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Dynamic Changes in Long-Standing Multiple Sclerosis
Revealed by Longitudinal Structural Network Analysis Using

Diffusion Tensor Imaging
Hui-Qin Zhang, Jacky Chi-Yan Lee, Lu Wang, Peng Cao, Koon-Ho Chan, and Henry Ka-Fung Mak

ABSTRACT

BACKGROUND AND PURPOSE: DTI can be used to derive conventional diffusion measurements, which can measure WM abnormalities
in multiple sclerosis. DTI can also be used to construct structural brain networks and derive network measurements. However, few
studies have compared their sensitivity in detecting brain alterations, especially in longitudinal studies. Therefore, in this study, we
aimed to determine which type of measurement is more sensitive in tracking the dynamic changes over time in MS.

MATERIALS AND METHODS: Eighteen patients with MS were recruited at baseline and followed up at 6 and 12months. All patients
underwent MR imaging and clinical evaluation at 3 time points. Diffusion and network measurements were derived, and their brain
changes were evaluated.

RESULTS: None of the conventional DTI measurements displayed statistically significant changes during the follow-up period; how-
ever, the nodal degree, nodal efficiency, and nodal path length of the left middle frontal gyrus and bilateral inferior frontal gyrus,
opercular part showed significant longitudinal changes between baseline and at 12months, respectively.

CONCLUSIONS: The nodal degree, nodal efficiency, and nodal path length of the left middle frontal gyrus and bilateral inferior
frontal gyrus, opercular part may be used to monitor brain changes over time in MS.

ABBREVIATIONS: AD ¼ axial diffusivity; EDSS ¼ Expanded Disability Status Scale; FA ¼ fractional anisotropy; IFGoperc ¼ inferior frontal gyrus, opercular
part; MD ¼ mean diffusivity; MFG ¼ middle frontal gyrus; NAWM ¼ normal-appearing WM; ORBsupmed ¼ superior frontal gyrus, medial orbital part; RD ¼ radial
diffusivity; SPMS ¼ secondary-progressive MS

Multiple sclerosis is the most prevalent CNS inflammatory
demyelinating disease1 and poses a great threat to the

quality of life for patients and their caregivers. DTI, a diffusion
model, has frequently been used to explore WMmicrostructural
abnormalities in MS conditions.2,3 Widely used diffusion meas-
urements include fractional anisotropy (FA), mean diffusivity
(MD), axial diffusivity (AD), and radial diffusivity (RD).4

Microstructural damage can develop in both the lesion area5

and normal-appearing WM (NAWM)6 in MS. According to
accumulating evidence from current research,7,8 FA in lesions

often decreases and MD, AD, and RD increase due to demyelin-
ation and axonal injury. Similarly, though to a lesser extent, FA
in the NAWM also shows a reduction, and MD, AD, and RD are
often elevated.9 However, research on longitudinal microstruc-
tural alterations in MS during the follow-up period is limited.

DTI can also be processed by using a network-based approach10

that maps the topological organization of the brain. Structural
networks have provided new insights into the pathologic proc-
esses of MS.11 One of the advantages of graph theory network
analysis is that it supports the axonal tension hypothesis,12

which can reflect the information transfer and neuroplasticity of
the brain.13 The commonly used network measurements are the
nodal degree, nodal efficiency, nodal path length, and nodal
clustering coefficient.10 Several recent studies have reported
structural DTI network disruption in different subtypes of MS,
such as relapsing-remitting MS,14 secondary-progressive MS
(SPMS),15 and primary-progressive MS,15 compared with that
in healthy controls. For example, Shu et al16 reported disrupted
topological efficiency in MS in terms of reduced global and
nodal efficiency compared with those in healthy controls. The
clinical relevance of these network measurements has also been
reported in previous studies17,18; more specifically, Hawkins et
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al17 observed that reduced network efficiency could impact mul-
tiple cognitive domains in MS, and Welton et al18 proved that
network disruption may serve as a major determinant of cogni-
tive deficits in MS. Charalambous et al19 proved that structural
network disruption measurements could explain disability.
However, studies on longitudinal structural DTI network altera-
tions in MS are limited.

Though abundant cross-sectional DTI research on MS focus-
ing on either conventional diffusion measurements or structural
network measurements has been published in the past decades,
few studies tried to explore whether network measurements or
diffusion measurements are more sensitive to detect abnormalities
in MS. Research in comparing their sensitivity in longitudinal
DTI studies is imperative to probe the brain changes in MS. The
conventional diffusion measurements are more vulnerable to the
crossing or diverging fibers,4 while the network measurements
may not be, so we hypothesize that the network measures would
be superior to capture the brain alterations in MS during the fol-
low-up.

