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ORIGINAL RESEARCH
INTERVENTIONAL

Transcranial MR Imaging–Guided Focused Ultrasound
Interventions Using Deep Learning Synthesized CT

P. Su, S. Guo, S. Roys, F. Maier, H. Bhat, E.R. Melhem, D. Gandhi, R. Gullapalli, and J. Zhuo

ABSTRACT

BACKGROUND AND PURPOSE: Transcranial MR imaging–guided focused ultrasound is a promising novel technique to treat multiple
disorders and diseases. Planning for transcranial MR imaging–guided focused ultrasound requires both a CT scan for skull density
estimation and treatment-planning simulation and an MR imaging for target identification. It is desirable to simplify the clinical
workflow of transcranial MR imaging–guided focused ultrasound treatment planning. The purpose of this study was to examine the
feasibility of deep learning techniques to convert MR imaging ultrashort TE images directly to synthetic CT of the skull images for
use in transcranial MR imaging–guided focused ultrasound treatment planning.

MATERIALS AND METHODS: The U-Net neural network was trained and tested on data obtained from 41 subjects (mean age,
66.4 6 11.0 years; 15 women). The derived neural network model was evaluated using a k-fold cross-validation method. Derived
acoustic properties were verified by comparing the whole skull-density ratio from deep learning synthesized CT of the skull with
the reference CT of the skull. In addition, acoustic and temperature simulations were performed using the deep learning CT to pre-
dict the target temperature rise during transcranial MR imaging–guided focused ultrasound.

RESULTS: The derived deep learning model generates synthetic CT of the skull images that are highly comparable with the true CT
of the skull images. Their intensities in Hounsfield units have a spatial correlation coefficient of 0.80 6 0.08, a mean absolute error
of 104.57 6 21.33 HU, and a subject-wise correlation coefficient of 0.91. Furthermore, deep learning CT of the skull is reliable in the
skull-density ratio estimation (r¼ 0.96). A simulation study showed that both the peak target temperatures and temperature distri-
bution from deep learning CT are comparable with those of the reference CT.

CONCLUSIONS: The deep learning method can be used to simplify workflow associated with transcranial MR imaging–guided
focused ultrasound.

ABBREVIATIONS: DL ¼ deep learning; MAE ¼ mean absolute error; SDR ¼ skull-density ratio; tcMRgFUS ¼ transcranial MR imaging–guided focused ultra-
sound; UTE ¼ ultrashort TE

Transcranial MR imaging–guided focused ultrasound
(tcMRgFUS) is a promising novel technique for treating

multiple disorders and diseases, including essential tremor,1

neuropathic pain,2 and Parkinson disease.3 During tcMRgFUS

treatment, ultrasound energy is deposited from multiple ultra-
sound elements to a specific location in the brain to increase tis-
sue temperature and ablate the targeted tissue. tcMRgFUS
treatment-planning is usually performed in 3 steps: 1) CT
images are acquired to estimate regional skull density and skull
geometry and to estimate ultrasound attenuation during ultra-
sound wave propagation,1 2) MR images are acquired to identify
the ablation target in the brain,1 and 3) the CT and MR images
are fused to facilitate treatment-planning. Minimizing the steps
involved to get to actual treatment can have a positive impact
on clinical workflow. Here, we focus on the implications of min-
imizing patient burden by eliminating CT imaging (hence no
radiation) and replacing it with synthesized CT of the skull
based on ultrashort TE (UTE) images.

UTE MR imaging is an important technique for imaging
short-T2 tissue components such as bone. A previous study has
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shown the feasibility of using UTE MR images for tcMRgFUS
planning.4 The conversion of UTE MR images to CT intensity
(also termed “synthetic CT”) is based on the inverse-log relation-
ship between UTE and CT signal intensity.4,5

Deep learning (DL) with a convolutional neural network has
recently led to breakthroughs in medical imaging fields such as
image segmentation6 and computer-aided diagnosis.7 Domain
transfer (eg, MR imaging to CT) is one of the fields in which DL
has been applied recently with high accuracy and precision.8-12

DL-based methods synthesize CT images either by classifying
MR images into components (eg, tissue, air, and bone)10,12 or by
directly converting MR imaging intensities into CT Hounsfield
units.8,9,11 The established applications include MR imaging–
based attenuation correction in MR imaging/PET10-12 and treat-
ment-planning for MR imaging–guided radiation therapy proce-
dures.9 However, to our knowledge, DL methods have not been
applied in the context of tcMRgFUS. In tcMRgFUS, our focus is
skull CT intensity rather than the whole head as in the above pro-
cedures. By narrowing the focus area, we can potentially achieve
higher accuracy in obtaining synthetic skull CT images from MR
imaging.

