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Yvonne W. Lui

ABSTRACT

BACKGROUND: Mild traumatic brain injury is theorized to cause widespread functional changes to the brain. Resting-state fMRI
may be able to measure functional connectivity changes after traumatic brain injury, but resting-state fMRI studies are heterogene-
ous, using numerous techniques to study ROIls across various resting-state networks.

PURPOSE: We systematically reviewed the literature to ascertain whether adult patients who have experienced mild traumatic
brain injury show consistent functional connectivity changes on resting-state -fMRI, compared with healthy patients.

DATA SOURCES: We used 5 databases (PubMed, EMBASE, Cochrane Central, Scopus, Web of Science).

STUDY SELECTION: Five databases (PubMed, EMBASE, Cochrane Central, Scopus, and Web of Science) were searched for research
published since 2010. Search strategies used keywords of “functional MR imaging” and “mild traumatic brain injury” as well as related
terms. All results were screened at the abstract and title levels by 4 reviewers according to predefined inclusion and exclusion criteria.
For full-text inclusion, each study was evaluated independently by 2 reviewers, with discordant screening settled by consensus.

DATA ANALYSIS: Data regarding article characteristics, cohort demographics, fMRI scan parameters, data analysis processing soft-
ware, atlas used, data characteristics, and statistical analysis information were extracted.

DATA SYNTHESIS: Across 66 studies, 80 areas were analyzed 239 times for at least 1 time point, most commonly using independent
component analysis. The most analyzed areas and networks were the whole brain, the default mode network, and the salience net-
work. Reported functional connectivity changes varied, though there may be a slight trend toward decreased whole-brain func-
tional connectivity within T month of traumatic brain injury and there may be differences based on the time since injury.

LIMITATIONS: Studies of military, sports-related traumatic brain injury, and pediatric patients were excluded. Due to the high num-
ber of relevant studies and data heterogeneity, we could not be as granular in the analysis as we would have liked.

CONCLUSIONS: Reported functional connectivity changes varied, even within the same region and network, at least partially
reflecting differences in technical parameters, preprocessing software, and analysis methods as well as probable differences in indi-
vidual injury. There is a need for novel rs-fMRI techniques that better capture subject-specific functional connectivity changes.

ABBREVIATIONS: DMN = default mode network; FC = functional connectivity; ICA = independent component analysis; IQR = interquartile range; mTBl =
mild traumatic brain injury; rs-fMRI = resting-state fMRI; SN = salience network; TBI = traumatic brain injury

M ild traumatic brain injury (mTBI) is a common injury that,
nevertheless, can pose difficult diagnostic and therapeutic
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challenges." Conventional neuroimaging including CT and
structural MR imaging plays a key role in mTBI assessment and
management, such as the identification of intracranial hemor-
rhage, but it has limited sensitivity for the detection of underlying
abnormalities that have no clear macrostructural correlate.”
Advanced neuroimaging has been used during the past decade in
an attempt to characterize more subtle post-mTBI neurobiologi-
cal changes.

After mTBI, it is believed that disruptions occur in the organi-
zation of large-scale brain activity.” Blood oxygen level-depend-
ent functional MR imaging has, thus, been used to study changes
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in intrinsic brain connectivity. In particular, functional connec-
tivity (FC) as reflected in low-frequency blood oxygen level-
dependent fluctuations of resting-state fMRI (rs-fMRI),? and its
organization into various resting-state networks"* has been used
in an attempt to understand the injury.

