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ORIGINAL RESEARCH
ARTIFICIAL INTELLIGENCE

Empowering Data Sharing in Neuroscience: A Deep Learning
Deidentification Method for Pediatric Brain MRIs

Ariana M. Familiar, Neda Khalili, Nastaran Khalili, Cassidy Schuman, Evan Grove, Karthik Viswanathan, Jakob Seidlitz,
Aaron Alexander-Bloch, Anna Zapaishchykova, Benjamin H. Kann, Arastoo Vossough, Phillip B. Storm, Adam C. Resnick,

Anahita Fathi Kazerooni, and Ali Nabavizadeh

ABSTRACT

BACKGROUND AND PURPOSE: Privacy concerns, such as identifiable facial features within brain scans, have hindered the availabil-
ity of pediatric neuroimaging data sets for research. Consequently, pediatric neuroscience research lags adult counterparts, particu-
larly in rare disease and under-represented populations. The removal of face regions (image defacing) can mitigate this; however,
existing defacing tools often fail with pediatric cases and diverse image types, leaving a critical gap in data accessibility. Given
recent National Institutes of Health data sharing mandates, novel solutions are a critical need.

MATERIALS AND METHODS: To develop an artificial intelligence (AI)-powered tool for automatic defacing of pediatric brain MRIs,
deep learning methodologies (nnU-Net) were used by using a large, diverse multi-institutional data set of clinical radiology images.
This included multiparametric MRIs (T1-weighted [T1W], T1W-contrast-enhanced, T2-weighted [T2W], T2W-FLAIR) with 976 total
images from 208 patients with brain tumor (Children’s Brain Tumor Network, CBTN) and 36 clinical control patients (Scans with
Limited Imaging Pathology, SLIP) ranging in age from 7 days to 21 years old.

RESULTS: Face and ear removal accuracy for withheld testing data were the primary measure of model performance. Potential
influences of defacing on downstream research usage were evaluated with standard image processing and AI-based pipelines. Group-
level statistical trends were compared between original (nondefaced) and defaced images. Across image types, the model had high ac-
curacy for removing face regions (mean accuracy, 98%; n¼98 subjects/392 images), with lower performance for removal of ears (73%).
Analysis of global and regional brain measures (SLIP cohort) showed minimal differences between original and defaced outputs (mean
rS ¼ 0.93, all P , .0001). AI-generated whole brain and tumor volumes (CBTN cohort) and temporalis muscle metrics (volume, cross-
sectional area, centile scores; SLIP cohort) were not significantly affected by image defacing (all rS . 0.9, P , .0001).

CONCLUSIONS: The defacing model demonstrates efficacy in removing facial regions across multiple MRI types and exhibits mini-
mal impact on downstream research usage. A software package with the trained model is freely provided for wider use and further
development (pediatric-auto-defacer; https://github.com/d3b-center/pediatric-auto-defacer-public). By offering a solution tailored
to pediatric cases and multiple MRI sequences, this defacing tool will expedite research efforts and promote broader adoption of
data sharing practices within the neuroscience community.

ABBREVIATIONS: AI ¼ artificial intelligence; CBTN ¼ Children’s Brain Tumor Network; CE ¼ contrast-enhanced; CHOP ¼ Children’s Hospital of
Philadelphia; CSA ¼ cross-sectional area; LH ¼ left hemisphere; NIH ¼ National Institutes of Health; RH ¼ right hemisphere; SEM ¼ standard error of the
mean; SLIP ¼ Scans with Limited Imaging Pathology; T1W ¼ T1-weighted; T2W ¼ T2-weighted; TMT ¼ temporalis muscle thickness

Data sharing is a critical component of research endeavors as
it lends to scientific transparency and data reuse. For the

study of rare diseases, data sharing is crucial for gathering a
meaningful group of samples to enable statistical comparisons in
the given patient population. Due to calls to action across
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disciplines, data sharing plans have recently become a mandate
for National Institutes of Health (NIH)-funded projects and de-
posit of data files to centralized repositories is now a requirement
by many scientific journals for publication. Such efforts will facili-
tate the reproducibility of research studies and consequently their
translation into real-world applications such as clinical care
contexts, as well as bolster the inclusion of historically under-repre-
sented populations, which can mitigate bias in developed models
and support fair artificial intelligence (AI) in health care.1