The purpose of this study was to examine the feasibility of DL
techniques to convert MR imaging dual-echo UTE images
directly to synthetic CT of the skull images and assess its suitabil-
ity for tcMRgFUS treatment-planning procedures.

MATERIALS AND METHODS
Study Participants
We retrospectively evaluated data obtained from 41 subjects
(mean age, 66.4 6 11.0 years; 15 women) who underwent the
tcMRgFUS procedure and for whom both dual-echo UTE MR

imaging and CT data were available. The study was approved by the
institutional review board (University of Maryland at Baltimore).

Image Acquisition and Data Preprocessing
MR brain images were acquired on a 3T system (Magnetom Trio;
Siemens) using a 12-channel head coil. A prototype 3D radial UTE
sequence with 2 TEs was acquired in all subjects.13 Imaging parame-
ters were the following: 60,000 radial views, TE1/TE2 ¼ 0.07 /4ms,
TR¼ 5 ms, flip angle ¼ 5°, matrix size ¼ 192� 192� 192, spatial
resolution ¼ 1.3� 1.3� 1.3mm3, scan time¼ 5minutes.13,14 CT
images at 120kV were acquired using a 64-section CT scanner
(Brilliance 64; Philips Healthcare), with a reconstructed matrix size
¼ 512� 512 and resolution= 0.48� 0.48� 1mm3. A C-filter
(Philips Healthcare), a Hounsfield unit–preserving sharp ramp filter,
was applied to all images.

UTE images were corrected for signal inhomogeneity with non-
parametric nonuniform intensity normalization bias correction
using Medical Image Processing, Analysis, and Visualization
(National Institutes of Health).15 Both UTE volumes (TE1 and TE2)
for each subject were normalized by the tissue signal of the TE1
image to account for signal variation across subjects. CT images
from each subject were registered and resampled to the correspond-
ing UTE images using the FMRIB Linear Image Registration Tool
(FLIRT; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT) using a normal-
ized mutual information cost function.16 Finally, CT of the skull
images were derived by segmenting the registered CT images using
automatic image thresholding with the Otsu method.17 The same
threshold value was applied to the DL synthetic CT (DL-CT) data.
Only the skull from the superior slices relevant for the tcMRgFUS
procedure from both UTE and CT was included. CT-UTE registra-
tion results were evaluated by visual inspection. One subject was

FIG 1. Schema of the employed deep learning architecture based on the widely used U-Net convolutional neural network consisting of encod-
ing and decoding pathways. Dual-echo UTE images were used as the input for the network. Reference CT of the skull was segmented from the
reference CT and was used as the predication target. The difference between output of the network, DL synthetic CT of the skull, and refer-
ence CT of the skull was minimized using MAE loss function. Drop-out regularization (rate¼ 0.5) was applied connecting the encoder and de-
coder. BN indicates batch normalization; ReLu, rectified linear unit; Conv, convolutional layer; Ref-CT, reference CT.
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excluded due to failed registration, leading to 40 subjects in total
(mean age, 66.56 11.2 years; 15 women).

Deep Learning Model and Neural Network Training
A schematic diagram of the deep learning model architecture based
on U-Net convolutional neural network (https://lmb.informatik.uni-
freiburg.de/people/ronneber/u-net/)18 is illustrated in Fig 1. It consists
of 2 pathways in opposite directions: encoding and decoding. The
encoding pathway extracts features of the input images, while the
decoding pathway has the opposite direction, restoring these features.

Dual-echo UTE images were used as the input to the neural
network, with each echo as a separate input channel to the

network. Reference CT of the skull images was used as the predic-
tion target. Output of the network is the DL-CT of the skull.

UTE-CT image pairs from 32 subjects were selected as the

training dataset, and the other 8, as the testing dataset. The

neural network was defined, trained, and tested using Keras

with Tensorflow backend (https://www.tensorflow.org) with a

Tesla K40C GPU (memory of 12GB). Mean absolute error

(MAE) between DL-CT of the skull and the reference CT of

the skull was minimized using the ADAM algorithm, derived

from adaptive moment estimation.19 The training was per-

formed with 100 epochs, and the learning rate was 0.001.

Training of the model took approximately 6 hours.