Hence, the main objective of this longitudinal study was to
track brain microstructural alterations and brain network
changes in MS during a short-term follow-up period of 1 year
and then to compare which kind of measurement is more sensi-
tive to capture brain changes over time in MS.

MATERIALS AND METHODS
Participants
This longitudinal study was authorized by the local institutional
review board, and written informed consent was obtained from
all patients. Eighteen patients with MS were recruited for this 1-
year longitudinal investigation from the Clinic of the Department
of Medicine of the University of Hong Kong from November
2017 to February 2020. All patients with MS were diagnosed
according to the latest revised McDonald criteria,20 and the clini-
cal phenotype classification was based on the latest Lublin crite-
ria.21 The exclusion criteria were as follows: 1) patients who had
claustrophobia or contraindications for MR imaging, 2) patients
who had other severe disorders that caused neurologic abnormal-
ities in addition to MS, and 3) patients who were pregnant.

All patients underwent physical examination, neurologic test-
ing, and MR imaging at 3 time points: baseline (t1), at 6 months
(t2), and at 12 months (t3). All clinical assessments were per-
formed by the same neurologist during the same week as the MR
imaging examinations. The Expanded Disability Status Scale
(EDSS) was used to assess physical disability.

MR Imaging Acquisition
MR imaging was performed at the University Imaging Center
by using a 3T scanner (Achieva, Philips Healthcare) with a 32-
channel head coil. All participants underwent MR imaging at
the 3 time points. The MR imaging protocol included 3D T1-
weighted MPRAGE (TR ¼ 6.8ms, TE ¼ 3.2ms, TI ¼ 900ms,
matrix ¼ 256 � 256mm, FOV ¼ 240 � 256 � 204mm, slice
thickness ¼ 1.2mm), 3D T2-weighted FLAIR (TR ¼ 4800ms,
TE ¼ 266ms, TI ¼ 1650ms, matrix ¼ 512 � 512, FOV ¼ 250 �
250 � 184mm, slice thickness ¼ 0.56mm), and DTI (TR ¼
3900ms, TE ¼ 810ms, matrix ¼ 80 � 80, FOV ¼ 230 � 90 �

230mm, slice thickness ¼ 3mm). DTI was performed by using a
single-shot, spin–echo EPI sequence with a nonzero b-value
(b¼ 1,000 s/mm2) along 15 diffusion-encoding gradient direc-
tions. Postcontrast (gadolinium) T1WI was acquired at each
time point to determine whether the lesions were active or inac-
tive. The total scanning time was 37min.

WM Lesion and NAWMMask
WM Lesion Segmentation. 3D T2-weighted FLAIR WM lesions
were identified and automatically segmented for each patient at
each time point by using the Lesion-Prediction Algorithm22

implemented in the Lesion Segmentation Toolbox,23 version
3.0.05, and run in Statistical Parametric Mapping, version 12
(SPM12; http://www.fil.ion.ucl.ac.uk/spm/). All produced lesion
maps were visually checked and manually corrected to ensure
that no errors occurred. The lesion mask that referred to the all
voxels of all lesions identified after WM lesion segmentation was
also produced.

Brain Segmentation. Brain segmentation was carried out by using
the Computational Anatomy Toolbox, version 12.6 (CAT12), run
with SPM12 implemented in MATLAB R2020a version 9.8.0
(MathWorks). To avoid tissue segmentation bias, lesion-filling was
first conducted for MPRAGE images, with the average intensity of
surrounding NAWM via “lesion-filling” implemented in Lesion
Segmentation Toolbox.24 Then, the brain was segmented into 3
classes: GM, WM, and CSF, and the WM mask was automatically
generated. NAWM masks were obtained by subtracting the lesion
mask from the whole WMmask.

DTI Diffusion Measurements Analysis
DTI data were preprocessed by using the FMRIB Software
Library (http://www.fmrib.ox.ac.uk/fsl).25 In the preprocessing
steps, the parametric maps (FA, MD, AD, and RD) were derived.
The details are provided in the Online Supplemental Data. Then
b0 images were transformed into native MPRAGE space.26 The
derived transformation was applied to FA, MD, AD, and RD
maps. Then, the measurement values were obtained by using
“fslmeants,” part of FMRIB Software Library (https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/Fslutils),25 by using the abovementioned masks.