In alignment with FAIR2 principles, several imaging data
repositories have been established such as the Alzheimer Disease
Neuroimaging Initiative3 and the National Cancer Institute’s The
Cancer Imaging Archive4 and Imaging Data Commons, which
provide effective data discovery and accessibility. While several
large-scale, multi-institutional imaging data sets exist, such as
the National Lung Screening Trial (NLST) for lung cancer
(chest CTs from more than 26,000 patients)5 and the Breast
Cancer Screening Digital Breast Tomosynthesis (breast mam-
mograms from 5060 patients),6 comparable radiology data sets
in neuroscience fields have lagged behind their counterparts,
primarily due to greater difficulty of removing identifying in-
formation from brain (head and neck) scans. Brain images can
be inherently identifiable due to the presence of an individual’s
face, and their release can jeopardize patient privacy. Studies
have shown brain MRIs can be used to identify subjects by
matching to their photograph,7,8 even after face regions have
been blurred.9 “Defacing,” or the removal of face regions in an
image, is one way to mitigate this issue, and several defacing
software tools for structural brain MRIs have been developed
(eg, mri_deface10, pydeface11, fsl_deface,12 and others13,14), some
of which have less impact on downstream processing than
others.15,16 That said, existing tools do not typically perform well
on pediatric cases,17 particularly in young children and infants,
likely due to differences in brain and face anatomy across devel-
opmental stages. For example, 1 study found that FSL’s defacing
removed brain tissue in most children (ages 8–11) and in some
young adult (ages 19–31) cases, and had worse performance for
eyes and mouth removal compared with adults.18 FreeSurfer had
better performance for face removal without impacting brain tis-
sue in the same cases, however, it was more invasive in removing

intraorbital and brainstem structures. Many tools rely on align-
ment to standardized face or brain atlases created with adult
MRIs, and therefore fail to properly deface pediatric scans.
Additionally, most are developed for T1-weighted (T1W) sequen-
ces, and there remains a need for accessible tools for defacing
additional sequence types collected under standard clinical imag-
ing protocols (eg, T2-weighted [T2W]).

Pediatric data sharing has been significantly hindered by regu-
latory barriers related to privacy concerns, creating a critical unmet
need for public imaging data sets. Herein, we build a tool to enable
automatic removal of face regions from multiple types of pediatric
MRIs, with the goal of facilitating data sharing across neuroscience
fields. This is, to the best of our knowledge, the first available pedi-
atric defacing tool. To address the need for a tool that can operate
across multiparametric MRIs, we use a large, multi-institutional
clinical radiology data set (Children’s Brain Tumor Network
[CBTN]19) with deep learning AI methods to develop a model for
minimally invasive defacing. Our model was trained and validated
with 208 pediatric brain tumor subjects (832 total images) and 36
clinical control subjects (144 images from the Scans with Limited
Imaging Pathology [SLIP] cohort20), with 4 image sequences
included per subject (T1W, T1W contrast-enhanced [T1W-
CE], T2W, and T2W-FLAIR sequences). Images were acquired
through clinical protocols, and thus capture real-world hetero-
geneity in scanner and image acquisition properties.

MATERIALS AND METHODS
Patient Cohorts
Retrospective data were collected from the CBTN,19 a large-scale,
multi-institutional repository of longitudinal clinical, imaging,
genomic, and other paired data.21 Two hundred eight subjects were
selected based on imaging availability and inclusion of a range of ages
at the time of imaging (median age 8; minimum¼ 0.35, maximum¼
21.71years) and cancer histologies (Fig 1, Table, Supplemental Data).
MRI scans were unprocessed images from treatment-naïve clinical
examinations (T1W, T1W-CE, T2W, and T2W-FLAIR). All subjects
had histologically confirmed pediatric brain tumors.

To test generalizability to nonbrain tumor patients (clinical
control group), a cohort of 40 subjects with available images from

SUMMARY

PREVIOUS LITERATURE: Scientific data sharing promotes reproducibility of research and translation of findings into clinical care.
Several centralized repositories have enabled broad sharing of large-scale imaging data sets; however, pediatric data sets have
lagged behind their adult counterparts, and neuroimaging data are particularly challenging to share due to privacy concerns,
because brain scans can reveal identifiable features. Existing “defacing” tools to remove face regions are primarily designed for
adult scans, and often struggle with pediatric images and do not generalize to a variety of sequence types. This work introduces
the first tool (pediatric-auto-defacer) specifically for removing facial features from multiparametric pediatric MRIs, addressing a critical
gap in data sharing for neuroscience research.

