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ORIGINAL RESEARCH
SPINE

Deep Learning–Generated Synthetic MR Imaging STIR Spine
Images Are Superior in Image Quality and Diagnostically

Equivalent to Conventional STIR: A Multicenter, Multireader
Trial

L.N. Tanenbaum, S.C. Bash, G. Zaharchuk, A. Shankaranarayanan, R. Chamberlain, M. Wintermark, C. Beaulieu,
M. Novick, and L. Wang

ABSTRACT

BACKGROUND AND PURPOSE: Deep learning image reconstruction allows faster MR imaging acquisitions while matching or
exceeding the standard of care and can create synthetic images from existing data sets. This multicenter, multireader spine study
evaluated the performance of synthetically created STIR compared with acquired STIR.

MATERIALS AND METHODS: From a multicenter, multiscanner data base of 328 clinical cases, a nonreader neuroradiologist ran-
domly selected 110 spine MR imaging studies in 93 patients (sagittal T1, T2, and STIR) and classified them into 5 categories of disease
and healthy. A DICOM-based deep learning application generated a synthetically created STIR series from the sagittal T1 and T2
images. Five radiologists (3 neuroradiologists, 1 musculoskeletal radiologist, and 1 general radiologist) rated the STIR quality and clas-
sified disease pathology (study 1, n ¼ 80). They then assessed the presence or absence of findings typically evaluated with STIR in
patients with trauma (study 2, n ¼ 30). The readers evaluated studies with either acquired STIR or synthetically created STIR in a
blinded and randomized fashion with a 1-month washout period. The interchangeability of acquired STIR and synthetically created
STIR was assessed using a noninferiority threshold of 10%.

RESULTS: For classification, there was a decrease in interreader agreement expected by randomly introducing synthetically created
STIR of 3.23%. For trauma, there was an overall increase in interreader agreement by 11.9%. The lower bound of confidence for
both exceeded the noninferiority threshold, indicating interchangeability of synthetically created STIR with acquired STIR. Both the
Wilcoxon signed-rank and t tests showed higher image-quality scores for synthetically created STIR over acquired STIR (P, .0001).

CONCLUSIONS: Synthetically created STIR spine MR images were diagnostically interchangeable with acquired STIR, while providing
significantly higher image quality, suggesting routine clinical practice potential.

ABBREVIATIONS: Acq-STIR ¼ acquired STIR; CNN ¼ convolutional neural network; DL ¼ deep learning; IQ ¼ image quality; RMSE ¼ root mean square
error; RMSPE ¼ root mean square percentage error; Syn-STIR ¼ synthetically created STIR

Atypical clinical protocol for spine MR imaging uses T1WI,
T2WI, and STIR scans to depict anatomy and provide

adequate sensitivity to a variety of pathologic conditions.
STIR offers a combination of T1 and T2 contrast-weighting

and nulled fat signal to highlight pathologic changes in tissues.
The fat suppression offered by STIR is more uniform and resistant
to magnetic field inhomogeneities than other fat-saturation meth-
ods such as spectral “fat-sat,” especially near metallic foreign

bodies, tissue interfaces with high susceptibility differences (like
the skull base/sinuses), and across large body parts like the spine.
On lower-field permanent magnets with lower homogeneity,
STIR may be the only fat-suppression method available. STIR
images have inherently lower SNR than T1WI and T2WI. Despite
approaches that use larger voxel sizes to mitigate this challenge,
scan times are still long, more susceptible to motion, and harder
for patients to tolerate.

Deep learning (DL)-based reconstruction techniques mitigate
this challenge by enabling faster acquisitions while matching or
even exceeding standard-of-care image quality (IQ).1-4 Recent
work has led to DL methods that can generate entirely synthetic
image contrasts, potentially shortening overall study times by
removing the need to acquire certain series.

