
of July 16, 2025.
This information is current as

Upgrades
PET Imaging amid Software and Hardware
PET/MR Attenuation Correction in Amyloid 
Accuracy and Longitudinal Consistency of

Richard Laforest, Tammie L.S. Benzinger and Hongyu An
Chunwei Ying, Yasheng Chen, Yan Yan, Shaney Flores,

http://www.ajnr.org/content/46/3/635
https://doi.org/10.3174/ajnr.A8490doi: 

2025, 46 (3) 635-642AJNR Am J Neuroradiol 

http://www.ajnr.org/cgi/adclick/?ad=57967&adclick=true&url=https%3A%2F%2Fmrkt.us-marketing.fresenius-kabi.com%2Fajn1872x240_july2025
https://doi.org/10.3174/ajnr.A8490
http://www.ajnr.org/content/46/3/635


ORIGINAL RESEARCH
MOLECULAR NEUROIMAGING/NUCLEAR MEDICINE

Accuracy and Longitudinal Consistency of PET/MR
Attenuation Correction in Amyloid PET Imaging amid

Software and Hardware Upgrades
Chunwei Ying, Yasheng Chen, Yan Yan, Shaney Flores, Richard Laforest, Tammie L.S. Benzinger, and Hongyu An

ABSTRACT

BACKGROUND AND PURPOSE: Integrated PET/MR allows the simultaneous acquisition of PET biomarkers and structural and func-
tional MRI to study Alzheimer disease (AD). Attenuation correction (AC), crucial for PET quantification, can be performed by using
a deep learning approach, DL-Dixon, based on standard Dixon images. Longitudinal amyloid PET imaging, which provides important
information about disease progression or treatment responses in AD, is usually acquired over several years. Hardware and software
upgrades often occur during a multiple-year study period, resulting in data variability. This study aims to harmonize PET/MR DL-
Dixon AC amid software and head coil updates and evaluate its accuracy and longitudinal consistency.

MATERIALS AND METHODS: Tri-modality PET/MR and CT images were obtained from 329 participants, with a subset of 38 under-
going tri-modality scans twice within approximately 3 years. Transfer learning was used to fine-tune DL-Dixon models on images
from 2 scanner software versions (VB20P and VE11P) and 2 head coils (16-channel and 32-channel coils). The accuracy and longitudi-
nal consistency of the DL-Dixon AC were evaluated. Power analyses were performed to estimate the sample size needed to detect
various levels of longitudinal changes in the PET standardized uptake value ratio (SUVR).

RESULTS: The DL-Dixon method demonstrated high accuracy across all data, irrespective of scanner software versions and head
coils. More than 95.6% of brain voxels showed less than 10% PET relative absolute error in all participants. The median [interquartile
range] PET mean relative absolute error was 1.10% [0.93%, 1.26%], 1.24% [1.03%, 1.54%], 0.99% [0.86%, 1.13%] in the cortical summary
region, and 1.04% [0.83%, 1.36%], 1.08% [0.84%, 1.34%], 1.05% [0.72%, 1.32%] in cerebellum by using the DL-Dixon models for the
VB20P 16-channel coil, VE11P 16-channel coil, and VE11P 32-channel coil data, respectively. The within-subject coefficient of variation
and intraclass correlation coefficient of PET SUVR in the cortical regions were comparable between the DL-Dixon and CT AC.
Power analysis indicated that similar numbers of participants would be needed to detect the same level of PET changes by using
DL-Dixon and CT AC.

CONCLUSIONS: DL-Dixon exhibited excellent accuracy and longitudinal consistency across the 2 software versions and head coils,
demonstrating its robustness for longitudinal PET/MR neuroimaging studies in AD.

