–0.60)
CBV,38% 1.08 0.99 1.17 .085 0.61 (0.54–0.69)

Note:—UCL indicates upper confidence limit; LCL, lower confidence limit.
a For CBF, CBV, Tmax, odds ratios are per 10mL.
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those without any hemorrhage (HI1/HI2: rCBF,30%; median,
15.5mL [IQR: 5.9–47.7 mL] versus 6.1mL [IQR: 0.0–22.5 mL];
P, . 001; CBV,38%; 17.8 [IQR: 4.9–44.2] versus 6.9 [IQR: 0.0–
32.7]; P, . 001 and PH1/PH2: rCBF,30%; median, 19.9mL
[IQR, 6.9–32.8 mL] versus 6.1mL [IQR, 0.0–22.5 mL]; P¼ . 001;
CBV,38%; 16.3 [IQR, 6.7–45.4] versus 6.9 [IQR, 0.0–32.7];
P¼ .009). Larger CBF,30% volumes were observed in the
PH1/PH2 group compared with the HI1/HI2 group, while
CBV,38% deficit volumes were generally larger in the HI1/
HI2 cohort compared with the PH1/PH2 group (Online
Supplemental Data). These differences, however, were not sig-
nificant (data not shown). No differences in Tmax. 6 seconds
were observed for HI1/HI2 or PH1/PH2 (Online Supplemental
Data). None of the tested CTP metrics differed according to
presence of sICH (Online Supplemental Data).

For HI1/HI2, univariable regression analyses demonstrated a
significant relationship between the rCBF,30% (OR, 1.18; 95%
CI, 1.09–1.28; P, . 001, AUC, 0.65) and CBV,38% (OR, 1.10;
95% CI, 1.03–1.17; P¼ .004, AUC, 0.61) parameters, but not
Tmax. 6 seconds (Table 1). After we adjusted for baseline, clini-
cal, and procedural characteristics, however, neither relationship
remained significant (Table 2).

When PH1/PH2 was taken as the dependent variable, univari-
able regression analysis revealed a significant relationship
between rCBF,30% (OR, 1.15; 95% CI, 1.04–1.28; P¼ .007,
AUC 0.64) (Table 1), which persisted following adjustment
(Table 2). Neither univariable nor multivariable regression analy-
ses showed significant associations between sICH and the CTP
parameters (Online Supplemental Data).

No significant associations among any of the secondary CTP
metrics, hypoperfusion-intensity ratio, mismatch, and mismatch
ratio were observed (data not shown).

DISCUSSION
In the ESCAPE-NA1 trial, we found that higher volumes of
rCBF,30% deficit (often operationally classified as “ischemic
core”) were associated with the presence of any hemorrhage on

follow-up imaging. However, this relationship is very likely
driven by the association with PH1/PH2 hemorrhage subtype on
24-hour follow-up imaging, because no significant relationships
were observed between CTP parameters and HI1/HI2 or sICH.

There is substantial heterogeneity in the literature, with stud-
ies reporting associations with prolonged Tmax14,15 and low
CBV values,16,17 while others emphasized associations of low
rCBF.18 Meta-analyses conducted on this topic have been limited
by variations in perfusion metrics, software programs, and study
designs (eg, indication, technique, and timing of follow-up imag-
ing for hemorrhage detection).11,19-21 Some have even identified
a potential publication bias, suggesting an overestimation of the
diagnostic performance of CTP for hemorrhage prediction.19

A few studies have specifically examined the associations of
RAPID-generated CTP parameters. For instance, 1 study ana-
lyzed a cohort of 282 patients with (91 [32%]) and without (191
[68%]) hemorrhage at follow-up and found larger volumes of
CTP parameters with hemorrhage.15 In this relatively small, sin-
gle-center study, Tmax .6 was observed to be the strongest fac-
tor associated with hemorrhagic transformation. Another single-
center study involving 392 patients undergoing EVT identified
associations between ASPECTS and infarct core volume (defined
by rCBF,30%), but the models were not adjusted for factors
such as collaterals, blood pressure, or time to reperfusion, and the
effect sizes were small.22

While larger rCBF ,30% volumes demonstrated an associa-
tion with the presence of parenchymal hematoma, no significant
correlation was observed between CTP metrics and sICH. This
finding may, in part, be due to the relatively low incidence of
sICH in this cohort (14/408, 3.4%). Indeed, the overall trend was
toward larger volumes in the sICH group (rCBF,30%: 15.9 versus
10.2mL; CBV,38%: 30.3 versus 11.6mL) (Online Supplemental
Data). Most interesting, there was a trend toward smaller volumes
of Tmax. 6 seconds in the symptomatic hemorrhage group
(119.2 versus 137.7mL) (Online Supplemental Data), potentially
highlighting the importance of decreased mismatch volume.
Nevertheless, this discrepancy prompts consideration of factors
beyond perfusion imaging that might contribute to sympto-
matic hemorrhage post-EVT.