Synthesizing new contrast information from available images
has been an active area of research in the MR imaging domain.
Convolutional neural network (CNN)-based approaches have
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demonstrated state-of-the-art performance for MR imaging con-
trast synthesis.5-8 While most of the literature has focused on
one-to-one synthesis, several studies considered the many-to-one
synthesis problem, in which the algorithm takes multiple con-
trasts as input and generates 1 missing contrast.5,7,9 Previous
work has demonstrated the potential to synthesize STIR images
from T1WI and T2WI.10 This study goes further by using exami-
nations from multiple scanner manufacturers and a wider variety
of magnetic field strengths, including a more comprehensive set
of pathologies, and by performing voxelwise analysis of the syn-
thetically created STIR (Syn-STIR) images. Furthermore, the
technical methods used in this work integrate multiple maps
(including an anatomy-aware segmentation map and a pathology
saliency map) in the reconstruction network, so the syn-STIR
images maintain high consistency with the acquired STIR (Acq-
STIR) images. Our methods also avoid the use of generative
adversarial networks, which are prone to introducing structures
in synthesized images that are not present in the source images.

This multicenter, multireader study evaluated the diagnostic
interchangeability and qualitative image quality of a DL-gener-
ated Syn-STIR against a clinical standard-of-care Acq-STIR.
There are established methods to assess the interchangeability of
the 2 image-acquisition methods, which determine whether the
images are diagnostically equivalent.11 Two images are inter-
changeable or diagnostically equivalent if a given patient would
receive the same diagnosis regardless of which of the 2 images
was used. Diagnostic equivalence is tested by comparing an
interreader agreement using the baseline imaging method with
an interreader agreement using the method being tested versus
the baseline while accounting for variability across cases and
readers. In addition, multiple quantitative methods were also
used to compare the Syn-STIR images with the Acq-STIR
images.

MATERIALS AND METHODS
Overview
A DL model was applied to synthesize a sagittal Syn-STIR series
from the sagittal T1 and sagittal T2 of clinical spine MR imaging
studies. The model contains 3 phases, an anatomy-aware map, a
pathology-aware map, and a reconstruction map. For the anat-
omy-aware map, the segmentation map was obtained for each
anatomy, making the anatomy-based operation feasible. The
pathology-aware map is a saliency map used to guide the net-
work to maintain pathologic consistency. During the training
process, the 2 inputs (sagittal T1 and sagittal T2) were fed into
the reconstruction network under separate branches and later
concatenated to avoid potential blurriness due to misregistra-
tion. We implemented the DL model in TensorFlow (https://
www.tensorflow.org/), trained on an NVIDIA V100 GPU (https://
www.nvidia.com/en-us/data-center/v100/) with an ADAM opti-
mizer (https://machinelearningjourney.com/index.php/2021/01/
09/adam-optimizer/),12 and applied image registration between
the 2 inputs to reduce potential misalignment. The network was
trained by comparing the output Syn-STIR image with the Acq-
STIR image through multiple loss functions (Online Supplemental
Data).

Participants and Distribution of Pathologies
With institutional review board approval, a nonreader senior
neuroradiologist identified the dominant pathology (as described
below) in a multicenter, multiscanner data base of 328 approxi-
mately equal numbers of cervical, thoracic, and lumbar spine MR
imaging cases referred for a variety of conditions. From this
group, 93 unique patients were evaluated in 2 separate studies.
First, 80 patients (40 females, 36 males, 4 not available; age range,
16–89 years) were selected randomly from among 5 categories of
disease (defined as the most dominant pathology) based on the
findings on the complete study (study 1). The categories were
cord lesion (n¼ 8), noncord lesion (n¼ 15), degenerative disease
(n ¼ 20), infection (n ¼ 10), trauma (n ¼ 17), and healthy (n ¼
10). The readers were given instructions outlining which clinical
entities should fall into each category and to help with classifica-
tion when multiple pathologies were present. More details can be
found in the Online Supplemental Data. In addition, a second
study evaluating the ability of readers to identify important fea-
tures in the setting of trauma was performed (study 2). Patients
(13 men, 17 women; age range, 18–89 years) for study 2 included
10 with no imaging evidence of trauma (separate from the
patients in study 1) and 20 with imaging evidence of trauma (17
of the patients with trauma in study 1 supplemented by 3 addi-
tional patients). These cases were evaluated for the following
findings: prevertebral fluid collections (class I), bone edema
related to fracture (class II), and posterior soft-tissue/ligamentous
injury (class III). The case distribution was class I/II (n¼ 3), class
I/II/III (n ¼ 7), class I/III (n ¼ 5), class II (n ¼ 1), class II/III
(n¼ 1), class III (n¼ 4), and class none (n¼ 9).