ABBREVIATIONS: AC ¼ attenuation correction; AD ¼ Alzheimer disease; ICC ¼ intraclass correlation coefficient; MAE ¼ mean absolute error; MRAE ¼
mean relative absolute error; pCT ¼ pseudo-CT; PiB ¼ Pittsburgh compound B; SD ¼ standard deviation; SUVR ¼ standardized uptake value ratio; wCV ¼
within-subject coefficient of variation

In vivo amyloid PET imaging plays a crucial role in Alzheimer
disease (AD) diagnosis and treatment.1-5 A recently FDA-

approved lecanemab amyloid reduction therapy uses PET or

CSF tests to determine patients’ eligibility for treatment.5 Integrated
PET/MR imaging is beneficial because it allows the simultaneous
acquisition of PET biomarkers and structural and functional MRI
data in a single examination. Quantitative PET imaging requires
accurate attenuation correction (AC), one of the most critical factors.
MR-based methods have been explored to synthesize pseudo-CT
(pCT) for PET AC by using a variety of deep learning architectures,
including convolutional encoder-decoder,6-8 UNet,9-12 generative
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adversarial networks,13 CycleGAN,14 and Bayesian deep learn-
ing.15 Recently, a 3D patch-based residual UNet method dem-
onstrated highly accurate PET AC by using ultra-short echo
MRI, T1 MPRAGE, or Dixon images.9 Among these methods,
the deep learning-based T1-enhanced selection of linear attenu-
ation coefficients network achieved the highest AC accuracy by
including quantitative R1 maps derived from a dual-flip-angle
and dual-echo ultra-short echo time MRI sequence. Chen et al9

also demonstrated high PET/MR AC accuracy from a network by
using vendor-provided Dixon images as inputs (DL-Dixon). The
ultra-short echo sequence, with an acquisition time of 3minutes
and 50 seconds, is a custom sequence not widely available. In con-
trast, the Dixon sequence, a standard PET/MR AC sequence used
by the vendor, has an acquisition time of only 19 seconds. An
accurate DL-Dixon method offers a practical solution for many
existing PET/MR brain images by using only a standard Dixon
scan, making it a promising candidate for adoption in PET/MR
clinical applications.

Longitudinal amyloid PET scans by using a variety of PET
tracers, including 18F-labeled florbetapir, florbetaben, and flute-
metamol, and 11C-labeled Pittsburgh compound B (PiB), are usu-
ally acquired over several years to monitor disease progression or
treatment response. The annual mean changes of PET-measured
amyloid deposition for patients with AD have been reported to
be 1%-4%.4,5,16,17 Knowledge of the test-retest repeatability of
amyloid PET is crucial to distinguishing methodology variability
from true pathophysiologic longitudinal changes.18-21 Recently, a
Radiological Society of North America Quantitative Imaging
Biomarkers Alliance profile was proposed to improve the test-
retest repeatability of amyloid PET imaging by standardizing the
imaging acquisition approach.22

MR scanner upgrades, including software and hardware
upgrades, are often introduced by vendors. For example, the
scanner software version of the Biograph mMR scanner
(Siemens) at our institution was upgraded, and a new 32-chan-
nel head coil was introduced. Images acquired by using different
software versions or head coils have different spatial distribu-
tions of signal and noise, leading to increased PET/MR AC vari-
abilities in longitudinal studies. Thus far, the longitudinal
consistency of PET/MR AC has not yet been evaluated across
both software and hardware upgrades.

This study aims to evaluate the accuracy and longitudinal
consistency of DL-Dixon AC in amyloid PET with software and
hardware upgrades between visits over approximately 3 years.
We also performed power analyses to estimate the sample size
required to detect longitudinal PET standardized uptake value ra-
tio (SUVR) changes.

MATERIALS AND METHODS
The methodology proposed in the TRIPOD checklist was fol-
lowed in this study.

Participants and Image Acquisition
Tri-modality PET/MR and CT images were acquired from 329
participants at Washington University School of Medicine with
institutional review board approval and participants’written consent.

