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ORIGINAL RESEARCH
ARTIFICIAL INTELLIGENCE

DSA Quantitative Analysis and Predictive Modeling
of Obliteration in Cerebral AVM following

Stereotactic Radiosurgery
Mohamed Sobhi Jabal, Marwa A. Mohammed, Cody L. Nesvick, Hassan Kobeissi, Christopher S. Graffeo,

Bruce E. Pollock, and Waleed Brinjikji

ABSTRACT

BACKGROUND AND PURPOSE: Stereotactic radiosurgery is a key treatment modality for cerebral AVMs, particularly for small
lesions and those located in eloquent brain regions. Predicting obliteration remains challenging due to evolving treatment para-
digms and complex AVM presentations. With digital subtraction angiography (DSA) being the gold standard for outcome evaluation,
radiomic approaches offer potential for more objective and detailed analysis. We aimed to develop machine learning modeling
using DSA quantitative features for post-SRS obliteration prediction.

MATERIALS AND METHODS: A prospective registry of patients with cerebral AVMs was screened to include patients with digital
prestereotactic radiosurgery DSA. Anterior-posterior and lateral views were retrieved and manually segmented. Quantitative features
were computed from the lesion ROI. Following feature selection, machine learning models were developed to predict unsuccessful
2-year total obliteration using processed radiomics features in comparison with clinical and radiosurgical features. When we evaluated
through area under the receiver operating characteristic curve (AUROC), accuracy, area under the precision-recall curve F1, recall, and
precision, the best performing model predictions on the test set were interpreted using the Shapley additive explanations approach.

RESULTS: DSA images of 100 included patients were retrieved and analyzed. The best-performing clinical radiosurgical model was a
gradient boosting classifier with an AUROC of 68% and a recall of 67%. When we used radiomics variables as input, the AdaBoost
classifier had the best evaluation metrics with an AUROC of 79% and a recall of 75%. The most important clinico-radiosurgical fea-
tures, ranked by model contribution, were lesion volume, patient age, treatment dose rate, the presence of seizure at presentation,
and prior resection. The most important ranked radiomics features were the following: gray-level size zone matrix, gray-level non-
uniformity, kurtosis, sphericity, skewness, and gray-level dependence matrix dependence nonuniformity.

CONCLUSIONS: The combination of radiomics with machine learning is a promising approach for predicting cerebral AVM obliteration
status following stereotactic radiosurgery. DSA could enhance prognostication of stereotactic radiosurgery–treated AVMs due to its high
spatial resolution. Model interpretation is essential for building transparent models and establishing clinically valid radiomic signatures.

ABBREVIATIONS: AUROC ¼ area under the receiver operating characteristic curve; BED ¼ biologic effective dose; BOT ¼ beam-on time; GLDM ¼ gray-level
dependence matrix; GLSZM ¼ gray-level size zone matrix; ML ¼ machine learning; SHAP ¼ Shapley additive explanations; SRS ¼ stereotactic radiosurgery;
TDR ¼ treatment dose rate

Stereotactic radiosurgery (SRS) is essential in the management
of AVMs, the most prevalent vascular malformations of the

brain, and it is particularly valuable in small AVMs and the ones
juxtaposed to eloquent cortical regions. With a prolonged thera-
peutic course and expanding SRS applications covering complex

AVMs, obliteration rates have shifted recently1,2 making their
prediction increasingly challenging. In addition to the important
influence dosimetry has on the prognosis of AVMs following
SRS,3-5 the duration of intermittent treatment is also tightly con-
nected with ensuring conformal therapy.6-8 The biologic effective
dose (BED) measure has shown a notable association with tissue
survival,7,8 incorporating both radiation dosage and beam-on
time (BOT). BED was found to be predictive of AVM obliteration
following single-session SRS.9