Image Acquisition
The images were acquired on a variety of scanners, including 3T
Discovery 750 and 750w, 3T Signa Premier, and 1.5T HDxt (GE
Healthcare); 3T Magnetom Skyra, 3T MagnetomVerio (Siemens);
1.5T Intera (Philips Healthcare); 1.5T Vantage Titan (Canon);
0.6T (Fonar Upright) and 0.3T AIRIS Elite (Hitachi/Fujifilm). The
case distribution by field strength for study 1 was 0.6T (n¼ 1), 1T
(n¼ 1), 1.5T (n¼ 43), and 3T (n¼ 35), and for study 2, it was 1T
(n ¼ 2), 1.5T (n ¼ 16), and 3T (n ¼ 12). The image acquisitions
consisted of sagittal T1, T2, and STIR series using the individual
institution’s routine clinical protocol. Section thickness ranged
from 3 to 5mm. FOV varied from 18 to 24 cm cervical; 27 to
30 cm lumbar; and 30 to 38 cm thoracic; and the acquisition ma-
trix varied from 192� 192 to 800� 380.

Image Processing
The Syn-STIR images were created off-line from existing
DICOM images using a vendor-neutral, CNN software applica-
tion (SubtleSYNTH; Subtle Medical). The CNN was trained to
generate synthetic sagittal STIR images using the sagittal T1 and
T2 images as input. Because the application was DICOM-based,
processing did not require proprietary raw k-space input; thus, it
was capable of processing images from any MR imaging plat-
form. The training set included hundreds of thousands of MR
images from a variety of vendors, scanner models, field strengths,
and clinical sites, as well as a variety of disease states/clinical
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indications, thus experiencing a range of tissue contrasts, acquisi-
tion parameters, patient anatomies, and image quality.

Image Assessment
Five radiologists (3 neuroradiologists, 1 musculoskeletal radiolog-
ist, 1 general radiologist experienced in spine MR imaging) eval-
uated 160 cases. Each case consisted of 3 sagittal image series:
either T1, T2, and Acq-STIR (n ¼ 80) or T1, T2, and Syn-STIR
(n ¼ 80). The image sets were presented in a blinded and
randomized fashion on a commercial DICOM viewer, with a 1-
month washout period between reading sessions (study 1). To
assess diagnostic equivalence, each reader individually classified
the pathologies present. Readers also rated the Acq-STIR and
Syn-STIR image quality on a 5-point Likert scale (1 ¼ unaccept-
able, 2 ¼ poor, 3 ¼ adequate, 4 ¼ good, 5 ¼ excellent), which
served as a collective summary assessment of individual image-
quality metrics, such as perceived SNR, contrast-to-noise ratio,
image sharpness, and artifacts. The same readers also evaluated
the trauma-specific study (n ¼ 30 subjects, n ¼ 60 studies) in the
same blinded and randomized fashion with the same 1-month
washout period (study 2). They were asked to individually classify
the findings for the presence/absence of the following: 1) prever-
tebral fluid collections, 2) fracture-related bone edema, and 3)
posterior soft-tissue/ligamentous injury. In addition, 2 neuroradi-
ologists, including one not involved with studies 1 or 2, per-
formed a blinded side-by-side, qualitative evaluation of the study
1 Acq-STIR and Syn-STIR images, rating the extent of disease
and diagnostic confidence on a 5-point Likert scale, as well as
noting evidence or absence of image aberrations.