PET and MR images were acquired simultaneously by using a
Biograph mMR PET/MR scanner (Siemens Healthineers) between
July 2014 and September 2022. Over this period, the PET/MR
scanner had a software upgrade from Syngo VB20P to Syngo
VE11P and a coil upgrade from a 16-channel head/neck coil to a
32-channel head coil. PET listmode data were acquired with 18F-
florbetapir (Amyvid [Avid], Eli Lilly) or 11C-PiB tracer. T1
MPRAGE images were acquired (TE/TR ¼ 2.95/2300 ms, TI ¼
900 ms, flip angle ¼ 9°, matrix size ¼ 240 � 256 � 176, voxel
size ¼ 1.05 � 1.05 � 1.2 mm3). In- and opposed-phase Dixon
MR images were acquired by using the vendor-provided standard
Dixon AC scan (TE1/TE2/TR ¼ 1.23/2.46/3.6 ms, flip angle ¼
10°, matrix size ¼ 192 � 126 � 128, voxel size ¼ 2.6 � 2.6 �
3.1 mm3, acquisition time¼ 19 seconds). Low-dose CT images
were acquired by using a Biograph 40 or Biograph Vision PET/CT
scanner (Siemens Healthineers) at 120 kVp, with voxel size¼ 0.59
� 0.59� 3.0 mm3 or 0.59� 0.59� 2.0 mm3.

Image Processing
T1 MPRAGE images were segmented and parcellated by using
FreeSurfer 5.3 for regional analysis. Dixon head masks were
determined by using the in-phase Dixon images with an empiri-
cally determined threshold to remove the background. Bias field
correction was performed by using the FMRIB Automated
Segmentation Tool23 in the FSL toolbox (FAST; http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/fast). The level-set segmentation tool24 in the

SUMMARY

PREVIOUS LITERATURE: Several studies have proposed deep learning–based MR attenuation correction methods by using MR
images acquired with the same scanner software version and head coil. Thus far, no study has evaluated the accuracy and longi-
tudinal consistency across both software and hardware upgrades, which often occur in longitudinal studies over several years in
patients with Alzheimer disease.

KEY FINDINGS: DL-Dixon demonstrated high accuracy across data acquired by using 2 scanner software versions and head coils,
passing all 4 qualification criteria proposed by a recent consensus paper. Moreover, the longitudinal consistency of DL-Dixon
attenuation correction is similar to that of CT attenuation correction over 3 years.

KNOWLEDGE ADVANCEMENT: DL-Dixon exhibited excellent accuracy and longitudinal consistency across 2 software versions
and 2 coils, demonstrating its efficacy as a robust MR-based PET attenuation correction method for longitudinal Alzheimer dis-
ease research and clinical trials by using PET/MR.
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Computational Morphometry Toolkit was used to segment the
head region from the background in CT images. CT images were
aligned to the Dixon images by using a rigid registration with the
FSL FLIRT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT).25

Deep Learning Network and Models for pCT Estimation
A 3D residual UNet with Dixon in- and opposed-phase images as
inputs was developed to estimate pCT. The network structure
and training strategy, including hyperparameter initialization,
objective function, optimizer, learning rate, patch size, and patch
combination approach, were described previously.9 Means and
standard deviations (SDs) of CT HUwere calculated from all par-
ticipants. Means and SDs of Dixon images were obtained from
Dixon in- and opposed-phase image pairs to preserve the relative
contrast for each participant. The normalized image was calcu-
lated as (image – mean)/(2� SD) and then used in the deep
learning network training.

As summarized in Table 1, 3 DL-Dixon models were trained
by using Dixon images acquired by using different software ver-
sions and head coils. PET/MR data were acquired with VB20P by
using a 16-channel head/neck coil from 176 participants (median
[interquartile range] age: 70 [65, 75], 101 women) �6 [�30.2,
0.2] days from CT (negative numbers indicate that the PET/MR
scan was performed earlier than the CT scan). A VB20P-16Ch
model was trained with 69 participants for training and 18 partic-
ipants for validation. The model was applied to the remaining 89
participants for testing. PET/MR data were acquired with VE11P
by using a 16-channel head/neck coil from 105 participants (me-
dian [interquartile range] age: 71 [65, 76], 58 women) 1 [�6, 20]
day from CT. A VE11P-16Ch model was obtained by using trans-
fer learning from the VB20P-16Ch model, with 42 participants
for training and 11 participants for validation. The model was
applied to the remaining 52 participants for testing. PET/MR
data were acquired with VE11P by using a 32-channel head coil
from 48 participants (median [interquartile range] age: 72.5 [68,
78], 27 women) 4 [�7.8, 38.2] days from CT. A VE11P-32Ch
model was obtained by using transfer learning from the VE11P-
16Ch model, with 19 participants for training and 5 participants
for validation. The model was applied to the remaining 24 partici-
pants for testing.

