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ORIGINAL RESEARCH
PEDIATRICS

Postnatal Brain Growth Assessed by Sequential Cranial
Ultrasonography in Infants Born <30 Weeks’ Gestational Age

X R. Cuzzilla, X A.J. Spittle, X K.J. Lee, X S. Rogerson, X F.M. Cowan, X L.W. Doyle, and X J.L.Y. Cheong

ABSTRACT

BACKGROUND AND PURPOSE: Brain growth in the early postnatal period following preterm birth has not been well described. This study
of infants born at �30 weeks’ gestational age and without major brain injury aimed to accomplish the following: 1) assess the reproduc-
ibility of linear measures made from cranial ultrasonography, 2) evaluate brain growth using sequential cranial ultrasonography linear
measures from birth to term-equivalent age, and 3) explore perinatal predictors of postnatal brain growth.

MATERIALS AND METHODS: Participants comprised 144 infants born at �30 weeks’ gestational age at a single center between January
2011 and December 2013. Infants with major brain injury seen on cranial ultrasonography or congenital or chromosomal abnormalities were
excluded. Brain tissue and fluid spaces were measured from cranial ultrasonography performed as part of routine clinical care. Brain growth
was assessed in 3 time intervals: �7, 7–27, and �27 days’ postnatal age. Data were analyzed using intraclass correlation coefficients and
mixed-effects regression.

RESULTS: A total of 429 scans were assessed for 144 infants. Several linear measures showed excellent reproducibility. All measures of
brain tissue increased with postnatal age, except for the biparietal diameter, which decreased within the first postnatal week and increased
thereafter. Gestational age of �28 weeks at birth was associated with slower growth of the biparietal diameter and ventricular width
compared with gestational age of �28 weeks. Postnatal corticosteroid administration was associated with slower growth of the corpus
callosum length, transcerebellar diameter, and vermis height. Sepsis and necrotizing enterocolitis were associated with slower growth of
the transcerebellar diameter.

CONCLUSIONS: Postnatal brain growth in infants born at �30 weeks’ gestational age can be evaluated using sequential linear measures
made from routine cranial ultrasonography and is associated with perinatal predictors of long-term development.

ABBREVIATIONS: AHW � anterior horn width; BPD � biparietal diameter; BW � birth weight; CCL � corpus callosum length; cUS � cranial ultrasonography; GA �
gestational age; NEC � necrotizing enterocolitis; PMA � postmenstrual age; PNA � postnatal age; TEA � term-equivalent age; TCD � transcerebellar diameter

Preterm infants are at risk of long-term neurodevelopmental

impairment related to perinatal brain injury and altered brain

maturation.1,2 The optimal technique and timing of neuroimag-

ing for identifying high-risk infants is under debate.3 While early

and sequential cranial ultrasonography (cUS) can be reliably used

to detect major brain injury, it is less sensitive than MR imaging

for the more prevalent, diffuse white matter injury associated with

preterm birth.1,4,5 Nonetheless, cUS remains the most widely

used neuroimaging technique for preterm infants because it is

readily available, easily repeatable, and sensitive enough for de-

tecting most major pathology.

In the absence of overt brain injury and where MR imaging is

not accessible, there is a need to improve the prognostic utility of

cUS, to better understand why some preterm infants without ma-

jor brain injury seen on cUS later develop motor and cognitive

impairments.1,6 Most infants born preterm have at least 1 early

and 1 later neonatal cUS scan, affording an opportunity to quan-
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tify early brain growth as a potential marker of long-term devel-

opment that has not been fully exploited.7

Linear measures of brain tissue and fluid spaces made from

neonatal cUS have been associated with neurodevelopmental out-

comes in preterm children.8,9 However, only 2 studies have eval-

uated early postnatal brain growth using sequential cUS.9,10 In a

study of 140 infants born at �29 weeks’ gestational age (GA),

Roelants et al10 reported normative data for the growth of the

corpus callosum length (CCL) and corpus callosum–fastigium

length with respect to postmenstrual age (PMA), but they did not

relate brain growth with postnatal age (PNA). The study of 61

very-low-birth-weight infants by Anderson et al9 found that

slower growth of the CCL between 2 and 6 weeks’ PNA was pre-

dictive of motor delay and cerebral palsy at 2 years; however, this

study included infants with major brain injury.