RESULTS
Diagnostic-Equivalence Analysis
The 2 imaging methods were assessed for interchangeability or
diagnostic equivalence by comparing the interreader agreement
within Acq-STIR images with the interreader agreement between
Syn-STIR and Acq-STIR images. Interreader agreement for Acq-
STIR images was calculated as the percentage of comparisons
between 2 different readers for the same case in which the read-
ers’ classifications agreed. Interreader agreement for Acq-STIR

versus Syn-STIR images was calculated as
the percentage of comparisons between 2
different readers for the same case that
the readers’ classification when 1 reader
was using the Acq-STIR image and the
other reader was using the Syn-STIR
image agreed with each other. The agree-
ment probability was calculated by mean
of a logistic regression model with ran-
dom effects using the “glmer” function
from the “lme4” package in R statistical
and computing software (http://www.r-
project.org/) following methods described
in the literature.11,13 A noninferiority
analysis was performed with a preset hy-
pothesis that the difference in diagnostic
classification for interreader agreement
for Acq-STIR and Syn-STIR was not

.10% lower than the interreader agreement between Syn-STIR
and Acq-STIR.

Image-Quality Statistical Analysis
Wilcoxon rank-sum tests were performed to assess the equivalence
or superiority of the image quality for each feature. Statistically sig-
nificant superiority for a feature was determined by P, .05.
Adjustment for significance tests for multiple comparisons was
made using a Bonferroni correction.

Voxel-Intensity Analysis
To evaluate the voxelwise correlation between the Syn-STIR
image and the conventional STIR image, we drew 4 ROIs on each
target tissue (vertebral bone, disc, CSF, spinal cord, and fat) and
calculated the mean of the 4 ROIs per series. Note that areas with-
out any pathologies were selected. For example, in patients with
degenerative disease, ROIs were drawn only on the healthy disc.
Similar rules applied to other tissues as well. Bland-Altman analy-
sis14,15 was then applied, followed by the Shapiro-Wilk results on
the difference.16 Additionally, root mean square error (RMSE)
and root mean square percentage error (RMSPE) were calculated.
A Passing-Bablok regression analysis was performed to evaluate
agreement between the 2 images.17

Sample image pairs are shown in Fig 1, demonstrating similar
fat-saturated T2-weighted image contrast of the Syn-STIR as the
Acq-STIR. Lower noise levels are seen in the Syn-STIR images.

Diagnostic Interchangeability
The estimate of interchangeability (diagnostic equivalence) when
accounting for readers and cases as random effects was �3.23%
(95% CI, –6.61%–0.19%), evaluated over 1000 bootstrapped sam-
ples (Fig 2). The decrease in interreader agreement expected
when interchanging Acq-STIR images with Syn-STIR images was
3.23%. Based on the results, the estimate of interchangeability
was not significantly worse than the noninferiority limit of 10%
(P ¼ .001). On the basis of the prespecified noninferiority criteria
of 10%, we concluded that interchanging the Acq-STIR images
with Syn-STIR images would not lead to a significant decrease in

FIG 1. A, L2 body fracture. Conventional acquired STIR (left) and DL synthesized STIR (right).
Note the Syn-STIR manifests fewer motion artifacts, improved sharpness, and greater apparent
SNR. B, Sacral metastasis. Conventional Acq-STIR (left) and DL Syn-STIR (right). Note the striking
reduction in motion artifacts as well as superior overall quality of the Syn-STIR.
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interreader agreement; thus, the Syn-STIR was deemed diagnosti-
cally equivalent to the Acq-STIR.

For the trauma subset, the 3 structure-based classifications
(prevertebral fluid collections, fracture-related bone edema, and
posterior soft-tissue/ligamentous injury) were analyzed separately
as different classes (Fig 3). The estimate of interchangeability (diag-
nostic equivalence) when accounting for readers and cases as ran-
dom effects for the 3 classes was10.85% (95% CI, –4.13%–5.48%),
12.3% (95% CI, –2.8%–7.1%), and12.2% (95% CI, –2.2%–6.4%),

respectively; each class evaluated .1000 bootstrapped samples. In
other words, the interreader agreement can be expected to improve
by 0.85%, 2.3%, and 2.2% when interchanging traditional STIR
images with Syn-STIR images. Based on the results, the estimate of
interchangeability was not significantly worse than the noninfer-
iority limit of 10% (P ¼ .001). Given all 3 classes, a final analysis
was performed in which the results described above from the 3
classes were combined, and “class” was included as a fixed effect in
the statistical model. The interchangeability estimate was 11.9%

(95% CI, –1.1%–5.0%), indicating that
there was an improvement in the inter-
reader agreement found when inter-
changing Acq-STIR images with Syn-
STIR images. We, therefore, conclude
that for the trauma study Syn-STIR was
interchangeable with Acq-STIR.