Currently, establishing a definitive diagnosis of a brain AVM
is typically provided using DSA, which is considered the refer-
ence standard for evaluating cerebral AVMs in SRS planning and
obliteration follow-up, owing to its high spatiotemporal resolution
and accurate reflection of the detailed lesion angioarchitecture.10-12
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Radiomics-based applications, which use image processing and
quantification of radiologic phenotypic lesion traits, are increasingly
being used in the realm of precision medicine for diagnostic and
prognostic tool development,13-16 with a potential in biomarker anal-
ysis and clinical decision assistance,17-19 overcoming some constraints
inherent in subjective visual evaluation.20 These techniques, capable
of extracting molecular and pathophysiologic process data often im-
perceptible to the human eye, offer advantages over subjective visual
evaluation.21–22 The approach computes shape and textural informa-
tion using spatial distribution of signal intensities and pixel interrela-
tions, determined through mathematical formulas, thereby reducing
subjective interreader variability and providing a good foundation for
interpretable machine learning (ML) applications.23,24

Providing individualized predications of patient prognosis follow-
ing SRS has valuable potential that is integral to the future of manage-
ment of neurologic diseases. Numerous classical scoring systems have
been developed to help clinicians better anticipate patient outcomes
following radiosurgical management of brain AVMs.25-32 In the pres-
ent study, we aimed to develop a ML predictive approach to model
extracted DSA radiomics features for brain AVM obliteration predic-
tion following radiosurgery in comparison with clinical and radiosur-
gical predictors found in classical established scoring systems.

MATERIALS AND METHODS
Patients
This study was conducted through retrospective examination of
an SRS cohort of 527 patients with cerebral AVMs between 1990
and 2014, registered prospectively. The scope was limited to patients

who underwent single-session SRS using
the Leksell Gamma Knife (EleKta) for
sporadic AVMs, having baseline imaging
and at least 2 years of angiography or MR
imaging follow-up. A summary of the
inclusion process is shown in Fig 1.9 In
total, of the eligible 352 patients, 100
patients had digitally retrievable angiogra-
phy images and were included in the final
analysis. The patients’ clinical and radio-
surgical characteristics were included,
with the primary outcome being total
AVM obliteration, defined as the lack
of flow voids on MR imaging or the ab-
sence of aberrant arteriovenous shunt-
ing on angiography. A minimum of
2 years for imaging follow-up with ei-
ther DSA or MR imaging was chosen
to reflect the minimum expected time
for post-SRS AVM obliteration. The
study was approved by the Mayo Clinic
institutional review board.

Clinical and Radiosurgical Features
Clinical and lesion characteristics included
age, female sex, bleeding and/or seizure
at presentation, lesion diameter, lesion
volume, location, rupture status, prior
resection, prior embolization, deep loca-

tion, size, eloquent location, deep vein drainage, and the Spetzler-
Martin grading scale. Radiosurgical features included the follow-
ing: BED, maximum dose, margin dose, treatment time, treat-
ment dose rate (TDR), isodose, and modified radiosurgery-
based AVM score. The feature values were normalized to a
range between 0 and 1.

Image Segmentation and Radiomics Feature Extraction
Patients’ baseline DSA series were screened. 2D anterior-poste-
rior and lateral view DSA images corresponding to SRS planning
and with a peak arterial phase were selected. Lesion segmentation
was performed using 3D Slicer software (http://www.slicer.org)33,34

by an experienced radiologist with the guidance and supervision of
an experienced interventional neuroradiologist. For each patient, 2
ROIs of the AVM lesion were delineated excluding the draining
vein, from both the anterior-posterior and lateral DSA.

Following the segmentation, AVM radiomics features were
computed using pyradiomics, Version 3.0.1,35 with Python, Version
3.8. A total of 200 radiomics features (first-order, shape-based, and
higher-order features) were extracted, 100 from each of the anterior-
posterior view and lateral views of every patient’s angiogram. The
features were also scaled between 0 and 1 to facilitate the algorithm
learning process. For dimensionality reduction of the radiomics
variables, the maximum relevance minimum redundancy36,37

method was implemented to select a reduced variable number
of 20% of the feature space and retain the most important and
least collinear information. Maximum relevance minimum re-
dundancy was applied by fitting and transforming the training

FIG 1. Flow diagram of patient inclusion and exclusion.
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set and with no fitting and only transforming the test set to
avoid any data leakage. An illustrative figure of the radiomics
and prediction modeling workflow is demonstrated in Fig 2.