KEY FINDINGS: A model was developed to automatically remove facial regions from brain MRIs for anonymization purposes. It
performs well on several sequence types across various acquisition parameters, and does not over-remove brain tissue. Based
on testing, defacing does not affect downstream analytical pipelines (eg, image preprocessing or measured group-level trends).

KNOWLEDGE ADVANCEMENT: To facilitate broad sharing of pediatric neuroimaging data sets, a robust, automatic deidentification
tool is provided to ease the burden on research teams to prepare and release imaging data while protecting patient privacy.
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the SLIP20 data set were selected to match the general distribu-
tions of age and sex of the CBTN cohort. Thirty-six subjects had
sufficient images and were included in the main analyses.

Ground Truth Creation with Semiautomated Face Mask
Segmentation
Preliminary face masks were generated for each image by using
the MiDeface22 algorithm and then were manually edited. Of the
976 images, 507 (52%) were found to be inaccurately defaced and
were manually revised by using the ITK-SNAP23 software (by
authors C.S., E.G.; Supplemental Data). The criteria for an accurate
face mask was that any brain region or temporalis muscle (given
potential implications as a biomarker24) were not affected and

identifiable facial features, including eyes, nose, mouth, and ears
were fully included. Common corrections included restoring brain
voxels, particularly in the right prefrontal cortex, and properly
realigning the face mask to the subject’s face.

AI Deep Learning Model Development
CBTN images were stratified into training/validation and testing
sets (80–20 split) based on demographics (age, sex, race) and
histology (Table). nnUNet25 v1 (https://github.com/MIC-DKFZ/
nnUNet/tree/nnunetv1; 3D full resolution; Supplemental Data)
was used with 5-fold cross-validation, initial learning rate
0.01, stochastic gradient descent with Nesterov momentum
(m ¼ 0.99), and number of epochs¼ 1000� 250 minibatches.

FIG 1. Diagram of overall study workflow. Data cohorts included brain tumor (CBTN) and nonbrain tumor control (SLIP). Initial ground truth face
masks were created with MiDeface and manually edited. A 3D deep learning model was trained with the nnUNet framework, by using a single
image as input, and tested on withheld data. The impact of defacing on downstream image processing and AI-based pipelines was evaluated
with CBTN and SLIP testing data. The trained model is provided in an open-source software container on GitHub.
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Each unprocessed T1W/T1W-CE/T2W/FLAIR sequence was
treated as a separate input. The set of 4 images for each subject
could be used for either training or validation but not both (ie,
images from a single subject could not be split into training and
validation within a given fold). Given a large percentage of the
CBTN scans were from Children’s Hospital of Philadelphia
(CHOP), we additionally split the testing cohort into “internal”
(CHOP) and “external” (4 separate institutions) testing data sets.

Defacing Accuracy
Model performance was evaluated with (previously unseen) images
in the testing cohorts. Traditional performance scores such as the
Sørensen-Dice score (spatial overlap between model predicted
mask and ground truth mask), sensitivity (percent of pixels cor-
rectly identified by the model), and 95% Hausdorff distance met-
rics (distances between nearest voxels in the predicted and ground
truth masks, of which 95% of voxels fell within) were generated.

As an additional assessment of defacing accuracy, 2 raters
(authors Neda K. and Nastaran K.) evaluated model performance
in the testing cohorts. For each image, they rated coverage of the eyes
and ears (separately for left and right), mouth, and nose with either:
1 (fully covered), 0.75 (approximately 75%masked), 0.5 (50%masked),

0.25 (25% masked), or 0 (not masked at all); and whether any brain
tissue was removed (yes/no). After initial independent review, images
with disagreement were reviewed until a consensus was reached.

Impact of Defacing on Downstream Analytics
Given the overarching aim to facilitate data sharing of brain
MRIs for research purposes, it is essential any modification of the
images by defacing minimally impacts downstream analysis.
Several methods were used to assess this by using standard image
processing steps, in both the brain tumor (CBTN) and nonbrain
tumor (SLIP) groups separately.