FIG 2. Deep learning results from 1 representative testing subject (55 years of age, female). From top to bottom: UTE echo 1 and echo 2 images,
reference CT, segmented reference CT of the skull, DL synthetic CT of the skull, and the absolute difference between the 2. For this subject,
the Dice coefficient for skull masks between DL synthetic CT and the reference CT is 0.92, and the mean absolute difference is 96.27 HU.
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Evaluation of Model Performance
The performance of the neural network model was evaluated
using the 5-fold cross-validation method. The 40 subjects were
randomly divided into 5 groups, each with 8 subjects. Each time
1 group was held as a testing dataset, the other 4 served as the
training datasets; thus, the model was trained 5 separate times.
Testing results from all 40 subjects were used to evaluate the per-
formance of the model. The following 4 metrics were used to
compare the DL-CT from the testing datasets with the reference
CT of the skull images: 1) Dice coefficient to evaluate the similar-
ity between the 2 sets of images; 2) a voxelwise spatial correlation
coefficient between the 2 methods considering all the voxel inten-
sities (in Hounsfield units); 3) average of absolute differences
between the 2 methods for voxels within skull region; and 4)
global CT Hounsfield unit values for each subject by averaging all
the voxels within the skull region. Metrics using a conventional
method4 were also derived to enable comparison with the DL
method. Note that only testing datasets (n=40) from cross-vali-
dation results were used for evaluation and the following valida-
tion/simulation.

Skull Density Ratio Validation
To further evaluate the accuracy of DL-CT-derived skull proper-
ties, we also calculated the regional skull thickness and the skull-
density ratio (SDR) based on each of the 1024 ultrasound rays on

40 subjects. We validated our model by comparing the whole
SDR from DL-CT of the skulls with reference CT of the skulls.
The SDR is calculated as the ratio of the minimum over the maxi-
mum intensity (Hounsfield unit) along the skull path of ultra-
sonic waves from each of the 1024 transducers, and the whole-
skull SDR is the average of all SDRs. Whole-skull SDR. 0.45 is
the eligibility criterion for tcMRgFUS treatment for efficient
sonication.20

Acoustic and Temperature Simulation
A key aspect of the tcMRgFUS is the guidance obtained from MR
thermometry maps during the procedure, eg, to predict the target
temperature rise. We therefore compared acoustic and tempera-
ture fields from the simulation using both CT and DL-CT images
on 8 test subjects. The acoustic fields within the head were simu-
lated using a 3D finite-difference algorithm, which aims to solve
the full Westervelt equation.21 The acoustic properties of the skull
were derived from CT images of the subjects. Temperature rise
was estimated using the inhomogeneous Pennes equation22 of heat
conduction with the calculated acoustic intensity field as input.
Both acoustic and temperature simulations were performed with
the target at the center of the anterior/posterior commissure line
for each subject at a spatial resolution of UTE scans. Temperature
elevations at the focal spots caused by a 16-second, 1000-W sonica-
tion were simulated for both reference CT and DL-CT images,
assuming that the base temperature of the brain was 37°C.

RESULTS
Figure 2 shows the DL-CT of the skull images in comparison
with the reference CT of the skull images from a representative
test subject. The difference images show minimal discrepancy,
demonstrating that the trained DL network has successfully
learned the mapping from dual-echo UTE images to CT of the
skull-intensity images. The On-line Figure shows the DL model
loss (MAE) as a function of the epoch number for both the training
and testing datasets from a representative cross-validation run.

The signal intensities between the 2 CT scans are highly corre-
lated (r¼ 0.80) as shown in the voxelwise 2D histogram (Fig 3),
demonstrating that DL can accurately predict the spatial variation
across regions within the skull. The Table summarizes various
metrics estimating the performance of the DL model from all 5
runs of the cross-validation process, along with the average from
all 40 testing datasets. As shown in the Table, model performance
is comparable between different runs in the cross-validation pro-
cess. As a comparison, the MAE and spatial correlation coeffi-
cient from the conventional method4 were 0.37 6 0.09 and
432.19 6 46.61 HU, performances significantly poorer than our
proposed deep learning method.

FIG 3. Voxelwise 2D histogram scatterplot between the reference skull
CT intensity and the DL synthetic skull CT signal intensity in Hounsfield
units within skull. The correlation coefficient is r¼ 0.80 (same testing
subject as in Fig 2). Color bar represents the voxel count.