Structural WM Network Analysis
Node definition. Node and edge were 2 essential components of
structural network. Details of the structural WM network analysis
are provided in the Online Supplemental Data. Node definition
was performed through the following procedures by using
SPM12: 1) MPRAGE and b0 first underwent re-origin to make
the subsequent co-registration much more accurate; 2) MPRAGE
was linearly co-registered to the native b0 image, and the trans-
formation obtained was N; 3) MPRAGE was nonlinearly normal-
ized to the ICBM152 T1 template in the standardized Montreal
Neurological Institute space. The transformation matrix pro-
duced was M, and the inverse transformation matrix obtained
was M�1; and 4) M�1 and N were applied to 90 regions derived
from the Automated Anatomical Labeling (https://omictools.
com/aaltool)27 atlas in the Montreal Neurological Institute space.
Then, the brain was divided into 90 regions in the native diffu-
sion space, which represented the nodes of the brain network.
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This node definition method has been adopted in previous
research.16,28,29 The parcellation quality of the b0 image is pro-
vided in the Online Supplemental Data.

WM Tractography. After preprocessing, DTI was applied to the
Diffusion Toolkit30 for deterministic tractography. For the
tractography setting, the Fiber Assignment by Continuous
Tracking31 algorithm was applied; the FA threshold of tracking
was set between 0.2 and 1, and the turning angle was 45°, which
indicated that if the FA value was ,0.2 or the turning angle of
the fiber was .45°, the tractography would terminate automati-
cally.32 These settings have been commonly used in previous
studies.16,29,33,34

Edge Definition. The edges represent the structural connections
between 2 separate GM regions. A threshold value of the edge
connection was needed to be set to reduce false-positive connec-
tions caused by noise and the limitations of tractography. In this
study, a threshold of 3 (fiber bundles) was used, which indicated
that 2 pair regions were considered connected only if more than
3 fibers existed between them. This threshold value has been
commonly used in previous studies.16,34

Network Construction. The UCLA Multimodal Connectivity
package (https://github.com/jbrown81/umcp) was used to mea-
sure the structural connections between between 2 regions. A
structural WM network was established for each participant at
each time point. Network measurements, including the nodal
degree, nodal efficiency, nodal path length, and nodal clustering
coefficient, were computed by using the GRaph thEoreTical
Network Analysis toolbox (GRETNA).35

Statistical Analysis
All statistical analyses were performed by using SPSS Statistics
Version 25 (IBM) and GraphPad Prism version 8.0.0 for
Windows (GraphPad Software). Statistical significance was set at
P, .05 in all analyses. The normality of the continuous data dis-
tribution was tested by using the Shapiro-Wilk test.

Repeated-measures ANCOVA was applied to quantify longi-
tudinal changes in DTI and network measurements assuming
normal distribution and equal variance, wherein the measure-
ments served as a within-subject variable, and age and sex were
the confounders. The Bonferroni method was used in the subse-
quent post hoc pair-wise analysis for these variables. Sphericity
was a necessity for data distribution in repeated-measures
ANCOVA. The Greenhouse-Geisser method was adopted when
sphericity could not be satisfied, as determined by the Mauchly

test. When neither normal distribution
nor equal variance assumptions were
satisfied, the nonparametric Friedman
test method was used. The false discov-
ery rate was used to correct for multiple
comparisons.

To explore the relationship between
these measurements of all brain nodes
and EDSS, a series of correlation analy-
ses were first conducted to select the
significant regions with EDSS. The left

and right nodes were averaged as 1 node (we did not differentiate
between the left and right hemispheres, and the measurement
values of the left and right hemispheres of the same node were
averaged). All the significant regions, age, and sex together were
then put into the stepwise linear model to select the significant
predictor of EDSS.

RESULTS
Demographic and Clinical Characteristics
All the enrolled 18 patients with MS (15 relapsing-remitting and
3 SPMS) completed the MR imaging scanning and clinical assess-
ment at the 3 time points. The demographic and clinical charac-
teristics of the patients are presented in Table 1. The duration,
the time since initial diagnosis of MS, was also provided.

All patients received disease-modifying drugs at the beginning
of the study. Two patients with RRMS and 3 patients with SPMS
showed worsening during the follow-up period. The details of the
patients are presented in Online Supplemental Data. The EDSS
scores did not change significantly (Table 1).

DTI Measurements and Association with EDSS
We observed that FA of lesion was smaller than that of NAWM,
while MD, AD, and RD of lesion was larger than that of NAWM
across all subjects and time points (Online Supplemental Data).
However, all DTI measurements of the lesion and NAWM
remained stable over time, as shown in the Online Supplemental
Data. There was no significant association among the diffusion
measurements of the lesions, NAWM, and EDSS.