A subset of participants (n ¼ 38; median [interquartile range]
age: 71 [68, 75] years, 22 women) underwent tri-modality images
at 2 time points (PET1/MR1/CT1 and PET1/MR2/CT2). These

data were used to evaluate the longitudinal consistency of DL-
Dixon as network testing data. The median [interquartile range]
time between the same participant’s first and second PET1/MR
(PET/MR1 versus PET2/MR2) and first and second CT scans
(CT1 versus CT2) were 39 [36, 47] and 39 [36, 47] months,
respectively. The details of the software version and coil used in
the data acquisition at PET/MR1 and PET/MR2 are summarized
in Table 2. The VB20P-16Ch, VE11P-16Ch, or VE11P-32Ch
model was applied to Dixon images acquired with the corre-
sponding software version and head coil.

l-Map Generation and PET Reconstruction
A piecewise linear conversion was used to convert CT and DL-
Dixon pCT images to m-maps for AC.26 Using the vendor-
provided e7tools software (Siemens Medical Solutions), PET
listmode data acquired from 50 to 70minutes or 30 to 60minutes
after tracer injection for 18F-florbetapir and 11C-PiB PET, respec-
tively, were reconstructed with Poisson ordered subset expecta-
tions maximization algorithm (3 iterations, 21 subsets) with a
5-mm postreconstruction Gaussian filter.

To evaluate the longitudinal consistency of CT AC and MR
AC, the CT m-maps and DL-Dixon m-maps at 2 time points of
each participant were first aligned by using FSL FLIRT.25 The
same PET listmode data (18F-florbetapir: n¼ 25,11C-PiB: n¼ 13)
was then reconstructed with the CT m-maps and DL-Dixon
m-maps from 2 scan visits.

Accuracy Analysis
The pCT images were visually inspected for artifacts. The accu-
racy of pCT was evaluated by using the acquired CT images as
the reference standard. The whole head pCT mean absolute error
(MAE) was calculated as,

CT MAE 5

XN

i51
jpCTi � CTij
N

(1)

The accuracy of DL-Dixon PET AC was evaluated by using CT
PET AC as the reference standard. The PET images of individual
participants were first aligned to their T1 MPRAGE images by using
FSL FLIRT and then aligned to the International Consortium for
Brain Mapping Atlas by using Advanced Normalization Tools.27,28

The voxelwise PET relative error was calculated as,

PET relative error %ð Þ 5
PETpCT � PETCT

PETCT
� 100%;(2)

and the voxelwise PET relative absolute error was calculated as,

PET relative absolute error %ð Þ 5
jPETpCT � PETCT j

PETCT
� 100%:(3)

The regional PET mean relative absolute error (MRAE) was
calculated in 6 FreeSurfer-defined ROIs used by the Alzheimer’s

Table 1: Three DL-Dixon models were trained based on the soft-
ware and coil used
n = 329 16-Channel Coil 32-Channel Coil
VE20P VB20P-16Ch (n ¼ 176) —

VE11P VE11P-16Ch (n ¼ 105) VE11P-32Ch (n ¼ 48)

Note: The total number of participants for each model is summarized.

Table 2: The longitudinal consistency of DL-Dixon was evaluated in 38 participants with repeated scans over approximately 3 years

n = 38
Visit 2

VB20P 16-Channel Coil VE11P 16-Channel Coil VE11P 32-Channel Coil
Visit 1 VB20P 16-channel coil 10 15 4

VE11P 16-channel coil — — 9

Note: The software version and head coil used during the 2 visits are summarized.
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Disease Neuroimaging Initiative (ADNI) pipeline29 and the
medial temporal lobe.30 Among these ROIs, the cortical summary
region is often used to examine global amyloid deposition, while
the cerebellum is a reference region.29,31

The accuracy of DL-Dixon PET/MR AC was evaluated fol-
lowing the 4 qualification criteria recommended by a consensus
paper.32 These criteria include 1) the MRI-based AC maps and
corresponding PET should be free of artifacts and without mis-
registration; 2) PET relative absolute error should be less than
10% in over 90% brain voxels; 3) PET MRAE should be below
10% in all study-specific ROIs; and 4) PET MRAE should be
below 5% in the reference ROI if reference tissue analysis is
involved.