Various metrics (mean 6 standard deviation) showing the performance of the deep learning model from all 5 runs of the cross-val-
idation processa

Run 1 Run 2 Run 3 Run 4 Run 5 Average
Dice coefficient 0.91 6 0.03 0.92 6 0.03 0.91 6 0.03 0.91 6 0.02 0.92 6 0.03 0.91 6 0.03
Spatial correlation coefficient 0.84 6 0.05 0.77 6 0.10 0.81 6 0.07 0.78 6 0.08 0.81 6 0.08 0.80 6 0.08
MAE (HU) 89.32 6 12.29 109.18 6 23.49 98.95 6 13.75 105.10 6 17.62 120.29 6 26.91 104.57 6 21.33

a Averaged metrics from all 40 testing datasets are also included.
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Subject-wise scatterplots of average CT values and SDR values
are shown in Fig 4. A strong correlation between the DL-CT and
the reference CT Hounsfield unit values (r¼ 0.91, P, .001) was
observed, demonstrating that the derived model can predict the
global intensity of the skull accurately. The high whole-skull SDR
correlation (r¼ 0.96, P, .001) between DL-CT and the reference
CT suggests a strong potential for the use of DL-CT images for
treatment-planning in tcMRgFUS.

Figure 5 shows averaged regional skull thickness maps Fig 5A,
-B and averaged regional SDR maps (Figure 5D, -E) based on the
reference CT and DL-CT images from all 40 test subjects. The
errors in skull thickness measurement at any given entry were
,0.2mm (2%), averaged at 0.03mm (0.3%) (Fig 5C). The maxi-
mum error for SDR calculation across the 1024 entries was found
to be about 0.03 (4%) and averaged less than 0.01 (1.3%) (Fig 5F).

Comparisons between calculated bone density and the simu-
lated temperature rise results are shown
in Fig 6 for 8 representative test sub-
jects. The estimated voxelwise average
bone density difference within the skull
for all subjects was 50kg/m3, indicating
less than an average of 2.3% error for
UTE-derived acoustic properties com-
pared with the reference CT images
(columns 1 and 2). Simulated tempera-
ture patterns are very similar for all 8
cases (columns 3 and 4), indicating
that the skull shape and thickness of
DL-CT are highly comparable with the
reference CT. The differences of simu-
lated peak temperature rise based on
original and DL synthetic CT images
for all 8 subjects are well within the
errors that one might expect from the
simulation.

FIG 4. A, Association of average CT Hounsfield unit values between the DL synthetic CT of the
skull and the reference CT of the skull for all 40 testing subjects from cross-validation. Each dot
represents 1 subject. B, The relationship between SDR values determined from the reference CT
and DL synthetic CT from all 40 subjects. Each dot represents 1 subject.

FIG 5. A and B, The calculated average skull thickness map from the reference CT and the DL synthetic CT images, respectively, from all 40 test-
ing subjects. C, The differences between A and B with a maximum thickness difference of 0.2mm (2% error) and the average error of 0.03mm
(0.3%). Note that regional maps are based on the entries of the 1024 ultrasound beams from the ExAblate system (InSightec). D and E, The calcu-
lated average SDR map based on the reference CT and DL synthetic CT images from all 40 subjects. F, The differences between D and E with a
maximum SDR difference of 0.03 (4% error) and the average error of 1024 entries was,0.01 (1.3%).
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FIG 6. Comparison of calculated bone density and the simulated temperature rise. The first and second columns show the calculated bone den-
sity map using the reference CT and DL synthetic CT images on 8 representative testing cases, in which the red dots are the assigned focal targets.
In the third and fourth columns, the simulated temperature elevations at the focal spots caused by a 16-second, 1000-W sonication are compared
between reference CT and DL synthetic CT on a base brain temperature of 37°C. The simulated peak temperature rise values based on original and
DL synthetic CT images for all 8 subjects are the following: case 1: 55.3°C and 54.2°C (6.0% error on temperature rise), case 2: 59.0°C and 58.9°C (0.5%
error), case 3: 57.6°C and 55.9°C (8.2% error), case 4: 57.5°C and 59.1°C (7.8% error), case 5: 54.3°C and 54.6°C (0.6% error), case 6: 55.5°C and 56.0°C
(0.9% error), case 7: 54.5°C and 55.1°C (1.1% error), case 8: 53.5°C and 54.5°C (1.9% error), respectively. These errors are well within the errors that one
might expect from the simulation.
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DISCUSSION
In this study, we examined the feasibility of leveraging deep
learning techniques to convert MR imaging dual-echo UTE
images directly to CT of the skull images and to assess the applic-
ability of such derived images to replace real CT of the skull
images during tcMRgFUS procedures. The proposed neural net-
work is capable of accurately predicting Hounsfield unit intensity
values within the skull. Various metrics were used to validate the
DL model, and they all demonstrated excellent correspondence
between DL-CT of the skull images and the reference CT of the
skull images. Furthermore, the acoustic properties as measured
using the SDR and temperature simulation suggest that DL-CT
images can be used to predict target temperature rise. Our pro-
posed DL model has the potential to eliminate CT during
tcMRgFUS planning, thereby simplifying clinical workflow and
reducing the number of patient visits and overall procedural
costs, while eliminating patient exposure to ionizing radiation.
To our knowledge, this is the first study to apply deep learning in
synthesizing CT of the skull images with MR imaging UTE
images for tcMRgFUS treatment planning.