Approximately a decade ago, a comprehensive review of
fMRI in mTBI by McDonald et al' included a mere 2 studies of
resting-state changes following mTBI. Since then, there has
been an explosion of literature in this area. Part of the challenge
in interpreting these results is the diversity of brain regions and
networks studied and the great variety of methods that can be
used to analyze FC in rs-fMRI. Common approaches include
correlational methods (relying on selections of ROIs and/or
seeds and correlating the corresponding rs-fMRI signal time-
series with time-series of all other voxels [ROI/seed-to-voxel] or
other ROIs/seeds [ROI/seed-to-ROI/seed] to map connectivitys)
as well as independent component analysis (ICA; decomposition
of brain-wide rs-fMRI into independent spatiotemporal compo-
nents that can be correlated to determine connectivity6), both of
which may be performed in a static fashion using the entire time-
series or in a dynamic fashion using a sliding-window approach.
Graph theory can also be used to study FC at either local or global
levels.” Finally, regional homogeneity is commonly used to mea-
sure synchronization of low-frequency fluctuations of a particular
voxel with its nearest neighbors,” while fractional amplitude of
low-frequency fluctuations quantifies low-frequency oscillations
as a reflection of local spontaneous activity.”

In this systematic review, we explore the current literature on
FC in mTBI regarding whether adult patients who have mTBI
show consistent FC changes on rs-fMRI, compared with healthy
patients. We summarize thematic findings in terms of FC
changes following injury and comment on discordances that are
observed.

MATERIALS AND METHODS
Database Search
This study was registered with the International Prospective
Register of Systematic Reviews (PROSPERO; ID CRD42022360114)
and performed as per Preferred Reporting Items for Systematic
Reviews and Meta-Analyses of Diagnostic Test Accuracy
(PRISMA) guidelines.

In November 2022, five databases (“PubMed,” “EMBASE,”
“Cochrane Central,” “Scopus,
for research published since 2010. The search strategy used the

»

Web of Science”) were searched

keywords “functional MR imaging” and “mild traumatic brain
injury” as well as related terms. Search terms can be found in the
Online Supplemental Data.

Inclusion criteria were the following: peer-reviewed human
research 1) performed in adults older than 18 year of age; 2)
written in English; 3) involving the use of rs-fMRI; 4) including
a measure of FC; 5) published in or after 2010; and 6) comparing
patients with mTBI with healthy controls. Blast/military trau-
matic brain injury (TBI) was excluded because military-related
blast injury has a unique mechanism relating to propagating
pressure waves. Sport- and athletic-related injury was also
excluded because many such studies occur either in pediatric
subjects and/or specifically feature individuals exposed to
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repetitive head impacts and repeat TBI. Of course, many studies
may have included a number of these types of etiologies without
distinguishing their results from those of other etiologies.
Consequently, we were able to exclude only studies whose
entire cohort had one of these mechanisms. Specifically, exclu-
sion criteria were the following: 1) preclinical animal studies;
2) inclusion of pediatric patients younger than 18 years of age;
3) reviews, meta-analyses, books, case reports, or case series; 4)
moderate or severe TBI; 5) cohorts of only sports- or athletic-
related TBI; 6) cohorts of only blast-related TBI; 7) cohorts of
only military TBI; 8) cohorts of only repetitive TBI; and 9)
only task-mediated fMRI studies.

All results were screened at the abstract and title levels by 4
reviewers (S.D., S.A., JW., L.S.) according to predefined inclusion
and exclusion criteria. Each study was evaluated independently
by 2 reviewers, with discordant screening settled by consensus.
Two reviewers (S.D., S.A.) performed full-text data screening and
extraction, with disagreements settled by consensus.

Data Extraction and Synthesis

We excluded the following categories: article characteristics
(title, author, journal, year), cohort demographics (time since
injury, age, sex), fMRI scan parameters (ie, TE, TR, scan dura-
tion, scanner model, and magnet strength), data analysis proc-
essing software, atlas used, data characteristics (including
analysis method applied, studied ROI or network, connectivity
measures), and statistical analysis information (method, multi-
ple-comparison correction).

FC changes were graded on an ordinal scale from —2 to +2:
—2 and +2 denoting studies reporting only decreases or increases
in FC, respectively; —1 and +1 denoting studies reporting mixed
results with most areas showing decreased or increased FC,
respectively; and 0 if no changes were reported. If there were an
equal number of areas with increased and decreased changes, we
assigned an ordinal score of 0 but noted that there was equal
change in each direction.