Preprocessing and Application of Pretrained AI Models. For
each subject in the CBTN testing cohorts, T1W, T2W, and
FLAIR sequence images were coregistered with their correspond-
ing T1W-CE sequence and resampled to an isotropic resolution
of 1 mm3 based on the anatomic SRI24 atlas26 by using the
Greedy algorithm (https://github.com/pyushkevich/greedy)27

in the Cancer Imaging Phenomics Toolkit open-source software
v.1.8.1 (CaPTk, https://www.cbica.upenn.edu/captk).28 Accuracy
of coregistration was confirmed by visual assessment of the 4 images.

Preprocessed data for each subject were then input into exist-
ing pretrained AI models for automatic brain tissue extraction

Patient characteristics in the studied cohorts

Patient Characteristics
Training/Validation

CBTN
Internal Testing

CBTN
External Testing

CBTN
Clinical Control Testing

SLIP
Multicenter Yes No Yes No
Total patients 146 37 25 36
Total images 584 148 100 144
Age at imaging, range (years) 0.35–19.7 0.84–21.71 1.08–17.69 0.23–17.33
Age at imaging, median (years) 7.8 11.13 5.94 7.16
Legal sex (No. [%])

Male 79 (54%) 18 (49%) 14 (56%) 19 (53%)
Female 66 (45%) 19 (51%) 11 (44%) 17 (47%)
Unknown 1 (1%)

Race (No. [%])
White 100 (68%) 24 (65%) 16 (64%) 25 (69%)
Black or African American 20 (14%) 4 (11%) 4 (16%) 6 (17%)
Asian 2 (1%) 2 (5%) 1 (3%)
Native Hawaiian or Other Pacific Islander 1 (1%)
American Indian or Alaska Native 1 (1%)
More than 1 race 1 (1%)
Other/Unavailable/Not Reported 21 (14%) 7 (19%) 5 (20%) 4 (11%)

Ethnicity (No. [%])
Not Hispanic or Latino 130 (89%) 30 (81%) 22 (88%) 9 (25%)
Hispanic or Latino 8 (5%) 5 (14%) 2 (8%) 3 (8%)
Unavailable 8 (5%) 2 (5%) 1 (4%) 24 (67%)

Histology (No. [%])
Low-grade glioma/astrocytoma 87 (60%) 22 (59%) 21 (84%) N/A
Medulloblastoma 40 (27%) 8 (22%)
High-grade glioma/astrocytoma 9 (6%) 3 (8%) 4 (16%)
High-grade glioma/Diffuse intrinsic
pontine glioma

9 (6%) 3 (8%)

Ganglioglioma 1 (1%)
Unknown/not available 1 (3%)

Scanner magnetic field strength (T) (No. [%])
3 95 (65%) 26 (70%) 9 (36%) 36 (100%)
1.5 51 (35%) 11 (30%) 16 (64%)

Scanner manufacturer (No. [%])
Siemens 134 (92%) 33 (89%) 16 (64%) 36 (100%)
GE Healthcare 10 (7%) 4 (11%) 9 (36%)
Philips 1 (1%)
Toshiba 1 (1%)
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and tumor subregion segmentation (https://github.com/d3b-
center/peds-brain-seg-pipeline-public).29,30 This was performed
once by using the original images (nondefaced), and once by
using the defaced images. Resulting brain and tumor segmenta-
tion masks were compared between these conditions.

Cortical and Subcortical Volumetric Measures. For 31 subjects
in the SLIP testing cohort, their T1W scan was input to FreeSurfer’s
reconstruction pipeline (recon-all; https://surfer.nmr.mgh.harvard.
edu/fswiki/recon-all)31 to generate cortical and subcortical structure
parcellations (5 subjects were excluded due to insufficient T1W
image quality). This was performed once with original images
and once with defaced images. Resulting volumetric measurements
based on the parcellations were compared between these conditions.

We additionally used an existing AI-powered pipeline to esti-
mate the thickness (temporalis muscle thickness [TMT]) and

cross-sectional area (CSA) of the temporalis muscle (https://doi.
org/10.5281/zenodo.8428986)24 for 28 SLIP subjects (5 subjects
excluded for insufficient quality T1W images, 3 subjects excluded
for being younger than 3 years of age as required by the tool).

