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An experimental study was performed to examine posttraumatic spinal cord cavitation 
in an animal model by evaluating immediate and delayed computed tomographic (CT) 
scans obtained after administration of intrathecal contrast material. Four cats underwent 
midthoracic laminectomy and spinal cord contusion using a standard 400 g-cm model. 
All animals were studied by CT with intrathecal contrast enhancement before and 4- 5 
days, 3-4 weeks, and 7-13 weeks after experimental cord contusion. Either metrizamide 
or iopamidol was used as the contrast agent. Two of the four cats had CT and pathologic 
evidence of cord cavitation at the site of injury. Another animal had uptake of contrast 
material into the spinal cord without pathologic evidence of cyst formation, which was 
believed to represent malacic change. The fourth animal had a normal-appearing cord 
by both CT and pathologic criteria. Animals that received metrizamide after cord 
contusion had generalized myoclonic seizures, This did not occur when iopamidol was 
administered. 

Spinal cord cavitation after serious spinal injury was originally described by 
Holmes [1] in 1915. In later reports, such patients were characterized by their 
symptomatology: a progressive ascending myelopathy occurring months to years 
after a major spinal injury [2-4] . The diagnostic methods used to identify cord 
cavitation as the etiologic factor varied widely and included Pantopaque myelog­
raphy [5-7] , gas myelography [8] , metrizamide computed tomography (CT) without 
delayed scans [9] , and clinical symptoms alone [10]. Two recent reports used CT 
myelography followed by delayed scans to diagnose cord cavitation in symptomatic 
patients. In the latter studies, surgical confirmation was obtained [11 , 12]. 

There has been little study of cystic change secondary to spinal cord injury in 
animals. In one well studied model, a weight is dropped a fi xed distance onto the 
spinal cord after laminectomy [13, 14]. Evaluation of changes in electrophysiologic 
parameters, neurologic function , and pathologic appearance are commonly per­
formed . Although pathology during the first 24 hr has been well documented [15-
20] , the pathology of later stages is less well described, with only passing refer­
ences to cystic change in the spinal cord of rats and monkeys 2 weeks to 2 months 
after injury [19-21] . There has been no attempt to examine the characteristics of 
these tissues by CT myelography in correlation with pathologic findings. 

The available CT studies of the spinal trauma have been obtained primarily in 
patients. They show the appearance of acute injury [22-25] and the radiologic 
documentation of the presence of cavities in the spinal cords of injured patients 
with diminishing neurologic function [11 , 12]. There is a single report of contrast 
enhancement that was believed to represent contrast-medium collection in malacic 
tissue rather than a true cavity within the cord secondary to injury [26] . Sonography 
also has been advocated as a method of documenting cystic Change in the cord , 
either intraoperatively or before surgery if a laminectomy is present [26, 27] . More 
general reports are not available. 
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Fig. 1.- lmmediate precontusion metrizamide CT 
scan at level of laminectomy. Metrizamide surrounds 
spinal cord shadow. Faint central density (arrow) may 
represent central canal. 

Subjects and Methods 

Cats who had undergone laminectomy without injury were sub­
jected to a 400 g-cm contusion injury. This has been described in 
detail [1 3. 14. 28-33.1. In brief. after intravenous barbiturate anethesia 
and with monitoring of pulse. respiration, blood pressure, and so­
matosensory evoked potentials, an incision was made in the skin 
overlying the previous midthoracic laminectomy in order to expose 
the spinal cord without opening the dura. A 20-g weight was dropped 
from a height of 20 cm (400 g-cm injury) onto the spinal cord . The 
incision was closed and supportive care was maintained. 

All animals had had laminectomy before the initial CT studies. CT 
following intrathecal administration of contrast material was per­
formed before and 4-5 days, 3-4 weeks, and 7- 13 weeks after 
injury. Contrast material was instilled under direct vision into the 
cisterna magna of an animal anesthetized with intramuscular keta­
mine. After removal of 2 ml of cerebrospinal fluid , either metrizamide 
(170 mg I/ml) or iopamidol (200 gm I/ml) was placed in the subarach­
noid space. One animal received only metrizamide, one only iopami­
dol, and two animals received both agents in an alternating sequence. 
CT scans of the spinal axis were obtained on a Philips T60 tomo­
scanner (120 kV, 300 mA, 9.0 sec scan and 210 FOV, 3.0X zoom 
reconstruction), within 2 hr of the initial contrast administration and 
after a 15-18-hr delay. All scans were obtained at both bone and 
soft-tissue windows. 