For all studies, time since mTBI was binned into either
<1 month, 1-6 months, or >6 months, with some studies having
multiple evaluations at different time points. For these studies,
results were examined separately for each of these time periods.

Of note, in some cases, the whole brain was evaluated by ICA,
and several resting-state networks were subsequently identified as
independent components. In most such cases, the identified com-
ponents were specific named resting-state networks; for these
studies, we report the individual networks and their changes, as
well as the whole brain and its change as a conglomeration of the
network changes.

Risk of bias and applicability were assessed by 3 reviewers
(S.D., S.A., J.W.). Each study was evaluated by 2 reviewers with
disagreements settled by consensus. The case-control version of
Newcastle-Ottawa Scale was used for this assessment.'

RESULTS

Our initial search found 10,946 results, 2405 of which were dupli-
cates and were removed before screening. The remaining 8541
underwent title and abstract screening from which 107 results
were considered for full-text review. Four of these could not be



Records removed before screening:
Duplicate records removed (n = 2405)

did not specify the mechanisms of
mTBI. Among the 28 that did, traffic/
motor vehicle collisions were by far the
most common etiology (18/28, 64.3%).
On average, the healthy control cohort
consisted of a mean of 47.6% women
(SD, 12.6%) with a mean age of 36.6

(SD, 6.7) years, and the mTBI cohort

consisted of 43.6% women (SD, 14.3%)
with a mean age of 36.6 (SD, 7.0) years.
Regarding the MR imaging scanner,

60 studies (90.9%) used a 3T magnet, 5

studies (7.6%) used a 1.5T magnet, and
one (1.5%) did not specify the magnet
strength. The mean TE and TR were

29.1 (SD, 4.4) ms and 2082.1 (SD, 308)

Did not compare groups (n = 6)

Did not use resting-state (n = 1)

ms. The mean rs-fMRI duration was
7.4 (SD, 2.5) minutes.

Processing software used across all
the studies varied from statistical para-
metric mapping (SPM, Versions 5, 6, 8,

12; http://www.fil.ion.ucl.ac.uk/spm/

FIG 1. PRISMA flow diagram detailing study identification, screening, and inclusion.

found online and may have been abstracts or conference papers.
Among the 103 remaining results, 19 were only abstracts and 18
did not meet the criteria for inclusion (9 studied the wrong popu-
lation, 6 did not compare with a healthy control group, 1 was not
in English, 1 was not peer-reviewed, and 1 was not an rs-fMRI
study). Full-text data extraction was ultimately performed for 66
studies (Fig 1) 248173 A summary of these articles can be found
in the Online Supplemental Data.

Risk of Bias

The case-control version of the Newcastle-Ottawa Scale was used
for assessment of the risk of bias. Representativeness of cases for
Shumskaya et al’® was thought to have unclear applicability
because only fronto-occipital injuries were included. Otherwise,
there was appropriate selection, comparability, and exposure for
all studies, because subjects with and without mTBI were clearly
distinguishable and verified through interview.

Cohort Characteristics and Technical Parameters

These studies included a median of 31 healthy controls (inter-
quartile range [IQR], 20-42). Depending on the time since mTBI
was evaluated in the study, studies with subjects scanned within 1
month of mTBI included a median of 48 (IQR, 28.5-56.5) sub-
jects, studies with subjects scanned between 1 and 6 months of
mTBI included a median of 25 (IQR, 23-42) subjects, and studies
with subjects scanned >6 months from mTBI included a median
of 28 (IQR, 20.5-50) subjects. Thirty-eight of 66 (57.6%) studies
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software/spm12), FMRIB Software
Library (FSL; http://www.fmrib.ox.ac.
uk/fsl), Group ICA of fMRI Toolbox
Software (GIFT; http://mialab.mrn.org/
software/gift/), Analysis of Functional
NeuroImages (AFNI; http://afninimh.
nih.gov/), medInria (https://med.inria.
fr/), Data Processing & Analysis of Brain
Imaging (DPABIL http://rfmri.org/DPABI), FreeSurfer (https://
surfer.nmr.mgh.harvard.edu/fswiki/DownloadAndInstall), the
graph theoretical network analysis (GRETNA; https://www.nitrc.
org/projects/gretna/) toolbox, to the Resting-State fMRI Data
Analysis Toolkit (REST; http://rfmri.org/REST).