Image-Quality Analysis
Acq-STIR images had an average IQ
score of 3.21 (SD, 1.08), and Syn-STIR
images scored an average of 3.71 (SD,
1.14). A Wilcoxon signed-rank test
showed a significantly higher median
IQ score for Syn-STIR images than
Acq-STIR images (median ¼ 0.4,
P, .0001). A t test on the paired differ-
ence in IQ scores across artificial intelli-
gence–generated and Acq-STIR images
showed a significantly higher average

FIG 2. Interchangeability when accounting for readers and cases as random effects under the
whole-cohort estimated.1000 bootstrapped samples.

FIG 3. Interchangeability when accounting for readers and cases as random effects under the trauma cohort estimated .1000 bootstrapped
samples. The x-axis represents the estimated interchangeabilities in the unit of percentage, and the y-axis represents the count of bootstrapped
samples. A, Trauma class I. B, Trauma class II. C, Trauma class III. D, Mixed effect for all 3 classes.
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IQ score for Syn-STIR images compared with Acq-STIR images
(mean paired difference¼ 0.50; 95% CI, 0.33–0.67; P, .0001).

Side-by-Side Comparison
In the blinded, side-by-side evaluation of the cases in study one,
94.9% of Syn-STIR sets demonstrated equal or a better extent of
disease compared with Acq-STIR for the first reader and 97.5%
for the second reader; 88.6% of cases provided equal or higher
diagnostic confidence with Syn-STIR for the first reader and
87.3% for the second reader. In addition, no unexpected differen-
ces were found between the 2 STIR types, indicating that the Syn-
STIR method did not create unique artifacts.

Voxel Consistency
The Bland-Altman plots for voxel consistency are shown in Fig 4.
For each tissue, the bias (the mean of the difference between the
Acq-STIR and Syn-STIR) was close to zero. The smallest average
bias was from the CSF, which was �0.04 normalized intensity
units, and the largest average bias was from fat, which was around
�0.25 normalized intensity units. The Shapiro-Wilk results
showed that all P values were . .05, implying that the difference
between the Acq-STIR and the Syn-STIR is normally distributed.

In addition, the RMSE and RMSPE between the Acq-STIR
and Syn-STIR images for each patient were 0.45 and 17.88 nor-
malized intensity units, respectively. For all 80 cases, the median
of the RMSE value was 0.45 normalized intensity units, and the
median of the RMSPE percentage was 17.9%. After confirming
that the 5 tissues passed the Shapiro-Wilk test for normality, the
Passing-Bablok regression was applied to estimate the regression

line and intercept (Fig 5). The slopes of the disc, CSF, and spinal
cord were 1.06, 1.05, and 1.07, which indicate a high correlation
between the 2 results. The slope of bone and fat was 0.85 and
0.78, respectively. The results indicate excellent voxelwise consis-
tency between the Acq-STIR and the Syn-STIR images.

DISCUSSION
STIR is quite powerful in depicting spine pathology and thus is
part of almost all routine spine imaging protocols; however, con-
ventional reconstruction scan times are long. Also, because of the
fat inversion pulse, the SNR of the images is lower than that of
other sequences. A synthetically generated STIR could result in
approximately 3–5minutes of scan time avoided or up to 25%
overall time-savings per examination, increasing imaging enter-
prise efficiency. Because up to 30% of patients report significant
anxiety, largely from claustrophobia, during an MR imaging
study, scan-time reductions inherently improve the patient’s ex-
perience.18 The authors’ internal multicenter surveys have shown
that even minor reductions in examination length result in a sig-
nificantly higher level of patient satisfaction.19

MR imaging examinations are susceptible to image degradation
from motion, particularly during lengthy scans. Motion is a signifi-
cant challenge in MR imaging, occurring in 29% of inpatient/emer-
gency department examinations and 7% of outpatient studies20 and
can lead to the need to repeat sequences or entire studies. Andre et
al21 found that 19.8% of all MR imaging sequences needed to be
repeated due to motion artifacts, correlating with US $592 revenue
loss per hour and an annual loss of US $115,000 per scanner.