Structural WM Network Measurements
Longitudinal changes in the significant nodal measurements are
presented in Figure 1 and the Online Supplemental Data. The
nodal degree and nodal efficiency of the left middle frontal gyrus
(MFG) and bilateral inferior frontal gyrus, opercular part
(IFGoperc) displayed significant decline between t3 and t1; in
contrast, the nodal path length of these regions showed a signifi-
cant increase between t3 and t1. Between t1 and t2 and between
t2 and t3, only the region of the left IFGoperc presented signifi-
cant alterations; that is, the nodal degree and nodal efficiency dis-
played reduction, whereas the nodal path length showed an
increase at t2 compared with those at baseline and at t3 compared
with those at t2. In addition, the right superior parietal gyrus
exhibited a significant reduction in nodal efficiency between t1
and t2, and between t1 and t3. The nodal clustering coefficients
of all the regions remained stable over time (data not shown).

Table 1: Demographic and clinical characteristics of MS

MS

P ValueBaseline 6 Months 12 Months
Sample size 18 18 18 NA
Female:male 13:5 13:5 13:5 NA
Age (yr) 39.11 6 13.03 39.61 6 13.03 40.11 6 13.03 NA
Duration (yr) 12.78 6 8.53 13.28 6 8.53 13.78 6 8.53 NA
EDSS 3.94 6 2.25 3.94 6 2.25 4.03 6 2.18 .633

Note:—NA indicates not applicable. The continuous measurements are presented as mean 6 standard deviation.
EDSS did not show significant changes during the follow-up period. Duration: the time since initial diagnosis of MS.
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Association between Network Measurements and EDSS
A series of correlations were analyzed to further explore which
type of measurement showed a significant association with
EDSS. The regions significantly related to EDSS are shown in
Figure 2 and the Online Supplemental Data. All selected nodes
were entered into the stepwise linear model. Only the nodal
path length of the superior frontal gyrus, medial orbital part
(ORBsupmed) was selected as a significant predictor for EDSS
(Fig 3; Table 2).

DISCUSSION
In this study, we probed the brain changes in DTI and network
measurements over a 1-year follow-up period in 18 patients with
MS. The whole lesions (defined as all voxels of all lesions identi-
fied after WM lesion segmentation) and NAWM were chosen
separately as the ROIs in the conventional diffusion measurement
analysis. DTI measurements did not change significantly over the
entire study period. While the network measurements showed
significant alteration, and their clinical relevance with EDSS was
also observed. Based on these findings, we speculated that the
network measures may be used to monitor brain changes for MS
during follow-up.

DTI Measurements
Brain changes within 1 year in MS as
measured by using DTI remain incon-
clusive. Some research did not detect
significant alterations of diffusion mea-
surement in NAWM or lesions for MS
during the 1-year follow-up period.5,36-38

For example, Ontaneda et al5 observed
that the FA, MD, AD, and RD of
NAWM remained stable during the 1-
year follow-up period. Our study
about diffusion measures can replicate
their findings. However, some other
studies did report significant progres-
sive microstructural damage during
their follow-up period,39,40 which devi-
ated from our findings. This may be
attributed to the lower sample size,
different MS subtypes included, analy-
sis methods, or heterogeneous disease-
modifying drugs used.

Structural WM Nodal Network
Measurements
We detected topological changes in MS
in several frontal brain regions in
patients with MS. Compared with base-
line, MS showed a significant decrease
in the nodal degree and nodal efficiency
and significant increase in the nodal
path length in the left MFG and bilat-
eral IFGoperc. Reduced nodal effi-
ciency has been reported in previous
studies on the MFG and IFGoperc for
MS compared with healthy controls.16

Our longitudinal studies extended this to a longitudinal period,
as these regions exhibited significant changes during the 1-year
follow-up period. The pathophysiological changes behind the
reduced nodal efficiency may be related to the demyelination and
axonal damage, which caused the disconnection between the
nodes and eventually induced the lower efficiency of information
transfer/communication.41 Our findings indicate that the nodal
degree, nodal efficiency, and nodal path length of the left MFG
and bilateral IFGoperc could be used to monitor brain changes
over time; moreover, these measurements may be developed as
neuroimaging biomarkers to track brain changes in MS, but
much more future work is needed. Specifically, the small sample
size can be increased in future longitudinal studies, and prospec-
tive experiments should be performed. External validation could
further verify their clinical values. Due to the small sample size,
we could not differentiate between RRMS and SPMS. However,
the results were almost stable when we excluded the 3 patients
with SPMS (Online Supplemental Data). Another factor that
may impact the findings was the disease-modifying treatment.
However, we performed the subgroup analysis–the group was
divided into 2 subgroups: high-efficiency group (patients who
were stable) and low-efficiency group (patients who displayed

FIG 1. Plots of significant nodal network measurements of MS at different time points. *P, .05;
**P, .01; ***P, .001.