Statistical Analysis
Demographic and clinico-radiosurgical
variables were statistically analyzed
between the 2 patient outcome groups
using SciPy (Version 1.6.2; https://scipy.
org/) and Python. A univariate statistical
comparison between the patient groups
was performed regarding the obliteration
outcome. Continuous quantitative varia-
bles were assessed given their distribution
normality using the Student t test and
Wilcoxon rank-sum test. The x 2 test
was used to compare the categoric varia-
bles. P values, .05 were considered stat-
istically significant.

MLModeling
ML models were constructed to predict
unsuccessful AVM total obliteration.
The synthetic minority oversampling
technique CURE-SMOTE (https://
bmcbioinformatics.biomedcentral.com/
articles/10.1186/s12859-017-1578-z#
abbreviations),38 derivative of the syn-
thetic minority over-sampling technique
(SMOTE),39 was deployed to artificially
generate minority class data and correct
the training set class imbalance. The strati-
fied split of the data set into a training set
of 80% and a test set of 20% was applied,
after which 10-fold cross-validation was
used on the training set. A grid search
was used for hyperparameter tuning. The
benchmarked models were the following:
decision tree, Gaussian Naïve Bayes, mul-
tilayer perceptron, K-nearest neighbors,
random forest, BaggingClassifier, gradient
boosting classifier, and eXtreme Gradient
Boosting (XGBoost; https://xgboost.
readthedocs.io/en/stable/). Model per-
formance was measured and compared
across the ML algorithms.

Model Interpretation
Shapley additive explanations (SHAP),
a game theory approach, was used to
interpret the best-performing models by
computing the contribution of each
input feature to the prediction of an ML
model and providing an importance
ranking of contributing features.40-42

RESULTS
Patient Population and Data Set
The overall included cohort comprised

352 patients. Follow-up imaging had a median duration of
5.9 years following SRS and revealed obliteration in 259 patients
(71.9%), verified by angiography in 176 (70%) patients and MR

FIG 2. Workflow for DSA radiomics predictive modeling of cerebral AVM obliteration following SRS.
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imaging in 83 (30%) patients, occurring at a median interval
of 36months subsequent to SRS (interquartile range, 26–
44months). A total of 100 patients with cerebral AVMs and
200 images were included. The median patient age was 40.6
(SD, 16) years, with women representing 59% and patients
with unsuccessful total obliteration representing 34% of the
studied final data set. The selection process of the included
cohort is summarized in Fig 1.

Statistical Analysis
Comparison of clinico-radiosurgical variables regarding cerebral
AVM obliteration status following SRS is detailed in the Table.
Statistical analysis indicated younger patients (P ¼ .02), higher
AVM volume (P ¼ .01) and diameter (P ¼ .02), and an increased
number of isocenters used (P¼ .004) were significantly associated
with failure of total AVM obliteration. While higher BED (P ¼

.002), elevated maximal dose (P ¼ .002) and margin dose, (P ¼

.002) as well as a lower Spetzler Martin Scale grade (P¼ .04) had a
statistically significant correlation with successful total AVM oblit-
eration following SRS in the cohort.

ML Prediction and Interpretation
Following feature selection and cross-validation, evaluation of
the developed ML models was performed on the test set. By
means of the clinico-radiosurgical variables, the best performing
model was a gradient boosting classifier with an area under the
receiver operating characteristic curve (AUROC) of 68%, recall
of 67%, and precision of 71%. Using radiomics variables, Adaptive
Boosting (AdaBoost; https://www.machinelearningplus.com/
machine-learning/introduction-to-adaboost/#google_vignette)
had the best evaluation with an AUROC of 79%, recall of 75% and
precision of 71%.

Figure 3 demonstrates the perform-
ance and evaluation metrics matrix
comparison of predictive models for
cerebral AVM obliteration following
SRS using only clinical radiosurgical
features (Fig 3A) in comparison with
radiomics features (Fig 3B). SHAP
summary plots (https://shap-lrjball.
readthedocs.io/en/latest/generated/shap.
summary_plot.html) in Fig 4A, -D depict
the importance and impact direction of
clinico-radiosurgical and radiomics fea-
tures, respectively, on model predictions
for obliteration failure. The color intensity
represents a feature value, with SHAP
values indicating the influence on the
predictive outcome both in positive
and negative correlations with the out-
come. Heatmaps in Fig 4B, -E of the
Shapley values for each feature across
the instances in the test set demon-
strate the individual contribution of
clinico-radiosurgical and radiomics fea-
tures to the predictions, with color gra-
dients representing the magnitude of the
impact. Bar charts in Fig 4C, -F illustrate
the maximal impact of each clinico-