To explore further the usefulness of cUS in assessing brain

growth in preterm infants without major brain injury, we aimed

to achieve the following: 1) assess the reproducibility of linear

measures of brain tissue and fluid spaces made from cUS, 2) eval-

uate brain growth with respect to PNA using sequential cUS linear

measures from birth to term-equivalent age (TEA), and 3) explore

the associations between perinatal variables and postnatal brain

growth measured by cUS.

MATERIALS AND METHODS
Study Participants
One hundred forty-nine infants born at �30 weeks’ GA at The

Royal Women’s Hospital, Melbourne, Australia, between January

2011 and December 2013, were recruited into a prospective lon-

gitudinal study of neuroimaging, neurobehavior, and long-term

development.11 Infants with congenital or chromosomal anomalies

known to affect neurodevelopment were excluded. For the current

study, 5 infants with major preterm brain injury detected on cUS

were also excluded, including infants with grades III or IV intraven-

tricular hemorrhage, posthemorrhagic ventricular dilation, and cys-

tic periventricular leukomalacia, leaving 144 infants for analysis.12,13

The study received institutional approval from the Human Research

Ethics Committee of the hospital, and written informed consent was

obtained from parents of all participants.

Cranial Ultrasonography
cUS was performed as part of routine clinical care using a Logiq 9

Ultrasound System and an 8-MHz broadband curvilinear trans-

ducer (GE Healthcare, Milwaukee, Wisconsin). Standard images

were acquired through the anterior fontanel (5 images in different

coronal planes, an image in the midsagittal plane, and 2 images in

different parasagittal planes both on the left and right) and the mas-

toid fontanel (1 image in the coronal plane). As per local protocol for

the surveillance of preterm brain injury, infants born at �30 weeks’

GA were scanned on, or around, days 7, 28, and 60 PNA. Infants born

at �28 weeks’ GA were also scanned on, or around, day 1 PNA.

Additional scans were performed depending on clinical need. The

current study included all neonatal scans performed from birth to

TEA (�42 weeks’ PMA).

Nineteen linear measures of brain tissue and fluid spaces were

explored on the basis of potential clinical importance, ease of

recognition of anatomic landmarks on standard imaging planes,

and evaluation of their reproducibility (Fig 1). A neonatologist

(R.C.) blinded to the clinical course of study participants and

with 4 years’ experience in performing cUS obtained measure-

ments using electronic calipers on stored digital images (Syn-

apse; Fujifilm Medical Company, Minato-Ku, Japan). Thirty

scans (7%) were randomly selected to assess the reproducibil-

ity of the linear measures. Measurements were made by the

same observer (R.C.) twice, at least 1 month apart, and once by

another observer (S.R.) with 20 years’ experience in perform-

ing cUS.

Perinatal Predictors of Long-Term Neurodevelopment
Perinatal variables were chosen a priori on the basis of their known

associations with brain injury and long-term neurodevelopmental

outcomes following preterm birth.14 These included GA at birth (de-

termined by first-trimester ultrasonography when available or by

menstrual history), birth weight SD score (BW z score), sex, multiple

gestations, chorioamnionitis (confirmed by placental histology), an-

tenatal corticosteroids (any number of doses of betamethasone) and

magnesium sulfate (for maternal or fetal indications), bronchopul-

monary dysplasia (defined by oxygen requirement at 36 weeks’

PMA), postnatal corticosteroids, confirmed sepsis (blood or CSF cul-

ture–positive and the use of antibiotics for �5 days) and/or necro-

FIG 1. Cranial ultrasonography linear measures: images through the anterior fontanel in the coronal plane at the level of foramina of Monro (A)
and the sagittal (C) and parasagittal (D) planes, and an image through the mastoid fontanel in the coronal plane posterior to the fourth ventricle
(B). Brain tissue: biparietal diameter (a), corpus callosum length (b), corpus callosum genu width (c), corpus callosum body height (d), corpus
callosum splenium width (e), transcerebellar diameter (f), and vermis height (g). Fluid spaces: interhemispheric distance (h), ventricular width (i),
ventricular index (j), anterior horn width (k), anterior horn height (l), ventricular midbody width (m), and thalamo-occipital distance (n).
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tizing enterocolitis (NEC; defined by stage II or higher modified Bell

criteria), and low-grade intraventricular hemorrhage (grades I or II)

seen on cUS (defined by Papile classification).13,15

Data Analysis
Data were analyzed using STATA, Version 13.1 (StataCorp, Col-

lege Station, Texas). Intra- and interobserver agreement was as-

sessed by the intraclass correlation coefficient. Linear measures

with both intra- and interobserver intraclass correlation coeffi-

cients of �0.80 were considered for inclusion in further analyses.