Connectivity Changes

Across 66 studies, 80 distinct areas were collectively analyzed 239
times at least at 1 time point (Online Supplemental Data). Sixteen
analyses included multiple time points (<1month between
mTBI and the scan, 1-6 months, and >6months) (Online
Supplemental Data). The most common analysis approaches
used were ICA (n=106), ROI/seed-to-ROI/seed (n=62), and
ROI/seed-to-voxel (n=32), followed distantly by graph theory
(n=17, Online Supplemental Data), ICA-based
dynamic FC (n=14), regional homogeneity (n=4), and frac-

methods

tional amplitude of low-frequency fluctuations (n = 4).

The most-commonly analyzed areas and networks were the
whole brain (45 analyses across 37 studies), the default mode
network (DMN) (32 analyses across 25 studies), and the salience
network (SN, 13 analyses across 10 studies). Studies that sepa-
rately analyzed patients with and without postconcussive symp-
toms are explicitly labeled in Supplementary Table 2 (Online
Supplementary Data).

Figure 2 shows panels of histograms of FC changes in the
whole brain, the DMN, and the SN, with respect to scans per-
formed <1 month since mTBI, 1-6 months since mTBI, and
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FIG 2. FC changes, categorized on an ordinal scale and separated by the time since injury. —2 = only decreased FC changes, —1=more areas of

decreased FC change than areas of increased FC change, 0 = no FC changes (black) or the same number of areas of decreased and increased FC
(gray), 1T=more areas of increased FC change, 2 = only areas of increased FC changes (changes all relative to results in healthy controls). Gray
bars are separate from black bars, ie, 3 studies found an equal number of areas of increased and decreased FC in the DMN at <Imonth. Eight

found no changes, so a total of 11 studies were classified as a 0.

>6 months since mTBI. By comparing the left half of each plot
(frequencies of —2 and —1) with the right half (frequencies of 1
and 2), we can get a sense of the relative frequency of
decreased-versus-increased FC. For example, <1 month after
mTBI, there were 9 more analyses that found decreased FC
across the whole brain compared with increased FC (7, —2 stud-
ies; 8, —1 study; 1, +1 study; and 5, +2 studies), possibly sug-
gesting a trend toward decreased whole-brain FC acutely after
mTBI. These changes may persist 1-6 months post-mTBI in the
whole brain, whereas there are 5 studies that found decreased
FC versus none with increased FC. At >6 months in the whole
brain, as well as all time points with the DMN and SN, the dif-
ferences are not as robust.

DISCUSSION
In the past decade, many more approaches to studying mTBI
using rs-fMRI have been developed and applied. The 2012 review
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of McDonald et al' found only 2 studies evaluating the effect of
mTBI on resting-state FC, one of which looked at the thalamus
with ROI-to-voxel and ICA approaches and another that looked
at the DMN and the task-related network with an ROI-to-ROI
approach.*”* In comparison, this present review includes 66
studies using any of 9 analysis methods to study a total of 61 dis-
tinct areas, demonstrating how much the literature has grown in
the interim.