Please see Supplemental Data for a description of all statistical
comparisons and a CLAIM checklist to indicate alignment with
the proposed methodologic guidelines recommended for AI in
medical imaging.32–34

RESULTS
Defacing Accuracy
Across images, Dice scores indicated decent spatial overlap
between manual ground truth and model-predicted face masks in
the internal (mean¼ 0.78, median¼ 0.8, standard error of the mean
[SEM] ¼ 0.008), external (mean¼ 0.75, median¼ 0.78, SEM¼
0.02), and clinical control (mean¼ 0.75, median¼ 0.77, SEM¼

FIG 2. Model performance results. Plots show aggregate metrics across image types for each testing cohort (see Supplemental Data for results
for image type separately); error bars represent SEM. A, Standard metrics for segmentation evaluation including Dice similarity, sensitivity, and
95% Hausdorff distance. B, Average performance ratings based on visual inspection by 2 raters (1¼ fully covered, 0.75¼ approximately 75%
masked, 0.5¼ 50% masked, 0.25¼ 25% masked, 0¼ not masked at all).
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0.01) groups (Fig 2). Repeated-measures ANOVAs confirmed
there was no effect of image type (T1W/T1W-CE/T2W/FLAIR)
on Dice scores in the internal (F(3,108) ¼ 0.38, P ¼ .77) and
external (F(3,72) ¼ 1.8, P ¼ .16) cohorts, however there was a
significant effect in the clinical control group (F(3,105) ¼ 6.14,
P ¼ .007) with better model performance for T2W and FLAIR
compared with T1W and T1W-CE (Supplemental Data).
Pearson correlations showed no effect of age on Dice scores
averaged across image types (internal: r(35) ¼ 0.19, P ¼ .25;
external: r(23) ¼ 0.29, P ¼ .17; control: r(34) ¼ 0.28, P ¼ .095;
Supplemental Data). One-way ANOVAs indicated no effect of
sex (internal: F(1,35) ¼ 2.0, P ¼ .17; external: F(1,23) ¼ 0.28,
P ¼ .6; control: F(1,34) ¼ 3.17, P ¼ .08) or race (internal:
F(3,33) ¼ 0.18, P ¼ .911; external: F(2,22) ¼ 0.61, P ¼ .551;
control: F(2,32) ¼ 1.07, P ¼ .356) on Dice scores, and no effect
of histopathologic diagnosis (internal: F(4, 32)¼ 0.442, P ¼
.777; external: F(1, 23)¼ 0.377, P ¼ .545) or general tumor
location (internal: F(4,32)¼ 0.837, P¼ .512; external: F(3,21)¼ 0.1,
P¼ .959) in the CBTN testing cohorts.

On further review, it was determined that the spatial metrics
were not an ideal measure of defacing performance due to variabili-
ty in extension of the face mask into the air in front of the face in
the ground truth segmentations (Fig 3, Supplemental Data). To
more accurately assess model performance, 2 raters (Neda K.,
Nastaran K.) reviewed each defaced image in the internal, external,
and clinical control testing groups. After applying the model-
predicted face masks to the corresponding images, the raters
were instructed to score the model’s accuracy in masking (cov-
erage of) the left eye, right eye, nose, mouth, left ear, and right
ear separately (1¼ fully masked, 0.75/0.5/0.25 ¼ % partially
masked, 0¼ not masked) for each image separately.

Across facial features, the average rated accuracy of model
defacing was high for each testing set (means: internal¼ 0.93,

external¼ 0.86, control¼ 0.89). Composite scores combining the
eyes, mouth, and nose ratings indicated high masking perform-
ance for these features (Fig 2, Supplemental Data; internal¼
0.97, external¼ 0.98, control¼ 0.98), while performance for
masking the ears was lower (internal¼ 0.85, external¼ 0.62,
control¼ 0.72). For every image, both raters reported no brain
voxels were impacted by defacing in the internal, external, or
clinical control groups. Repeated-measures ANOVAs showed a
significant effect of image type on defacing performance in the
clinical control group (F(3,75) ¼ 10.8, P , .0001), with higher
average ratings for T1W (M¼ 0.91) and T1W-CE (M¼ 0.91)
compared with T2W (M¼ 0.89) and FLAIR (M¼ 0.86); but no
effect of image type in the internal (F(3,108) ¼ 1.17, P ¼ .33) or
external (F(3,72) ¼ 0.32, P ¼ .81) groups. Average rating across
subjects and image types for each feature is displayed in the
Supplemental Data.