4 Zhang � 2024 www.ajnr.org



worsening, including MS02, MS04, MS06, MS07, and MS16).
The results are presented in the Online Supplemental Data. We
did not detect any significant difference between the 2 subgroups.
This suggested that the disease-modifying treatment did not
impact the findings.

In our analysis, statistically significant changes were not
detected for the diffusion measurements. However, brain struc-
tural network measurements showed significant alterations
compared with those at baseline. This suggests that conven-
tional diffusion disruption and WM network reorganization
may not share identical temporal patterns, indicating that

network measurements could be used to monitor brain changes
during follow-up.

Association between Network Measurements and EDSS
We further explored the relationship between the nodal measure-
ments of all brain regions and EDSS. A multiple linear regression
model was established between the nodal path length of
ORBsupmed and EDSS, which indicated that it had the poten-
tial to be a promising predictor for EDSS. In a longitudinal MS
study, Tsagkas et al42 found that cortical thickness changes in
the ORBsupmed region were significantly correlated with EDSS
changes during the follow-up period, indicating a relationship
between this brain region and EDSS. The underlying cytostruc-
tural mechanism may be related to the intralesional axonal loss
and the following Wallerian degeneration. This eventually may
cause the clinical disability. Similarly, these cytostructural changes
may also cause the disconnection between the brain regions and
increase the path length needed to information transfer. So, we
were allowed to observe a positive relationship between nodal path
length of ORBsupmed and EDSS.

Limitations
Our study still has some limitations. We did not recruit healthy
controls; therefore, we could not track longitudinal changes in
healthy individuals and were unable to compare the longitudinal
differences between patients with MS and healthy controls. Future
studies should also recruit healthy controls. Furthermore, our

FIG 3. Plots of the stepwise linear regression between the nodal path
length of superior frontal gyrus, medial orbital part (ORBsupmed), and
baseline EDSS.

FIG 2. Three-dimensional graphs showed regions representing significant association with EDSS. A, Nodal degree. B, Nodal clustering coefficient. C,
Nodal efficiency. D, Nodal path length. Brain region corresponding to the anatomical labels can be found in Automated Anatomical Labeling template.

AJNR Am J Neuroradiol �:� � 2024 www.ajnr.org 5



sample size was relatively small, and our findings may be viewed
as preliminary and need confirmation in a larger cohort of MS.
However, in this longitudinal study, each patient was examined
and assessed 3 times, and the findings could still provide some
clinical value.

CONCLUSIONS
The nodal degree, nodal efficiency, and nodal path length of the
left MFG and bilateral IFGoperc may be used to monitor the brain
changes over time in MS. The nodal path length of ORBsupmed
could be used to evaluate physical disability in patients with MS.
These findings together could elevate our understanding of MS.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.

REFERENCES
1. Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N Engl J

Med 2018;378:169–80 CrossRef Medline
2. Ge Y, Law M, Grossman RI. Applications of diffusion tensor MR

imaging in multiple sclerosis. Ann NY Acad Sci 2006;1064:202–19
CrossRef Medline

3. Inglese M, Bester M. Diffusion imaging in multiple sclerosis:
research and clinical implications. NMR Biomed 2010;23:865–72
CrossRef Medline

4. Soares JM, Marques P, Alves V, et al. A hitchhiker’s guide to diffu-
sion tensor imaging. Front Neurosci 2013;7:31 CrossRef Medline

5. Ontaneda D, Sakaie K, Lin J, et al. Identifying the start of multiple
sclerosis injury: a serial DTI study. J Neuroimaging 2014;24:569–76
CrossRef Medline

6. Huang J, Liu Y, Zhao T, et al. White matter microstructural altera-
tions in clinically isolated syndrome and multiple sclerosis. J Clin
Neurosci 2018;53:27–33 CrossRef Medline

7. Klistorner A, Wang C, Yiannikas C, et al. Evidence of progressive
tissue loss in the core of chronic MS lesions: a longitudinal DTI
study.Neuroimage Clin 2018;17:1028–35 CrossRef Medline

8. Yu FF, Chiang FL, Stephens N, et al. Characterization of normal-
appearing white matter in multiple sclerosis using quantitative
susceptibility mapping in conjunction with diffusion tensor imag-
ing.Neuroradiology 2019;61:71–79 CrossRef Medline

9. de Kouchkovsky I, Fieremans E, Fleysher L, et al. Quantification of
normal-appearing white matter tract integrity in multiple sclerosis:
a diffusion kurtosis imaging study. J Neurol 2016;263:1146–55
CrossRef Medline