FIG 4. Bland-Altman plots for each tissue from 80 clinical cases. The x-axis represents the mean of the normalized intensity value from Syn-
STIR and its nearest neighbor from Acq-STIR, and the y-axis represents the difference between the normalized intensity value from Syn-STIR
and its nearest neighbor from the Acq-STIR.
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The generally inverse relationship between MR image quality
and scan duration is well-established.1,2 Traditionally recon-
structed, high-resolution, high-SNR images require acquisition
times that can be quite long. DL-based image reconstruction is
increasingly used in practice to reduce the time required to pro-
vide high-quality images by up to 50%.1,2 DL image synthesis
offers effective 100% series acceleration. In addition, because the
synthesized images in our study receive the SNR and spatial reso-
lution of the acquired T1WI and T2WI scans, Syn-STIR can be
expected to offer better image quality than is practical with an
Acq-STIR.

Previous work on MR imaging sequence-to-sequence transla-
tion has been performed4-10 but generally in subjects without pa-
thology. This study demonstrated excellent performance in a
patient cohort with a diverse set of typical spinal pathologies and
evaluated key imaging findings commonly assessed with STIR
imaging.

Absolute quality ratings could potentially obscure subtle fail-
ures and artifacts in the synthetically reconstructed image. Thus,
a blinded, side-by-side evaluation was performed to compare the
extent of disease and diagnostic confidence as well as to interro-
gate for evidence of image aberrations. We found that 96% of
Syn-STIR sets manifested equal or better extent of disease com-
pared with Acq-STIR, and 88% of cases provided equal or higher

diagnostic confidence with Syn-STIR. Most important, no unex-

pected image appearances (“hallucinations”) or information losses

were detected. Although our study had no cases in which the net-

work failed to generate an acceptable Syn-STIR image, the quality

of the Syn-STIR image depends on the quality of the input T1 and

T2 images. Therefore, if the input images were to have gross arti-

facts or high noise levels, these could manifest on the Syn-STIR

series.
Our study patients were imaged on scanners of differing ven-

dors and field strengths, drawn from a variety of geographically

diverse facilities, and encompassed a variety of disease entities,

but we acknowledge a risk of inadvertent patient-selection bias or

disease-representation bias during the initial gathering of the

larger patient cohort.
In this randomized, blinded trial, Syn-STIR demonstrated

superior image quality with respect to Acq-STIR. A potential li-

mitation is that the overall qualitative image-quality assessment

was a collective summary of perceived metrics against typical

expectations and is thus biased by subjective preferences.

However, quantitative measures, such as statistical analysis of

voxel consistency across STIR data sets, were robust. Future ex-

ploration could apply synthetic image generation to additional

body parts and other scanning techniques.

FIG 5. Passing-Bablok regression applied to estimate the regression line and intercept. The slope of the disc, CSF, and spinal cord is 1.06, 1.05,
and 1.07, which indicates a high correlation between the 2 results. The slope of bone and fat is 0.85 and 0.78, respectively. The results indicate
excellent voxelwise consistency between the Acq-STIR and Syn-STIR images.
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CONCLUSIONS
DL-based Syn-STIR MR images, derived from acquired T1WI
and T2WI DICOM data sets frommultiple centers, scanners, and
field strengths, proved statistically interchangeable in diagnostic
performance with traditionally acquired STIR and provided supe-
rior perceived image quality. Quantitative measures demon-
strated consistent results, validating both the high accuracy of the
Syn-STIR images and the generalizability of the DL method. This
Syn-STIR method offers a promising clinical solution for faster
and more comfortable spine MR imaging examinations.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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