Univariate statistical comparison of the 2 patient groups relating to total obliteration status

Variable All
Total

Obliteration
No Total

Obliteration P Value
Age 43 45 (32–56) 38 (20–47) .023
Sex .850
Male 41 28 (42%) 13 (38%)
Female 59 38 (58%) 21 (62%)

Ruptured .733
No 82 53 (80%) 29 (85%)
Yes 18 13 (20%) 5 (15%)

Prior resection .571
No 93 61 (92%) 32 (94%)
Resection 4 2 (3%) 2 (6%)

Location .288
Hemispheric 91 62 (94%) 29 (85%)
Deep 9 4 (6%) 5 (15%)

Eloquent .363
No 37 27 (41%) 10 (29%)
Yes 63 39 (59%) 24 (71%)

Deep vein drainage .219
No 57 41 (62%) 16 (47%)
Yes 43 25 (38%) 18 (53%)

Isocenters 6 6.0 (4,7) 7.0 (5,9) .005
Volume (cm3) 3.8 2.9 (1,6) 6.1 (2,8) .016
Treatment time 48.24 46.805 (32–63) 50.665 (34–68) .330
TDR 2.77 2.80 (2,3) 2.74 (2,3) .346
BED 137 148 (115–173) 119 (104–147) .003
Maximum dose 40 40.0 (36–44) 36.0 (36–40) .002
Margin dose 20 20.0 (18–22) 18.0 (18–20) .002

FIG 3. Performance evaluation metrics matrix of predictive models for cerebral AVM obliteration following SRS using only clinical radiosurgical
features (A) in comparison with radiomics features (B).
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radiosurgical and radiomics feature on the outcome prediction
of the model, ranked by their importance.

Global interpretation plots are represented in the Online
Supplemental Data for the best-performing radiomics and clin-
ico-radiosurgical models, demonstrating the overall prediction
patterns across the test set according to obliteration outcomes.
Local explanations for predictions of individual patients’ success-
ful and unsuccessful obliteration outcomes are illustrated in the
Online Supplemental Data, showcasing the interplay of features
for specific cases.

The ranked most important clinico-radiosurgical features
were lesional volume, patient age, TDR, seizure at presentation,
and prior resection. The ranked most important radiomics fea-
tures were gray-level size zone matrix (GLSZM), gray-level non-
uniformity, kurtosis, skewness, and gray-level dependence matrix
(GLDM) dependence nonuniformity.

DISCUSSION
The study findings highlight the value of combining quantitative
morphologic imaging features with ML for predicting post-2-
year total obliteration of cerebral AVMs following SRS. Models
built using radiomics features achieved better overall perform-
ance and higher sensitivity compared with those constructed
with classic clinico-radiosurgical variables, and relevant clinical
and radiosurgical variables. Model interpretation identified key
variables like lesion volume, patient age, TDR, and prior resection
as top contributors, validating their significance.

In the constructed radiomics model, GLSZM gray-level non-
uniformity was the most important radiomics feature driving pre-
diction, with greater values associated with a higher probability of
unfavorable AVM obliteration. GLSZM gray-level nonuniformity

informs the connectedness and variability of gray-level intensity
values, with a lower value indicating homogeneous intensity.
This feature underscores how highly compact nidi have a more
favorable chance of total obliteration in post-2-year follow-up.
Kurtosis, quantifying ROI intensity distribution with high values
implying distribution concentration, is located at the tails rather
than the center, inferring prevalence of extreme intensity values,
which could also be characteristic of diffuse AVM. This finding is
in line with previous studies on the topic.43

In a recent study by Gao et al,44 radiomics models were devel-
oped to predict the outcomes of gamma knife radiosurgery for
unruptured AVMs. However, unlike our study, which used lateral
DSA views to capture radiomics features, Gao et al relied on
cross-sectional MR imaging. The use of DSA in our study, recog-
nized as the criterion standard due to its superior spatial resolu-
tion, allows a more precise analysis of AVM nidus architecture
and could potentially provide more accurate predictive insight
than MR-based imaging. This distinction is crucial because DSA
provides dynamic vascular information that MRIs typically do
not capture, possibly leading to better-tailored treatment plans
based on more detailed vascular data.