Brain growth (or rate of change) with respect to PNA was assessed

using mixed-effects linear regression fitted to all the sequential

measurements from all individuals, with PNA as the time variable

and a random effect for an individual fitted with an unstructured

covariance matrix. The model included a random effect to ac-

count for multiple measurements for each infant, with a fixed

effect of time. First, overall brain growth was assessed from birth

to TEA using a single time variable. Brain growth was then

assessed within 3 time intervals to reflect the timing of our

routine cUS by fitting separate effects of time in the periods

�7, 7–27, and �27 days’ PNA. Analyses were repeated with

adjustment for GA, BW z score, and sex. Associations between

perinatal variables and brain growth with respect to PNA (fit-

ting a single effect of time from birth to TEA) were explored

separately by including an interaction between the perinatal

variable and PNA in the mixed-effects linear regression model.

Continuous variables were dichotomized for this analysis: GA

group (�28 weeks or 28 –29 weeks) and BW z score group

(��2 or ��2 SDs from the mean). Analyses were repeated

with adjustment for GA, BW z score, and sex, with the excep-

tion that GA and the BW z score were not adjusted for when

exploring the effect of the GA group and BW z score group,

respectively. Measurements of the left and right anterior horn

widths (AHWs) included the germinal layer hemorrhage when

present. Consequently, all analyses involving the AHW were

restricted to infants without an ipsilateral intraventricular

hemorrhage, to eliminate the influence of the germinal layer

hemorrhage on the generalizability of results with respect to

rates of change of the AHW with PNA.

RESULTS
Characteristics of the 144 infants included in the current study are

presented in Table 1. In the 144 infants, 429 scans were performed

from birth to TEA. The mean number of scans per infant was 3

(range, 1– 8). For the 77 infants born at

�28 weeks’ GA, 291 scans were assessed

(mean, 3.8; range, 1– 8 per infant), and

138 scans for the 67 infants born at �28

weeks’ GA (mean, 2.1; range, 1– 6 per

infant). Almost two-thirds (n � 272;

63%) of the scans were performed at

�28 days’ PNA, but most infants had

scans up to 33 weeks’ PMA.

Intra- and Interobserver
Reproducibility
Intra- and interobserver intraclass cor-

relation coefficients are shown in Table
2. Eight linear measures, 4 of brain tissue

(biparietal diameter [BPD], CCL, tran-

scerebellar diameter [TCD], and vermis

height) and 4 reflecting fluid spaces (in-

terhemispheric distance, left and right

AHWs, and ventricular width), had in-

traclass correlation coefficients of �0.8

both between and within observers and

were used to evaluate brain growth.

Table 1: Infant characteristics

Perinatal Variable
Summary

(N = 144 Infants)
Gestational age (mean) (SD) (wk) 27.7 (1.5)
Birth weight (mean) (SD) (g) 1017 (259)
Small for gestational age, birth weight ��2

SDs (No.) (%)
16 (11)

Female (No.) (%) 75 (52)
Multiple gestations (No.) (%) 64 (44)
Cesarean delivery (No.) (%) 106 (74)
Antenatal corticosteroids (No.) (%) 134 (93)
Antenatal magnesium sulfate (No.) (%) 103 (72)
Respiratory distress from birth (No.) (%) 141 (98)
Surfactant (No.) (%) 91 (63)
Duration of positive pressure ventilation

(median) (25th–75th centile) (days)
19 (0–96)

Duration of supplemental oxygen (median)
(25th–75th centile) (days)

19 (4–56)

Bronchopulmonary dysplasiaa (No.) (%) 46 (32)
Postnatal corticosteroids (No.) (%) 18 (13)
Intraventricular hemorrhage, grades I or II

(No.) (%)
25 (17)

Retinopathy of prematurity (No.) (%) 32 (22)
Sepsis confirmedb (No.) (%) 20 (14)
NEC (No.) (%) 17 (12)
Sepsis confirmed and/or NEC (No.) (%) 31 (22)
Survived to discharge home (No.) (%) 139 (97)

a Defined by oxygen requirement at 36 weeks’ postmenstrual age.
b Blood or CSF culture–positive and use of antibiotics for �5 days.