The accuracy of DL-Dixon models was compared by using
the 2-sample t test with the Benjamini-Hochberg procedure to
control for false discovery rate in multiple comparisons by using
R 4.3.2 (Foundation for Statistical Computing).

Longitudinal Consistency Analysis
PET SUVR in the cortical summary region was calculated by
using the cerebellum as the reference region.29,31 The longitudinal
consistency of the CT-based and DL-Dixon methods was assessed
by using the Bland and Altman method33 and the intraclass corre-
lation coefficient (ICC; single rater, absolute-agreement, 2-way
mixed-effects model34) by using Matlab 2021a (The MathWorks)
and R 4.3.2. The mean and SD of the PET SUVR relative differen-
ces between the 2 scans were calculated for CT or DL-Dixon AC.
In addition, the within-subject coefficient of variation (wCV) was
obtained. Furthermore, a power calculation by accounting for lon-
gitudinal consistency was performed to estimate the number of
participants needed to detect certain levels of PET SUVR changes
with 80% power.

Data Availability
Investigators can access the data by fol-
lowing the steps outlined on the Knight
ADRCWeb site at our institution (https://
knightadrc.wustl.edu/professionals-
clinicians/request-center-resources/). Data
access will be available upon the request’s
approval by the Knight ADRC. The
authors will share the code used in this
study upon the publication of this
manuscript.

RESULTS
Fig 1 shows the Dixon in-phase MR
images, DL-Dixon pCT images, acquired
CT images, and the difference map
between pCT and CT images from 3
representative participants. MR images
were acquired by using different soft-
ware versions and head coils. All 3
models generated pCT maps similar to
the acquired CT maps without artifacts.
The whole head pCT MAE (mean 6

SD) was 64.7 6 9.2 HU, 61.6 6 7.2
HU, and 62.3 6 10.0 HU for VB20P-

16Ch, VE11P-16Ch, and VE11P-32Ch models, respectively.
There was no significant difference in pCT MAE among different
DL-Dixon models (P. .1).

Accuracy of DL-Dixon PET AC
Fig 2 shows the PET images reconstructed by using the DL-
Dixon AC and CT AC. PET/MR images were acquired by using
different software versions and head coils. As demonstrated in
Fig 3, the mean PET relative error was between �1% and 1% in
most brain regions for all 3 models. Fig 4 demonstrates the cu-
mulative voxelwise relative absolute error of PET reconstructed
by using DL-Dixon AC. 99.81% 6 0.42%, 99.64% 6 0.67%, and
99.91% 6 0.14% of brain voxels had PET relative absolute error
less than 10% for VB20P-16Ch, VE11P-16Ch, and VE11P-32Ch
models, respectively. All participants had over 95.6% brain vox-
els with PET relative absolute error of less than 10%.

Fig 5 demonstrates PET MRAE in 7 amyloid PET-related
ROIs. The median [interquartile range] PET MRAE was 1.10%
[0.93%, 1.26%], 1.24% [1.03%, 1.54%], 0.99% [0.86%, 1.13%] in
the cortical summary region, and 1.04% [0.83%, 1.36%], 1.08%
[0.84%, 1.34%], 1.05% [0.72%, 1.32%] in the cerebellum by using
the VB20P-16Ch, VE11P-16Ch and VE11P-32Ch models,
respectively. Except for VE11P-16Ch having significantly higher
PET MRAE than VE11P-32Ch in the frontal cortex region (P ¼
.02) and the medial temporal lobe (P ¼ .05), and VB20P-16Ch in
the lateral temporal cortical region (P ¼ .04) and the medial tem-
poral lobe (P¼ .03), the 3 models had comparable PET MRAE in
the remaining ROIs.