Assessing Impact of Defacing on Downstream Analytics
Preprocessing and Application of Pretrained AI Models. Defaced
and original (nondefaced) images underwent preprocessing and
were input to pretrained AI tools to assess any impact of defacing
on standard downstream analysis by using all 4 image sequences
(T1W/T1W-CE/T2W/FLAIR). Visual inspection showed equiva-
lent coregistration performance between defaced and original
images. For the pediatric brain tumor test data sets, the volumes
of AI-generated brain masks were equivalent between defaced
and nondefaced images (internal: rS(35). 0.99, P, .0001; exter-
nal: rS(23). 0.99, P, .0001; Fig 4, upper and middle). AI-gener-
ated tumor segmentations were also unaffected by defacing,
indicated by equivalent volumes of contrast-enhancing tumor,
nonenhancing tumor, cystic, and edema subregions (internal:
all subregions rS(35). 0.99, P , .0001; external: all subregions
rS(23). 0.99, P, .0001; Fig 4, Supplemental Data).

FIG 3. Representative example images of model predicted versus manual ground truth segmentation masks. Subjects shown with high (left box;
T1W-CE sequence) and low (right box; FLAIR sequence) Dice similarity scores between the model predicted (upper row) and manual ground
truth (lower row) face masks. This illustrates how Dice score, although a common metric for such segmentation tasks, was not an accurate mea-
sure of model performance in the present study, as ground truth masks were variable in their extension into space in front of the face (particu-
larly due to “MiDeface” lettering imposed by the MiDeface Freesurfer tool that was used to generate initial face masks).
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FIG 4. Testing the impact of defacing on AI-generated volumetrics. Each point represents 1 subject; the red line indicates a linear trend.
Upper/middle: Comparison of tumor subregion volumes between defaced (x-axis) and original (y-axis) images in pediatric brain tumor sub-
jects. There was very high agreement between brain and tumor segmentation volumes. Lower: Comparison of estimated TMT, area (CSA),
and TMT centile scores between defaced (x-axis) and original (y-axis) T1W images from the clinical control group (point colors indicate
age). Correlations indicated very high agreement between TMT, CSA, and resulting TMT centile scores.
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Cortical and Subcortical Volumetric Measures. For 31 subjects
in the clinical control (SLIP) cohort, we further investigated any
impact of defacing on derived brain measures from T1W images
by using a standard anatomic reconstruction pipeline (FreeSurfer
recon-all). There was very high agreement between estimated
global and regional measures, with all comparisons between
original and defaced images being positively significant (mean
rS(29) ¼ 0.93, all P , .0001; Supplemental Data). Correlations
were above 0.9 for 48 out of 58 measures. Regions with the lowest
agreement were the left and right cerebellum white matter (left:
rS(29) ¼ 0.71, P , .0001; right: rS(29) ¼ 0.69, P , .0001). Nine
global measurements (cortex, cerebral white matter, subcortical
gray matter, total gray matter, total brain [including cerebellum],
total brain excluding ventricles [surface], total brain excluding ven-
tricles [volume], CSF, and total intracranial volumes) were equiva-
lent between original and defaced (rS(29). 0.86). Paired t tests
indicated no significant differences between original and defaced
brain measures (Supplemental Data), with the exception of the right
vessel (original ¼ 11.3, SEM ¼ 1.38; defaced M ¼ 14.7, SEM ¼
2.19; t(30) ¼ �2.32, P ¼ .03) and the right hippocampus (original
M¼ 3940.8, SEM¼ 101; defacedM¼ 3972.8, SEM¼ 101; t(30)¼
�2.36, P ¼ .03), which were estimated to be slightly larger on
average in the defaced compared with original images. Overall,
these results indicate defacing had minimal impact on cortical
and subcortical volumetric assessments by using a standard proc-
essing pipeline, which aligns with previous report of minimal
effects of defacing tools on global FreeSurfer measurements.17