10. Rubinov M, Sporns O. Complex network measures of brain connec-
tivity: uses and interpretations.Neuroimage 2010;52:1059–69 CrossRef
Medline

11. Fleischer V, Radetz A, Ciolac D, et al. Graph theoretical framework
of brain networks in multiple sclerosis: a review of concepts.
Neuroscience 2019;403:35–53 CrossRef Medline

12. Van Essen DC. A tension-based theory of morphogenesis and com-
pact wiring in the central nervous system. Nature 1997;385:313–18
CrossRef Medline

13. Newman ME. Modularity and community structure in networks.
Proc Natl Acad Sci USA 2006;103:8577–82 CrossRef Medline

14. Llufriu S, Martinez-Heras E, Solana E, et al. Structural networks
involved in attention and executive functions in multiple sclerosis.
Neuroimage Clin 2017;13:288–96 CrossRef Medline

15. Kocevar G, Stamile C, Hannoun S, et al. Graph theory-based
brain connectivity for automatic classification of multiple
sclerosis clinical courses. Front Neurosci 2016;10:478 CrossRef
Medline

16. Shu N, Liu Y, Li K, et al. Diffusion tensor tractography reveals
disrupted topological efficiency in white matter structural net-
works in multiple sclerosis. Cereb Cortex 2011;21:2565–77
CrossRef Medline

17. Hawkins R, Shatil AS, Lee L, et al. Reduced global efficiency and
random network features in patients with relapsing-remitting
multiple sclerosis with cognitive impairment. AJNR Am J
Neuroradiol 2020;41:449–55 CrossRef Medline

18. Welton T, Constantinescu CS, Auer DP, et al. Graph theoretic analy-
sis of brain connectomics in multiple sclerosis: reliability and rela-
tionship with cognition. Brain Connect 2020;10:95–104 CrossRef
Medline

19. Charalambous T, Tur C, Prados F, et al. Structural network disrup-
tion markers explain disability in multiple sclerosis. J Neurol
Neurosurg Psychiatry 2019;90:219–26 CrossRef Medline

20. Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple
sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol
2018;17:162–73 CrossRef Medline

21. Lublin FD, Coetzee T, Cohen JA, International Advisory
Committee on Clinical Trials in MS, et al. The 2013 clinical course
descriptors for multiple sclerosis. Neurology 2020;94:1088–92
CrossRef Medline

22. Schmidt P. Bayesian inference for structured additive regression models
for large-scale problems with applications to medical imaging, Dissertation,
LMU München: Faculty of Mathematics, Computer Science and
Statistics 2017

23. Schmidt P, Gaser C, Arsic M, et al. An automated tool for detection
of FLAIR-hyperintense white-matter lesions in multiple sclerosis.
Neuroimage 2012;59:3774–83 CrossRef Medline

24. Battaglini M, Jenkinson M, De Stefano N. Evaluating and reducing
the impact of white matter lesions on brain volume measurements.
Hum Brain Mapp 2011;33:2062–71 CrossRef Medline

25. Smith SM, Jenkinson M, Woolrich MW, et al. Advances in func-
tional and structural MR image analysis and implementation as
FSL. Neuroimage 2004;23 Suppl 1:S208–19 CrossRef Medline

26. Jenkinson M, Beckmann CF, Behrens TE, et al. FSL. NeuroImage
2012;62:782–90 CrossRef Medline

27. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated
anatomical labeling of activations in SPM using a macroscopic an-
atomical parcellation of the MNI MRI single-subject brain.
Neuroimage 2002;15:273–89 CrossRef Medline

28. Gong G, He Y, Concha L, et al.Mapping anatomical connectivity pat-
terns of human cerebral cortex using in vivo diffusion tensor imag-
ing tractography. Cereb Cortex 2009;19:524–36 CrossRef Medline

29. Liu Y, Duan Y, Dong H, et al. Disrupted module efficiency of struc-
tural and functional brain connectomes in clinically isolated syn-
drome and multiple sclerosis. Front Hum Neurosci 2018;12:138
CrossRef Medline

30. Wang R, Benner T, Sorensen AG, et al. Diffusion toolkit: a software
package for diffusion imaging data processing and tractography.
Proc Intl Soc Mag Reson Med 2007;15

Table 2: Selected linear regression model about EDSS

Dependent Variable R2 Adjusted R2 Regression Coefficient 95% CI P Value
Model EDSS(t1) 0.366 0.327 — — —

Constant — — — �46.625 [�81.89, �11.35] .013
Nodal path length of ORBsupmed — — — 34.231 [10.36, 58.10] .008

Note:—The en dash indicates not applicable.