GLDM describes how several connected pixels within a
certain distance are dependent on the intensity of the center
pixel. Dependence nonuniformity informs unequal dependence
through the ROI, indicating heterogeneous dependencies, asso-
ciated with unfavorable AVM obliteration outcome.

Skewness corresponds to the asymmetry of intensity value dis-
tribution around the mean, and sphericity quantifies the roundness
of the ROI relative to a circle. Of note, all Maximum Relevance
Minimum Redundancy–selected radiomics features originated
from the lateral DSA view.

FIG 4. Interpretation of the best-performing clinico-radiosurgical (A–C) and radiomics (D–F) models including SHAP summary plots (A and D)
with the colored test instances signifying feature value, SHAP heatmaps (B and E) where the red and blue refer to positive and negative SHAP
values, and maximal feature SHAP bar plots (C and F) for the clinico-radiosurgical and radiomics models, respectively.
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With results closely consistent with our clinico-radiosurgical
model findings, Oermann et al45 developed an ML approach
using only clinico-radiosurgical features from a large cohort with
a post-2-year obliteration prediction performance of 0.70. Meng
et al46 built a radiomics-based ML model to forecast cerebral
AVM outcomes post-SRS following partial embolization using
MR T2 images of 100 patients. Despite a K-nearest neighbors
model AUROC of 0.66, its specificity of 0.44 was lower compared
with their leading dosimetry model (AUROC ¼ 0.66, specificity ¼
0.56). They suggested that the cohort’s prior embolization, pos-
sibly causing lesion homogeneity, weakened the prognostic
strength of the radiomics models. The model comprised 4 radio-
mics features: minor-axis-length, total energy, and 2 types of
gray-level nonuniformity. Two studies used AVM radiomics for
diagnosis with no prediction of outcomes: Jiao et al47 used seg-
mented 3D TOF-MRA images, and Shi et al48 trained a neural
network model for temporospatial diagnosis of AVMs from DSA
sequences for dichotomized AVM grade classification.

The study design choice for prognostic models of SRS AVM
obliteration using DSA, which is the criterion standard with high
spatial resolution, as well as the exclusion of patients with prior
AVM embolization have allowed highlighting predictive radio-
mics markers. We believe such models may provide a significant
step toward enhanced prediction of AVM obliteration, and with
further validation and refinement, they could support clinical de-
cision-making processes. The current study shows the potential
of ML and radiomics in automating the assessment of AVM fea-
tures in a precise quantitative manner with the end goal of vali-
dating radiomics signatures for SRS outcome prediction. It also
underlines the promise of future prognostic tools in personalized
data-centered cerebrovascular care. Future studies should further
explore the radiomics association with patient presentation char-
acteristics, such as seizures.

Limitations
Although the sample size of this study is considered within the
normal range for radiomics research,49-51 size remains a limiting
factor for reliable generalization of the findings, and future larger
multicenter projects and prospective model implementation are
recommended for further validation of features predictive of cer-
ebral AVM obliteration. Similarly, the age of our cohort may be
slightly greater than that in other published studies. We recom-
mend implementing a nested cross-validation approach incorpo-
rating the feature selection in future studies with larger sample-
size populations. Another limitation may relate to not examining
the different DSA machine types and intra-arterial contrast injec-
tion approaches used and the existence of potential variability
between them during the span of the study and how that might
influence the extracted radiomic features.

CONCLUSIONS
The combination of ML methods and quantifiable image-based
markers is a valuable approach to model cerebral AVM outcome
managed with SRS and could complement classic prognostic
tools. In this study, a radiomics-based MLmodel was built to pre-
dict AVM obliteration following radiosurgical treatment. In line
with the prior knowledge in the field and bringing added

precision to its assessment, the predictive findings might hypo-
thetically be based on DSA features related to the diffuseness and
angioarchitecture of AVMs, which need to be verified in future
studies. Model interpretation has become an essential step of
ML pipelines in health care to ensure the clinical soundness and
validity of prognostic radiomic biomarkers.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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