A strength of this study lies in its relatively large sample size
derived from a randomized controlled trial, which may also
explain the somewhat discrepant results regarding Tmax between
the current study and other studies. Furthermore, the use of the
same software and standardized output for all perfusion images
enhances the consistency and clinical relevance of the findings.
While other promising perfusion-based metrics, such as the
permeability surface-area product, have been identified for
hemorrhage prediction, their widespread use in clinical practice
remains limited.11,23,24

Although certain baseline CTP parameters appear to be asso-
ciated with hemorrhagic transformation at 24-hour follow-up, it
is important to acknowledge that hemorrhage is a complex pro-
cess influenced by multiple factors, many of which are not detect-
able through CTP imaging alone.

For instance, in addition to procedural factors such as treat-
ment delays, complications, and reperfusion outcomes, previous
studies have found associations of hemorrhagic transformation

Table 2: Adjusted associations between standard CTP parame-
ters and the presence of any hemorrhage, HI1/HI2, and PH1/
PH2, at follow-upa

Variable aOR aLCL aUCL
P

Value
AUC

(95% CI)
Any hemorrhage

rCBF,30% 1.14 1.02 1.27 .017 0.78 (0.73–0.83)
Tmax. 6s 1.00 0.96 1.05 .912 0.77 (0.72–0.83)
CBV,38% 1.07 0.98 1.16 .122 0.78 (0.73–0.83)

HI1 and HI2
rCBF,30% 1.11 0.99 1.26 .081 0.77 (0.70–0.84)
Tmax. 6s 1.00 0.94 1.05 .941 0.77 (0.70–0.83)
CBV,38% 1.05 0.96 1.14 .310 0.77 (0.70–0.84)

PH1 and PH2
rCBF,30% 1.23 1.06 1.43 .007 0.81 (0.74–0.88)
Tmax. 6s 1.00 0.94 1.05 .941 0.77 (0.73–0.86)
CBV,38% 1.12 0.99 1.26 .063 0.81 (0.74–0.88)

Note:—aOR indicates adjusted OR; aLCL, adjusted upper confidence limit; aUCL,
adjusted lower confidence limit.
aFor CBF, CBV, Tmax, (adjusted) odds ratios are per 10mL. Analyses were adjusted
for age, sex, baseline glucose, NIHSS, ASPECTS, collateral score, alteplase, success-
ful reperfusion (eTICI 2c/3), time to reperfusion, and procedural complications.
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and hyperglycemia, acute hypertension, blood pressure variabili-
ty, and stroke severity.5,6,25 The current study confirmed these
associations with regard to any type of parenchymal hemorrhage
and HI1/HI2, emphasizing the likely stronger association of these
non-CTP variables with hemorrhage at follow-up. No such asso-
ciations being seen in patients with PH1/PH2 might be attributed
to the smaller sample size of patients with PH1/PH2, resulting in
underpowered analyses.

Additionally, there may be information loss during postpro-
cessing.26 By integrating clinical information with CTP, a more
precise and individualized diagnostic framework for predicting
hemorrhagic transformation could be achieved. However, larger
studies are needed to further investigate these possibilities.

Limitations
Limitations of this study include those inherent to a randomized
controlled trial, the heterogeneity introduced by batch-processing
perfusion studies from different sites and machines, the reliance
on the standard output parameters of RAPID without deeper anal-
yses, and the use of both NCCT and MR imaging for assessing
hemorrhagic transformation, all of which may have affected the
precision of the estimates. Furthermore, without dual-energy CT,
differentiating hemorrhage and contrast material staining on
NCCT can be challenging. A study by Amans et al27 demonstrated
that brain parenchyma with contrast staining on CT after DSA in
patents with acute ischemic stroke was likely to infarct and
unlikely to hemorrhage, suggesting that most contrast staining did
not progress to hemorrhage. Although contrast extravasation
occurs during the breakdown of the BBB, which also leads to
bleeding, the volumes may have been overestimated and our
results should be interpreted with caution. Finally, the grouping of
different subtypes (HI1, HI2, PH1, PH2) may mask nuanced rela-
tionships. This grouping decision was influenced by the limited
number of patients in each subgroup. While primarily PHs have
been shown to have an impact on clinical outcomes, this reduction
in granularity remains a limitation, and further studies with larger
subgroup sizes would be valuable for a more detailed analysis.

CONCLUSIONS
This study demonstrates that larger volumes of rCBF,30% defi-
cit are associated with an increased risk of developing PH1/PH2.
However, no significant associations were found for HI1/HI2 or
sICH. These findings suggest that while CBF,30% may help
estimate the risk of more severe types of intracranial hemorrhage
following EVT for acute ischemic stroke, other imaging, clinical,
and procedural factors are likely of greater value.
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