Table 2: Reproducibility of cranial ultrasonography linear measures

Linear Measure

Intraobserver Interobserver

ICC 95% CI ICC 95% CI
Brain tissue

Biparietal diameter 0.98 0.95–0.99 0.97 0.94–0.99
Corpus callosum length 0.99 0.97–0.99 0.98 0.95–0.99
Corpus callosum genu width 0.78 0.53–0.90 0.38 �0.04–0.69
Corpus callosum body height 0.74 0.52–0.87 0.58 0.27–0.78
Corpus callosum splenium width 0.80 0.56–0.92 0.21 �0.22–0.58
Transcerebellar diameter 0.99 0.98–0.99 0.98 0.96–0.99
Vermis height 0.91 0.82–0.96 0.81 0.62–0.91

Fluid spaces
Interhemispheric distance 0.98 0.96–0.99 0.98 0.95–0.99
Anterior horn width, left 0.94 0.87–0.97 0.91 0.81–0.96
Anterior horn width, right 0.96 0.90–0.98 0.95 0.89–0.98
Ventricular index, left 0.85 0.70–0.93 0.85 0.69–0.93
Ventricular index, right 0.63 0.32–0.82 0.59 0.26–0.80
Ventricular width 0.87 0.72–0.94 0.89 0.76–0.95
Anterior horn height, left 0.86 0.72–0.94 0.76 0.53–0.88
Anterior horn height, right 0.92 0.82–0.96 0.78 0.55–0.90
Ventricular midbody height, left 0.73 0.49–0.87 0.47 0.11–0.72
Ventricular midbody height, right 0.81 0.61–0.91 0.52 0.18–0.75
Thalamo-occipital distance, left 0.93 0.81–0.97 0.80 0.52–0.93
Thalamo-occipital distance, right 0.92 0.80–0.97 0.62 0.22–0.84

Note:—ICC indicates intraclass correlation coefficient.
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Brain Growth with Respect to Postnatal Age
There was evidence that all linear measures of brain tissue in-

creased with PNA, before and after adjustment for GA, BW z

score, and sex, overall and within the 3 time intervals, except for

the BPD, which decreased within the first postnatal week (Fig 2

and On-line Table). Faster rates of growth of the BPD, TCD, and

vermis height were observed after 27 days’ PNA compared with

7–27 days’ PNA; however, the rate of growth of the CCL more

than halved after 27 days’ PNA compared with 7–27 days’ PNA

(Fig 2 and On-line Table).

Rates of change of linear measures of fluid spaces were vari-

able within the first postnatal week, with little evidence of an

association between linear measures and PNA (Fig 2 and On-

line Table). The interhemispheric distance and ventricular

width increased after the first postnatal week, with faster rates

of change after 27 days’ PNA (1.5 and 2.7 times, respectively)

compared with 7–27 days’ PNA. Although the rates of change

for the AHW appeared to decrease with successive time inter-

vals, there was little statistical evidence of an association be-

tween the AHW and PNA, except for the right AHW between 7

and 27 days’ PNA.

Associations between Perinatal Variables and Postnatal
Brain Growth
There was strong evidence of associations between many of the

perinatal variables and brain growth with respect to PNA, which

remained after adjustment for GA, BW z score, and sex (Table 3).

Infants born at 28 –29 weeks’ GA showed slower growth of the

BPD and ventricular width than infants born at �28 weeks’

GA. Postnatal corticosteroid administration was associated

with slower growth of the CCL, TCD, and vermis height, and

bronchopulmonary dysplasia was associated with slower

growth of the CCL and TCD. Infants with a BW z score ��2

SDs below the mean showed slower growth of the CCL than

infants with BW ��2 SDs below the mean. Sepsis and/or NEC

and antenatal corticosteroid administration were associated with

slower growth of the TCD.