To examine the impact of defacing on regional measurements
in close proximity to the face, we extracted TMT (mm) and CSA
measurements (SLIP cohort ages.3 years; n¼28) by using an
existing AI-powered pipeline24 with T1W images. Notably, TMT
scores have been implicated as a predictive marker for sarcopenia
across patient populations.35–38 Spearman correlations showed
high agreement of estimated TMT (rS26) ¼ 0.96, all P , .0001)
and CSA (left hemisphere [LH]: rS26) ¼ 0.96, P , .0001; right
hemisphere [RH]: rS26)¼ 0.97, P, .0001; Fig 4, lower) between
defaced and original images. Paired t tests indicated no differ-
ence in TMT volumes between original and defaced images
(t(27) ¼ �1.8, P ¼ .08), but a significant difference in CSA (LH:
t(27) ¼ �3.74, P , .0001; RH: t(27) ¼ �4.79, P ¼ .0009) with
lower surface area estimates for the defaced (LH: M¼ 306.2,
SEM¼ 30; RH: M¼ 314.7, SEM¼ 33) compared with original
(LH: M¼ 339.9, SEM¼ 35; RH: M¼ 350.5, SEM¼ 37) images.
Resulting centile scores based on TMT, age, and sex (compared
with TMT distributions estimated from large-scale data sets24)
were not significantly affected by defacing (rS(26) ¼ 0.9, P ,

.0001; t(27)¼ �0.97, P¼ .34).

DISCUSSION
Data sharing of MRIs is crucial to transparent and reproducible
research, particularly in the era of predictive AI that requires
ample volumes of representative data. Widely available pediatric
imaging data sets are needed to accelerate discoveries in neuro-
science, particularly in rare disease contexts. To this end, we aim
to enable MRI data sharing through the development of an open-
source de-identification tool for the automatic removal of identi-
fiable facial features. A deep learning model for face masking was

trained by using a large, multi-institutional data set of clinically
acquired, multiparametric MRIs (CBTN).

The trained model had strong performance removing the face
(eyes, nose, mouth) in an unseen data set, with adequate, though
lower, performance on ear removal. This is potentially due to a
lack of presence of ears in some images in the training data set
(limited field of view). Notably, although the model was trained
on data from patients with brain tumor, it could generalize to a
separate data set of clinically matched controls indicating its
potential use across anatomically normal and disease-impacted
cohorts. To enable wider usage by the community, the trained
model is publicly provided as an open-source software package,
and we encourage further model development to extend the
model to additional disease and healthy populations (see poten-
tial clinical limitations in the Supplemental Data).

Critically, image alteration by defacing should not impact
usage in intended research purposes. To ensure this, we com-
pared the outputs of standard processing pipelines between
defaced and original (nondefaced) images. Statistical trends for
AI-estimated whole brain and tumor volumes (brain tumor
group), in addition to derived brain region volumes, global brain
metrics, and AI-generated temporalis muscle measurements
(control group), were unaffected by defacing. Most estimated
measures were equivalent between defaced and original images,
and any resulting measurement differences did not impact overall
patterns at a group-level. Thus, there was minimal impact of
defacing on the utility of the structural images for downstream
analysis with standard research pipelines.

Many existing defacing tools are limited to T1W sequen-
ces,13,22,39 and we sought to expand support to additional
structural image types (T2W, FLAIR, T1W-CE), given their prev-
alence in clinical and research practices. That said, our tool is lim-
ited to 4 sequences, and further development could expand to
additional types such as functional MRI and other advanced imag-
ing (eg, diffusion-weighted imaging). Although consensus review
was used to assess defacing performance, additional quantitative
metrics such as face recognition rate may provide a more objective
measure of de-identification performance. Another limitation of
this study is that, while the training data set included images across
6 institutions, a large portion of the data set came from a single
institution (CHOP). Future work should focus on expanding to
larger studies to bolster model generalizability, and would benefit
from direct comparison between deep learning and existing com-
puter-vision methods.

CONCLUSIONS
We developed an AI-powered pediatric defacing tool with the
goal of facilitating wider de-identification of structural MRIs for
data sharing purposes. The tool is publicly available (https://
github.com/d3b-center/pediatric-auto-defacer-public) and can be
used on multiple image types. Future work can extend the model
to additional populations and MR sequences to provide a universal
method to facilitate data sharing and ultimately drive discoveries
in neuroscience research.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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