Sonography was attempted on all cats initially and at 2 months 
after contusion injury using a 7.5 MHz transducer and ATL real-time 
equipment. 

After the final CT evaluation, the animals were sacrificed. Patho­
logic evaluation of the spinal cord was made at the injury site using 
sections stained with hematoxylin-eosin and toluene blue. Correlation 
was made wi th the appropriate CT sections both to define the areas 
of cyst formation and to identify areas of neuronal disruption. 

Results 

Patterns of contrast enhancement within the spinal cord 
were evaluated on the immediate and delayed scans. Each 
animal served as its own control , since the initial series of CT 
scans was performed after laminectomy but before cord 
contusion. In two of the four animals on the precontusion 
immediate (2-hr) CT scans, there was a suggestion of a 
central density in the cord shadow. This density extended the 
entire length of the cord and was believed to represent the 

central canal (fig . 1). This was also present on the immediate 
study at 5 days in one animal in which a direct injection into 
the canal might have been performed inadvertently, and in 
three of the four animals on the immediate scans obtained at 
7 -13 weeks . The structure was not visualized on any delayed 
scans. In one animal only, there was a suggestion of cord 
flattening at 4-5 days after injury. The cord size in the other 
three animals was unchanged. 

Three animals were evaluated at 3-4 weeks. One animal 
(cat 3) appeared to have a slightly flattened cord on the 
immediate scan. All three animals appeared to have some 
increase in contrast in the cord at the contusion site on the 
delayed scans. In cat 4 the area of increased contrast on the 
delayed scan was at the edge of the laminectomy, whereas 
in cats 2 and 3 the contrast collection appeared to be more 
focal. 

All four animals were examined by CT myelography at 7-
13 weeks after injury. Each was sacrificed within 3 days after 
the last CT scan for pathologic examination of the spinal cord. 
In cat 1, on the immediate scan, which was somewhat marred 
by motion of the animal , the cord was flattened at the site of 
the contusion . On the delayed scans there was a dense focal 
collection at the contusion site, corresponding to the cyst 
within the flattened cord in the pathologic specimen (fig . 2). 
In the second animal , there was a dense collection at the level 
of the cord contusion on the delayed scan, about 1 cm in 
length . There were also mottled, patchy densities within the 
cord inferior to the cyst , mainly at the level of the contusion 
injury. Pathologic examination revealed a large dorsal cyst 
with surrounding microcysts and demyelination (fig . 3). 

The third animal had a patchy region of increased contrast 
on the right side of the cord at the level of the contusion. The 
corresponding pathologic specimen demonstrated a wedge­
shaped area of demyelination and microcyst formation , which 
was believed to correspond to the contrast-medium collection 
visualized by CT (fig . 4). The fourth cat had no abnormal 
collections of contrast material on the delayed CT scan . 
Pathologic examination was notable only for the prominent 
central canal. 

Attempts at sonographic examination were unsuccessful 
because the available probe head was larger than the window 
provided by the laminectomy defect. Unequivocal identifica­
tion of cavitation within the cord or of the prominent central 
canal was not possible. 

Generalized myoclonic seizures were noted when metriza­
mide was present in the subarachnoid space of the injured 
animals. This was not true in the uninjured animals or in the 
animals who received iopamidol. This effect had not been 
anticipated , and electroencephalographic monitoring was not 
performed. Cat 1, with the flattened cord and central cyst , 
did not walk ; both cat 2, with a dorsal cyst , and cat 3, with 
the area of decreased myelination, walked; cat 4 walked and 
was almost normal on neurologic examination. 

Discussion 

This preliminary study was undertaken to elucidate the 
radiologic characteristics of spinal injury in a standard model 
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Fig. 2.-Cat 1, 10 weeks after injury. A, Immediate metrizamide CT scan at level of contusion demonstrates flattened spinal cord shadow. B, 18-hr delayed 
scan demonstrates dense collection of contrast material (arrow) in ventral spinal canal. Corresponding pathologic section (C) shows flattened spinal cord with large, 
irregular cyst. 

B c 
Fig . 3.-Cat 2. A, 18-hr delayed scan at 4 weeks after contusion injury. Suggestion of increased contrast in dorsal part of spinal cord (arrow). B, 18-hr delayed 

scan at 12 weeks demonstrates large, confluent dorsal collection of contrast material at level of contusion. Corresponding pathologic section (C) shows irregular 
dorsal cystic region. 