DISCUSSION
In this study of early postnatal brain growth in infants born at

�30 weeks’ GA and without major brain injury, several linear

measures of brain tissue and fluid spaces were reliably made from

routine clinical cUS scans. Most linear measures of brain tissue

increased with PNA, but rates of change were more variable for

the fluid spaces. Several perinatal variables related to long-term

development were associated with postnatal brain growth. Bron-

chopulmonary dysplasia and postnatal corticosteroid administra-

tion were associated with slower growth of the CCL and TCD, and

postnatal corticosteroid administration was also associated with

slower growth of the vermis height. Sepsis and/or NEC were as-

sociated with slower growth of the TCD.

Measurements of brain growth for use in clinical practice

should be simple to obtain and reproducible. The cUS linear mea-

sures explored in this study had well-defined anatomic landmarks

on standard imaging planes obtained during routine clinical care,

and several showed excellent intra- and interobserver reproduc-

ibility, as also shown by others.8,10,16,17

Although cUS affords an opportunity to make sequential mea-

surements from birth, there are limited published data relating to

postnatal brain growth in preterm infants. To our knowledge, this

study is the first to describe the growth of the BPD in the early

postnatal period following preterm birth using sequential cUS.

We speculate that the decreasing size of the BPD in the first post-

natal week found in the current study may relate to a reduction in

brain-water in the immediate postnatal days rather than deforma-

tional changes in head shape.18 Growth of the BPD between 7 and

27 days was slower (1.30 mm/week PNA) than after the first 27

days (2.17 mm/week PNA), from which time postnatal growth of

the BPD approximates to expected fetal growth (2.10 mm/week

PMA) as reported from cross-sectional data by Kurmanavicius et

al.19 Higher GA at birth related to slower growth of the BPD from

birth to TEA, in keeping with normative data for fetal growth of

the BPD that demonstrates a slowing of growth with increasing

PMA.19,20 However, infants born at �30 weeks’ GA have smaller

brains at TEA than term-born controls, and most are likely to

have slower rates of brain growth immediately after birth than

normally expected in utero.20,21

In the current study, CCL growth was relatively constant from

birth to 27 days’ PNA but slowed by half thereafter. Similarly,

Anderson et al9 showed that postnatal growth of the CCL in very-

low-birth-weight infants approximated fetal growth (1.4 –1.89

mm/week PMA) within the first 2 postnatal weeks but subse-

quently slowed to approximately half of that expected.22,23 More-

over, the current study found that a BW z score of ��2 SDs was

associated with slower CCL growth from birth to TEA, a finding

consistent with that of Roelants et al.10

The TCD measured in the fetus, or the neonate in the first

postnatal days, is a reliable marker of GA, even with fetal growth

restriction, small- and large-for-gestational age fetuses, and mul-

tiple gestations (1.25–1.89 mm/week PMA).24-27 Cross-sectional

preterm MR imaging studies have reported cerebellar size, but our

study is the first to report postnatal growth of the TCD in preterm

infants using sequential cUS.20,28 Similar to fetal growth patterns,

TCD growth in the current study progressively increased between

time intervals. Unlike the TCD, the vermis height increased with

PNA at a relatively constant rate of change from birth to TEA,

approximating fetal growth (0.55 mm/week PMA).29

Bronchopulmonary dysplasia and postnatal corticosteroids

were associated with slower CCL and TCD growth with PNA, and

postnatal corticosteroid administration was also related to slower

growth of the vermis height. Tam et al30 reported a similar asso-

ciation between postnatal corticosteroids, a marker of severe

bronchopulmonary dysplasia, and impaired cerebellar growth in

very preterm infants using serial MR imaging between 32 weeks’

PMA and TEA. In another MR imaging study of very preterm

infants scanned at TEA and 7 years, Thompson et al31 reported an

association between postnatal corticosteroids and delayed matu-

ration of the posterior corpus callosum, a region that develops

later in gestation and contributes to corpus callosum length. In

the current study, sepsis and/or NEC were related to slower

growth of the TCD. Sepsis and/or NEC have been associated with

preterm white matter injury at TEA, but their relationship with

brain growth and maturation in the early postnatal period re-

mains unclear.32 The relationship between antenatal corticoste-
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FIG 2. Cranial ultrasonography linear measures with respect to postnatal age. A, Brain tissue. B, Fluid spaces.
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roid exposure and slower TCD growth reported here is novel and

needs to be replicated in future studies.