Several previous studies have reported methods to derive CT
information from MR imaging.9-12,23 Multiple DL-based CT syn-
thesis studies have reported CT bone segmentation with Dice
coefficient values ranging from 0.80 to 0.88.9-12,23 In our study,
the proposed model shows excellent performance in estimating
CT-equivalent skull with a Dice score of 0.91 6 0.03 for all 40
testing datasets. The moderately higher level of performance over
other previous methods may be because only a limited amount of
the skull was taken into consideration due to its relevance for
tcMRgFUS, whereas previous methods also included brain tis-
sue.15-21 Furthermore, our model predicted CT intensity with a
high voxelwise correlation (0.806 0.08) and low MAE (104.576
21.33 HU) for all 40 subjects compared with the reference CT of
the skull. One study4 reported an MAE between the reference CT
and UTE-generated synthetic CT of 202 HU in the context of
tcMRgFUS. Applying this method4 to our dataset, we observed a
higher MAE of 432.19 6 46.61 HU. The discrepancy may be due
to differences of the subject cohort and skull mask delineation.
Another study reported an MAE of 174 6 29 HU within the
skull.9 Compared with these studies, our results represent a
marked improvement over existing methods.

While this is the first report demonstrating the feasibility of
applying deep learning in tcMRgFUS, our proposed framework
can be further improved in a few ways: First, the DL field is rap-
idly evolving, and newer state-of-the-art techniques continue to
emerge. The inputs to the implemented 2D U-Net neural net-
work in our case were individual 2D dual-echo UTE images to
generate 2D CT of the skull images as output. It is highly possible
that a 2.5D or 3D U-Net may further minimize these errors
because these approaches use context information for training.
However, note that the 3D U-Net requires significantly more
memory resources than the 2D U-Net. Additionally, alternative
loss formulations or combinations may be considered (eg, an
adversarial component to the loss function to maximize the real-
istic appearance of the generated output). Given the relatively
small dataset and the fact that the MR imaging-to-CT mapping
task does not require full-FOV MR imaging, an alternative

approach may be to train a patch-wise classifier (same encoder-
decoder architecture, simply smaller). Not only will the model be
more compact, it will likely be more regularized and more gener-
alizable to edge cases (eg, craniotomy).

This study has several limitations. One limitation is that the av-
erage age of our patient cohort is relatively high (66.56 11.2 years
of age). This might limit the usage of our model in younger cohorts
or pediatric populations due to bone density variations.
Incorporating data from younger subjects into our training data
can address this issue. Another limitation is our relatively small
sample size for the deep learning study and the lack of an inde-
pendent test dataset. More datasets will certainly improve the per-
formance of the model and allow better generalization of our
model. Additionally, our CT of the skull synthesis was based on
MR imaging UTE images, which have relatively low spatial resolu-
tion compared with CT (1.33 versus 0.44mm in-plane resolution).
This resolution discrepancy might affect the accuracy of our model
in predicting the skull mask and Hounsfield unit values. To
address this issue, high-resolution UTE 3D images are needed
using advanced parallel imaging, compressed sensing, or even DL-
based undersampling/reconstruction to further reduce the scan
time while preserving enough information for CT synthesis.
Finally, we will investigate the effect of data augmentation on larger
datasets in detail and use an advanced deep learning model such as
the Generative Adversarial Network (https://github.com/goodfeli/
adversarial) to further improve our model in a future study.

CONCLUSIONS
We examined the feasibility of using DL-based models to auto-
matically convert dual-echo UTE images to synthetic CT of the
skull images. Validation of our model was performed using vari-
ous metrics (Dice coefficient, voxelwise correlation, MAE, global
CT value) and by comparing both global and regional SDRs
derived from DL and the reference CT. Additionally, temperature
simulation results suggest that DL-CT images can be used to pre-
dict target temperature rise. Our proposed DL model shows
promise for replacing the CT scan with UTE images during
tcMRgFUS planning, thereby simplifying workflow.
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