6 Zhang � 2024 www.ajnr.org

http://www.ajnr.org/sites/default/files/additional-assets/Disclosures/March%202024/0721.pdf
http://www.ajnr.org
http://dx.doi.org/10.1056/NEJMra1401483
https://www.ncbi.nlm.nih.gov/pubmed/29320652
http://dx.doi.org/10.1196/annals.1340.039
https://www.ncbi.nlm.nih.gov/pubmed/16394158
http://dx.doi.org/10.1002/nbm.1515
https://www.ncbi.nlm.nih.gov/pubmed/20882528
http://dx.doi.org/10.3389/fnins.2013.00031
https://www.ncbi.nlm.nih.gov/pubmed/23486659
http://dx.doi.org/10.1111/jon.12082
https://www.ncbi.nlm.nih.gov/pubmed/25370339
http://dx.doi.org/10.1016/j.jocn.2018.01.007
https://www.ncbi.nlm.nih.gov/pubmed/29754967
http://dx.doi.org/10.1016/j.nicl.2017.12.010
https://www.ncbi.nlm.nih.gov/pubmed/29387524
http://dx.doi.org/10.1007/s00234-018-2137-7
https://www.ncbi.nlm.nih.gov/pubmed/30539215
http://dx.doi.org/10.1007/s00415-016-8118-z
https://www.ncbi.nlm.nih.gov/pubmed/27094571
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
https://www.ncbi.nlm.nih.gov/pubmed/19819337
http://dx.doi.org/10.1016/j.neuroscience.2017.10.033
https://www.ncbi.nlm.nih.gov/pubmed/29101079
http://dx.doi.org/10.1038/385313a0
https://www.ncbi.nlm.nih.gov/pubmed/9002514
http://dx.doi.org/10.1073/pnas.0601602103
https://www.ncbi.nlm.nih.gov/pubmed/16723398
http://dx.doi.org/10.1016/j.nicl.2016.11.026
https://www.ncbi.nlm.nih.gov/pubmed/28050344
http://dx.doi.org/10.3389/fnins.2016.00478
https://www.ncbi.nlm.nih.gov/pubmed/27826224
http://dx.doi.org/10.1093/cercor/bhr039
https://www.ncbi.nlm.nih.gov/pubmed/21467209
http://dx.doi.org/10.3174/ajnr.A6435
https://www.ncbi.nlm.nih.gov/pubmed/32079601
http://dx.doi.org/10.1089/brain.2019.0717
https://www.ncbi.nlm.nih.gov/pubmed/32079409
http://dx.doi.org/10.1136/jnnp-2018-318440
https://www.ncbi.nlm.nih.gov/pubmed/30467210
http://dx.doi.org/10.1016/S1474-4422(17)30470-2
https://www.ncbi.nlm.nih.gov/pubmed/29275977
http://dx.doi.org/10.1212/WNL.0000000000009636
https://www.ncbi.nlm.nih.gov/pubmed/32471886
http://dx.doi.org/10.1016/j.neuroimage.2011.11.032
https://www.ncbi.nlm.nih.gov/pubmed/22119648
http://dx.doi.org/10.1002/hbm.21344
https://www.ncbi.nlm.nih.gov/pubmed/21882300
http://dx.doi.org/10.1016/j.neuroimage.2004.07.051
https://www.ncbi.nlm.nih.gov/pubmed/15501092
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
https://www.ncbi.nlm.nih.gov/pubmed/21979382
http://dx.doi.org/10.1006/nimg.2001.0978
https://www.ncbi.nlm.nih.gov/pubmed/11771995
http://dx.doi.org/10.1093/cercor/bhn102
https://www.ncbi.nlm.nih.gov/pubmed/18567609
http://dx.doi.org/10.3389/fnhum.2018.00138
https://www.ncbi.nlm.nih.gov/pubmed/29692717


31. Mori S, Crain BJ, Chacko VP, et al. Three-dimensional tracking of
axonal projections in the brain by magnetic resonance imaging.
Ann Neurol 1999;45:265–69

32. Basser PJ, Pajevic S, Pierpaoli C, et al. In vivo fiber tractography
using DT-MRI data.Magn Reson Med 2000;44:625–32 CrossRef

33. Shu N, Duan Y, Xia M, et al. Disrupted topological organization of
structural and functional brain connectomes in clinically isolated
syndrome and multiple sclerosis. Sci Rep 2016;6:29383 CrossRef
Medline

34. Xu X, Lau KK, Wong YK, et al. The effect of the total small vessel dis-
ease burden on the structural brain network. Sci Rep 2018;8:7442
CrossRef Medline