Liao et al33 and Levene34 reported serial measurements of the

ventricular index in preterm infants from birth to 6 weeks’ and 6

months’ PNA, respectively, and found rates of change like those in

the current study for the ventricular width (the sum of left and

right ventricular indices). We found that lower GA was related to

a faster rate of change in the ventricular width, possibly result-

ing from a greater burden of diffuse cerebral white matter in-

jury in the less mature infants leading to greater ex vacuo dila-

tion. Rates of change for the AHW with respect to PNA were

variable and increased little after the first postnatal week, as

also reported in other studies.33-36

A major strength of the current study is its use of simple and

reproducible linear measures obtained from standard cUS per-

formed as part of routine clinical care. We use the mastoid fontanel

for cerebellar imaging and TCD measurement, a reliable approach

that is not technically difficult.37 Our study, however, has several

limitations. We used routine clinical scans timed to detect major

preterm brain injury. There is, therefore, an inherent bias in our

study cohort because the smaller, less mature infants were more

likely to have had a greater burden of

brain injury and, subsequently, a

greater number of scans for monitor-

ing the progression of any overt find-

ings. It is also likely that these infants

had more comorbidities and longer

periods of hospitalization. In our neo-

natal unit, infants who no longer need

tertiary-level care are transferred to

nontertiary hospitals from as early as

32 weeks’ PMA. The more mature in-

fants in our cohort, unless they were

very sick, were likely to have had fewer

scans, limited to the early days and

weeks after birth. However, the mixed-

effects model used allows for different

infants having different numbers of

scans.

The cohort used in the current study

will have developmental assessments

throughout childhood, which will allow

the relationships between sequential

cUS linear measures of early postnatal

brain growth and neurodevelopment in

later childhood to be determined in the

future.

CONCLUSIONS
Brain growth in infants born at �30

weeks’ GA can be assessed using simple

and reproducible linear measures made

on sequential cUS. Several perinatal

variables already shown to be related to

long-term development, including GA,

BW z score, bronchopulmonary dyspla-

sia, postnatal corticosteroids, and sepsis

and/or NEC, were associated with early

postnatal brain growth. Further research is needed to evaluate the

usefulness of brain growth, as evaluated using sequential cUS lin-

ear measures, as a marker of long-term neuro developmental

outcome.
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Table 3: Associations between perinatal variables and postnatal brain growth

Perinatal Variable

Adjusteda

Growth (mm/week PNA)
Interaction

Termb

(P Value)� 95% CI
Biparietal diameter

GA
�28 weeks 1.88 1.71–2.05 .002
�28 weeks 1.29 0.96–1.62

Corpus callosum length
BW z score

��2 SD 0.91 0.84–0.98 .045
��2 SD 0.73 0.57–0.89

Postnatal corticosteroids
No 0.92 0.85–1.00 .046
Yes 0.77 0.63–0.90

Bronchopulmonary dysplasia
No 0.98 0.88–1.07 .01
Yes 0.81 0.73–0.89

Transcerebellar diameter
Antenatal corticosteroids

No 2.26 1.81–2.70 .023
Yes 1.73 1.63–1.83

Postnatal corticosteroids
No 1.84 1.74–1.95 �.001
Yes 1.41 1.22–1.61

Bronchopulmonary dysplasia
No 1.89 1.75–2.02 .008
Yes 1.63 1.49–1.76

Sepsis/NEC
No 1.82 1.71–1.93 .016
Yes 1.55 1.36–1.74

Vermis height
Postnatal corticosteroids

No 0.63 0.58–0.69 .011
Yes 0.49 0.39–0.59

Ventricular width
GA

�28 weeks 0.64 0.57–0.71 .004
�28 weeks 0.41 0.27–0.55

a Adjusted for gestational age, birth weight z score, and sex.
b P value for the interaction between the perinatal variable and postnatal age.
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