In part, because of this growth, the data we reviewed show
immense heterogeneity with respect to FC changes, even among
studies that evaluate the same networks or ROIs using the same
techniques in the same timeframe since injury. Most reassuring,
control and mTBI groups, on average, were similar in both age
and sex distribution, and nearly all studies were performed on 3T
magnets. Besides variability in methods as noted above, probably
one of the most challenging aspects of studying mTBI arises from
the heterogeneity of the injury itself and the manifestations of



injury. This issue continues to plague the field because injured
individuals are inherently difficult to categorize. In addition,
another source of variability among studies likely arises from
technical sources such as scan parameters, preprocessing meth-
ods, brain atlas selected, and so forth.

When analyzing FC changes, we focused on 3 main regions:
the whole brain, DMN, and SN, because these were the most
widely studied. There was a slight predilection toward decreased
whole-brain FC early after mTBI (<1 month of injury), though
the heterogeneity of the results precludes drawing any strong con-
clusion. Also, there was no definite trend across time, though
more studies showed decreased FC within 1 month of injury com-
pared with 1-6 months or >6 months after injury, suggesting that
perhaps functional hypoconnectivity is the dominant response im-
mediately following mTBI and is followed by recovery with time.

The underlying neurophysiologic changes following mTBI are
not yet fully characterized, so it is difficult to confidently identify
a biological basis for acute hypoconnectivity. Increasing evidence
points to cerebrovascular injury as a key hallmark of mTBI, char-
acterized by disrupted cerebrovascular reactivity and neurovascu-
lar coupling”* Studies using arterial spin-labeling to quantify
CBF after mTBI report inconsistent findings, with suggested
reduced CBF acutely after injury and varied responses in the sub-
acute phase, similar to our findings regarding FC after mTBL”
Because cerebrovascular disease is known to influence network
connectivity, there may be a link between FC changes and CBF
changes.”® In any case, it is clearly possible that there is a tempo-
ral evolution of connectivity changes across time after injury, and
this is reflected in the literature.

Limitations include exclusion of studies consisting entirely of
military, sports-related mTBI, and pediatric patients. Moreover,
some studies included a small number of participants with
sports-related mTBI; we were unable to exclude FC changes from
only these specific subjects, so they do contribute to our results.
Second, due to the high data heterogeneity, we could not be as
granular as we would have liked. For example, we were forced to
bin FC changes into arbitrary temporal categories, which likely
limit our view of temporal changes after injury. It is certainly pos-
sible that there are more nuanced temporal changes within or
across these bins that were not feasible to capture; and, in fact,
the current results suggest that this possibility may be true.
Similarly, for the sake of practicality, we present FC changes on
an ordinal scale based on the number of regions within each study
found to show FC changes; however, this particular metric may
not well-capture FC changes in mTBI. We also were not able to
report the location of FC changes due to the amount of data ana-
lyzed. Finally, we did not perform subgroup analyses on patients
with persistent symptoms, though the Online Supplementary
Data do include information on studies that looked at ROIs/net-
works in asymptomatic-versus-symptomatic patients. We hope
that our conglomerated data summary makes it easier for future
investigations to identify and analyze subsets of these studies to
answer more focused questions.

CONCLUSIONS
rs-fMRI is a noninvasive method to study FC of the brain that
has been increasingly applied over the past decade to understand

underlying functional brain alterations after mTBI. Due to a vari-
egated landscape of rs-fMRI analysis methods and the still rela-
tively naive understanding we have of mTBI, we find immense
heterogeneity in the literature. We see a slight tendency toward
decreased whole-brain FC within 1 month of mTBI, though
group-based fMRI analysis at the present time does not easily
reveal clear concordance among published studies. This issue
may relate to a combination of underlying heterogeneity in the
mTBI population as well as current limitations of rs-fMRI group-
wise analysis methods. As a result, the present study is also lim-
ited in its ability to parse temporal differences and nuanced
changes in connectivity across studies. There is a need for an
improved description of subjects with mTBI as well as new rs-
fMRI approaches that better capture subject-specific alterations
of brain connectivity.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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