Longitudinal Consistency of DL-Dixon
The Bland-Altman plots and ICC plots in Fig 6 show the longitu-
dinal consistency of regional PET SUVR by using CT AC and

FIG 1. Dixon in-phase MR images (first column), DL-Dixon pCT images (second column), CT
images (third column), and HU difference map between pCT and CT (fourth column) from 3 rep-
resentative participants. The PET/MR scans were acquired by using the VB20P software version
and a 16-channel head/neck coil (first row), the VE11P software version and a 16-channel head/
neck coil (second row), and the VE11P software version and a 32-channel head coil (third row).
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DL-Dixon AC in the cortical summary region. Table 3 summa-
rizes the mean SUVR relative differences, wCV, and ICC. PET
SUVR by using CT AC and DL-Dixon AC had similar wCV and
ICC. Moreover, 18F-florbetapir PET (blue symbols) and 11C-PiB
PET (red symbols) had comparable longitudinal consistency with
either CT AC or DL-Dixon AC.

The number of participants required to detect real longitudi-
nal PET SUVR changes in the cortical summary region with
80% power is shown in Fig 7. Assuming the correlation between
the paired measurements from a participant of 0.3, 0.5, 0.7, and
0.9, the required numbers of participants needed to detect a 3%
change in SUVR in the cortical summary region are 388, 278,

168, and 58 by using CT AC and 392, 280, 169, and 58 by using
DL-Dixon AC.

DISCUSSION
Deep learning-based image synthesis has been widely implemented
for transforming imaging between MR and CT for PET/MR AC
and radiation therapy planning.9,13,14,35 However, there is no con-
sensus on the extent to which deep neural network–synthesized
pseudo-images should be accepted. Addressing this question
requires rigorous evaluation. In this study, we used the acquired
CT images as the ground truth for such evaluation. We demon-
strated that MR-synthesized pCT closely resembles the acquired
CT, and the proposed method meets the qualification criteria
outlined in a consensus paper.32 Furthermore, excellent longitu-
dinal consistency of MR-based PET AC over several years was
achieved across software and hardware upgrades, which is crucial
for the use of PET/MR in AD longitudinal trials. To the best of
our knowledge, our study is the first to evaluate the accuracy and
longitudinal consistency of a PET/MR AC approach across both
scanner software and head coil updates.

Several existing deep learning methods achieved PET MRAEs
of 1%–3% in cortical and cerebellum ROIs by using the same
software version and head coil.9,11,12,14 It is unclear whether these
methods may be generalized to MR images acquired after MR
scanner software and hardware upgrades. One study used the
MR images acquired by using the same head coil but 2 software
versions.10 This method showed PET MRAE of 1.5%–2% in the
cortical ROIs and over 2% in the cerebellum ROI. The proposed
DL-Dixon models have a median PET MRAE from 0.99%–1.24%
and 1.04%–1.08% in the cortical summary region and the cerebel-
lum, respectively, across both software and hardware upgrades
(Fig 5). Moreover, all 3 DL-Dixon models passed the recom-
mended qualification criteria for all participants.32

Test-retest repeatability is crucial for including a quantitative
biomarker in longitudinal research and clinical trials. The test-
retest repeatability of amyloid PET by using PET/CT or stand-
alone PET scanners has been investigated in previous studies.
Joshi et al18 found an 18F-florbetapir cortical SUVR wCV of
1.94% and 1.20% for patients with AD and healthy controls over

4 weeks. Vandenberghe et al19 found an
18F-flutemetamol SUVR wCV of 1.15%
in the composite cortical ROI for
patients with AD over 7–13days. The
long-term cortical SUVR wCV was
reported to be 1.25%–3.38% for cogni-
tively normal subjects over 2 years by
using the 18F-florbetapir tracer.20-22

Based on these studies, the Quantitative
Imaging Biomarkers Alliance profile
suggests that 18F-labeled amyloid PET
SUVR should have a wCV of less than
1.94%.22

Several studies evaluated the repeat-
ability or longitudinal consistency of
MR-based PET AC methods. One study
found a whole-brain SUVR difference
of 0.65% 6 0.95% over 10 days,36 while

FIG 3. Mean (A) and SD (B) of PET relative error on the voxel basis across testing participants of
the VB20P-16Ch model (n ¼ 89), the VE11P-16Ch model (n ¼ 52), and the VE11P-32Ch model (n ¼
24). The CT AC method is used as the reference.