35. Wang J, Wang X, Xia M, et al. GRETNA: a graph theoretical net-
work analysis toolbox for imaging connectomics. Front Hum
Neurosci 2015;9:386

36. Schneider R, Genc E, Ahlborn C, et al. Temporal dynamics of diffu-
sion metrics in early multiple sclerosis and clinically isolated syn-
drome: a 2-year follow-up tract-based spatial statistics study. Front
Neurol 2019;10:1165 CrossRef Medline

37. Zivadinov R, Bergsland N, Hagemeier J, et al. Effect of teriflunomide
on gray and white matter brain pathology in multiple sclerosis
using volumetric and diffusion-tensor imaging MRI measures. J
Neurol Sci 2018;388:175–81 CrossRef Medline

38. Rashid W, Hadjiprocopis A, Davies G, et al. Longitudinal evaluation
of clinically early relapsing-remitting multiple sclerosis with diffu-
sion tensor imaging. J Neurol 2008;255:390–97 CrossRef Medline

39. Toschi N, De Santis S, Granberg T, et al. Evidence for progressive
microstructural damage in early multiple sclerosis by multi-shell
diffusion magnetic resonance imaging. Neuroscience 2019;403:27–
34 CrossRef Medline

40. Fox RJ, Cronin T, Lin J, et al. Measuring myelin repair and axonal
loss with diffusion tensor imaging. AJNR Am J Neuroradiol
2011;32:85–91 CrossRef Medline

41. Lemus HN, Warrington AE, Rodriguez M.Multiple sclerosis. Neurol
Clin 2018;36:1–11 CrossRef Medline

42. Tsagkas C, Chakravarty MM, Gaetano L, et al. Longitudinal patterns of
cortical thinning in multiple sclerosis. Hum Brain Mapp 2020;41:2198–
215 CrossRef Medline

AJNR Am J Neuroradiol �:� � 2024 www.ajnr.org 7

http://dx.doi.org/10.1002/1522-2594(200010)44:4&hx003C;625::AID-MRM17&hx003E;3.0.CO;2-O
http://dx.doi.org/10.1038/srep29383
https://www.ncbi.nlm.nih.gov/pubmed/27403924
http://dx.doi.org/10.1038/s41598-018-25917-4
https://www.ncbi.nlm.nih.gov/pubmed/29748646
http://dx.doi.org/10.3389/fneur.2019.01165
https://www.ncbi.nlm.nih.gov/pubmed/31749760
http://dx.doi.org/10.1016/j.jns.2018.03.028
https://www.ncbi.nlm.nih.gov/pubmed/29627017
http://dx.doi.org/10.1007/s00415-008-0678-0
https://www.ncbi.nlm.nih.gov/pubmed/18350361
http://dx.doi.org/10.1016/j.neuroscience.2019.01.022
https://www.ncbi.nlm.nih.gov/pubmed/30708049
http://dx.doi.org/10.3174/ajnr.A2238
https://www.ncbi.nlm.nih.gov/pubmed/20947644
http://dx.doi.org/10.1016/j.ncl.2017.08.002
https://www.ncbi.nlm.nih.gov/pubmed/29157392
http://dx.doi.org/10.1002/hbm.24940
https://www.ncbi.nlm.nih.gov/pubmed/32067281

	Dynamic Changes in Long-Standing Multiple Sclerosis Revealed by Longitudinal Structural Network Analysis Using Diffusion Tensor Imaging
	MATERIALS AND METHODS
	PARTICIPANTS
	MR IMAGING ACQUISITION
	WM LESION AND NAWM MASK
	Outline placeholder
	WM Lesion Segmentation
	Brain Segmentation


	DTI DIFFUSION MEASUREMENTS ANALYSIS
	STRUCTURAL WM NETWORK ANALYSIS
	Outline placeholder
	Node definition
	WM Tractography
	Edge Definition
	Network Construction


	STATISTICAL ANALYSIS
	RESULTS
	DEMOGRAPHIC AND CLINICAL CHARACTERISTICS
	DTI MEASUREMENTS AND ASSOCIATION WITH EDSS
	STRUCTURAL WM NETWORK MEASUREMENTS
	ASSOCIATION BETWEEN NETWORK MEASUREMENTS AND EDSS
	DISCUSSION
	DTI MEASUREMENTS
	STRUCTURAL WM NODAL NETWORK MEASUREMENTS
	ASSOCIATION BETWEEN NETWORK MEASUREMENTS AND EDSS
	LIMITATIONS
	CONCLUSIONS
	REFERENCES