Fig. 4.-Cat 3, 10 weeks after injury. A, Delayed 
metrizamide CT scan at level of laminectomy. Col­
lection of contrast material (arrow) at left side of 
spinal cord. This collection is less dense than that 
seen in cord with true cavitation. Corresponding 
pathologic section (B) shows wedge-shaped region 
of poor myelination and microcyst formation (arrow) 
corresponding to region of contrast-medium collec­
tion in A. 

A 

during the first few weeks after contusion injury. Although the 
number of animals studied was small , the initial results sug­
gest that radiologically diagnosable cystic degeneration of the 
spinal cord may be common after contusion injury. Two of 
the four animals had cavities of abouf 30%-40% of cord 

B 

diameter at 2-3 months after injury . These cavities were 
localized to the level of contusion, without significant exten­
sion above or below the laminectomy margins, and were 
demonstrated both on pathologic sections and by delayed 
CT scans with intrathecal contrast enhancement. Also of 
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interest, as mentioned by Quencer et al. [26] , the delayed CT 
scans showed areas of increased contrast-medium collection 
that did not correspond to cavities in the cord. These ap­
peared to be areas of neuronal loss with increased extracel­
lular space and small microcysts. 

Gliotic change and neuronal loss as later sequelae of cord 
contusion have been noted in experimental trauma in cats 
and monkeys [19 , 20] . In areas of pathologically normal­
appearing cord there is a suggestion of slightly increased 
contrast (as in cat 3). This suggestion of diffusion of a lesser 
amount of contrast material into normal tissue may be similar 
to observation of the diffusion of intrathecal contrast material 
into normal brain. 

An attempt was made to examine the CT attenuation within 
the cord, both initially and on the delayed scans, to provide a 
more rigorous criterion for identifying a cyst. The main diffi­
culty lay in beam-hardening artifacts. The presence of sur­
rounding intrathecal contrast material and/or differing 
amounts of bone caused variation in attenuation values, which 
precluded either comparisons of attenuation values longitu­
dinally within the cord or comparisons between early and 
delayed studies. The spinal cord of the cat was at the limits 
of resolution of the scanner, so that correction for visually 
apparent small variations in attenuation value from pixel to 
pixel was difficult using standard region-of-interest software. 
All delayed scans were performed at 15-18 hr after initial 
contrast injection because there was insufficient clearing of 
subarachnoid contrast on the scan at 8 hr to provide diag­
nostic studies. This is somewhat later than the recommen­
dations for similar studies in humans [11, 12] . 

Examination of the spine by magnetic resonance (MR) 
imaging may supplant CT [34, 35]. The exact role of MR 
imaging has yet to be defined. Nevertheless, there will con­
tinue to be CT studies of patients with intrathecal contrast 
enhancement; moreover, in the chronically injured patient with 
metallic stabilization devices, MR imaging may be contraindi­
cated. Early findings suggest that delayed CT using intrathe­
cal metrizamide, in addition to defining the gross anatomy of 
the cord and demonstrating areas of cystic change, may give 
an indication of the extent of malacic change. 

The development of visible myoclonic seizures in the injured 
animals with metrizamide myelography was not expected. 
Seizures and increased electrical activity have been reported 
in animals after metrizamide injection into the subarachnoid 
space [36-38]. In addition, ketamine has produced tonic­
clonic movements in some patients. Striking in this series was 
the limitation of this reaction to those animals who had 
multiple doses of metrizamide; there was no similar reaction 
in the animals studied with iopamidol. The absence of electro­
encephalographic monitoring precludes detection of lower 
levels of central-nervous-system hyperactivity in animals with­
out frank seizures. It was not pOSSible, on the basis of this 
limited study, to separate the effect of multiple exposures to 
metrizamide from the effect of injury per se. 

In conclusion, in this preliminary study of a feline cord 
contusion model, two of four animals demonstrated cavities 
within the spinal cord that corresponded to 30%-40% of the 
cord diameter both on delayed CT scans with intrathecal 
contrast enhancement and on corresponding pathologic sec-

tions. Collections of contrast material were noted also in areas 
pathologically confirmed to be areas of neuronal loss, sug­
gesting that further exploitation of CT to evaluate extent of 
neuronal loss might be of value. 
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