FIG 2. PET reconstructed with the DL-Dixon AC (first column) or
the CT AC (second column) from 3 representative participants. The
PET/MR scans were acquired by using the VB20P software version
and a 16-channel head/neck coil (first row), the VE11P software ver-
sion and a 16-channel head/neck coil (second row), and the VE11P
software version and a 32-channel head coil (third row).
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another study found an SUVR difference of�0.65%6 1.62% and
wCV of 1.15% in the mean cortical region over 3 years.9 In this
study, longitudinal SUVR difference and wCV of DL-Dixon AC
(0.25% 6 0.75% and 0.55%) are similar to those of CT AC
(�0.16% 6 0.74% and 0.53%) despite software and hardware
updates over 3 years (Fig 6, Table 3). To detect a specific level of
longitudinal change in amyloid PET SUVR, a similar number of
participants would be needed by using DL-Dixon compared with
CT AC (Fig 7). The longitudinal consistency of DL-Dixon meets
the Quantitative Imaging Biomarkers Alliance recommendation.

Recently, the Centiloid approach was proposed to normalize
the amyloid burden measured by using various tracers on differ-
ent scanners to a standard scale.37 The annualized absolute
Centiloid change was reported to be 2.2 to 3 Centiloid in domi-
nantly inherited AD mutation-positive participants38 and 2.43
Centiloid in patients with mild dementia or mild cognitive
impairment due to AD5. Using the SUVR-to-Centiloid transfor-
mations for the ADNI FreeSurfer 5.3 pipeline,31,37 the longitudi-
nal Centiloid difference was �0.396 1.58 for CT AC and 0.456
1.59 for MR AC. It is worth noting that the studies mentioned
above used separately acquired PET data at 2 time points, while
this study used the same PET data but separately acquired CT or
MR to derive m-maps. The longitudinal differences might be

higher if 2 separately acquired PET data were used. This study
used the MR and CT images acquired twice over 3 years. Possible
structural changes over this period may partially affect the longi-
tudinal consistency.

Numerous deep learning–based methods have been devel-
oped to synthesize pCT images by using MRI.6-11,13-15 CT images
measure tissue electron density, while MR signal depends on
magnetic properties, such as proton density and tissue relaxation
rates. There is no direct relationship between the signal intensity
of Dixon MR and CT HU, which results in challenges in inten-
sity-based methods. Despite differences in imaging physics, the
paired MR and CT images are obtained from the same patients.
Therefore, MR and CT images share the same anatomic struc-
tures. In this study, a 3D residual UNet was trained to learn com-
plex nonlinear relationships between MR and the corresponding
CT image by minimizing differences between the predicted pCT
and CT. The transformation of MR to CT involves anatomic,
geometric, image contrast, and texture information derived from
millions of paired MR and CT patches.

This study has several limitations. First, all data in this study
were obtained from elderly participants by using amyloid tracers
at a single research site. The accuracy and longitudinal consis-
tency of DL-Dixon should be further evaluated by using different

FIG 4. Cumulative voxelwise PET MRAE by using DL-Dixon AC. The acquired CT AC method is used as the standard reference. Each blue curve
represents 1 participant. If the line stayed within the green region, the participant passed the qualification criteria.

FIG 5. PET MRAE in 7 cerebral cortical and cerebellum ROIs. The boxplots show the 25th, 50th (median), and 75th percentiles. FC¼ frontal cort-
ical region; APCC¼ anterior and posterior cingulate cortical region; LPC¼ lateral parietal cortical region; LTC¼ lateral temporal cortical region;
MTL¼medial temporal lobe; CTX¼ cortical summary region; WC¼ whole cerebellum region.
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scanners in multicenter studies with patients of a broader age
range. Second, participants in this study do not have bone abnor-
malities. The performance of DL-Dixon in such cases is unclear.

CONCLUSIONS
DL-Dixon exhibited excellent accuracy
and longitudinal consistency across 2 soft-
ware versions and 2 coils, demonstrating
its efficacy as a robust MR-based AC
method for longitudinal research and
clinical trials by using PET/MR.

Disclosure forms provided by the authors are
available with the full text and PDF of this
article at www.ajnr.org.
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