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ORIGINAL RESEARCH
ADULT BRAIN

Deep Learning Segmentation of the Nucleus Basalis of
Meynert on 3T MRI

D.J. Doss, G.W. Johnson, S. Narasimhan, J.S. Shless, J.W. Jiang, H.F.J. González, D.L. Paulo, A. Lucas, K.A. Davis,
C. Chang, V.L. Morgan, C. Constantinidis, B.M. Dawant, and D.J. Englot

ABSTRACT

BACKGROUND AND PURPOSE: The nucleus basalis of Meynert is a key subcortical structure that is important in arousal and cogni-
tion and has been explored as a deep brain stimulation target but is difficult to study due to its small size, variability among
patients, and lack of contrast on 3T MR imaging. Thus, our goal was to establish and evaluate a deep learning network for auto-
matic, accurate, and patient-specific segmentations with 3T MR imaging.

MATERIALS AND METHODS: Patient-specific segmentations can be produced manually; however, the nucleus basalis of Meynert is
difficult to accurately segment on 3T MR imaging, with 7T being preferred. Thus, paired 3T and 7T MR imaging data sets of 21
healthy subjects were obtained. A test data set of 6 subjects was completely withheld. The nucleus was expertly segmented on
7T, providing accurate labels for the paired 3T MR imaging. An external data set of 14 patients with temporal lobe epilepsy was
used to test the model on brains with neurologic disorders. A 3D-Unet convolutional neural network was constructed, and a 5-fold
cross-validation was performed.

RESULTS: The novel segmentation model demonstrated significantly improved Dice coefficients over the standard probabilistic atlas
for both healthy subjects (mean, 0.68 [SD, 0.10] versus 0.45 [SD, 0.11], P¼ .002, t test) and patients (0.64 [SD, 0.10] versus 0.37 [SD,
0.22], P, .001). Additionally, the model demonstrated significantly decreased centroid distance in patients (1.18 [SD, 0.43]mm, 3.09
[SD, 2.56]mm, P¼ .007).

CONCLUSIONS:We developed the first model, to our knowledge, for automatic and accurate patient-specific segmentation of the
nucleus basalis of Meynert. This model may enable further study into the nucleus, impacting new treatments such as deep brain
stimulation.

ABBREVIATIONS: DBS ¼ deep brain stimulation; DnSeg ¼ deep nuclei segmentation network; NBM ¼ nucleus basalis of Meynert; TLE ¼ temporal lobe
epilepsy

The nucleus basalis of Meynert (NBM) is a basal forebrain nu-
cleus and is one of the major sources of cholinergic signal in

the brain.1,2 It has been implicated as abnormal in several disor-
ders with cognitive decline such as Parkinson disease dementia,

Alzheimer disease, and temporal lobe epilepsy (TLE).3,4 These
abnormal changes include prediction of cognitive impairment in
Parkinson disease, neuronal loss and atrophy in Alzheimer disease,
and abnormal functional connectivity in TLE.3-7 Furthermore,
there has recently been increased interest in studying the functional
and structural network abnormalities involving NBM connections
in these and other disease states.3,6,7 Finally, several studies have
started investigating neurostimulation of the NBM to improve cog-
nitive outcomes in Alzheimer disease using deep brain stimulation
(DBS).8,9

While the NBM is thought to be important in several disease
states, study into it has been limited because it exhibits patient-
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specific changes and no accurate patient-specific segmentation

exists.10 Patient-specific changes may be accounted for with
manual segmentation, but the NBM is difficult to visualize on

commonly available 3T T1-weighted MR imaging. More accu-

rate manual segmentations can be performed on high-resolution
7T MR imaging; however, these high-resolution scans are rare

(Online Supplemental Data). To overcome this limitation, pre-

vious groups have developed a probabilistic atlas of the NBM,

derived from postmortem histologic staining of 10 healthy sub-
ject's brains.11 The segmented histologic slices were then aligned

to the Montreal Neurological Institute 152 atlas space to provide

a probabilistic atlas of the NBM. The probabilistic atlas has
gained popularity and is the most used atlas of the NBM.12

While the probabilistic atlas provides an accurate segmentation

for most cases, it does not capture patient-specific anatomic var-

iability (Fig 1). Considering that the anatomy of the NBM varies
among patients and changes throughout the disease states of in-

terest, this limitation substantially impacts nearly all studies of

the NBM.3-7,13-16 Furthermore, recent studies have demonstrated

that the probabilistic atlas is unable to capture the patient-specific
differences, and atlas innovation is needed to address this

limitation.17

Deep learning methods can learn subtle features for medical
imaging segmentation that are beyond human perception.18

Thus, to expand study of the NBM, we propose a novel deep
learning—based method for patient-specific NBM segmentation
using only 3T MR imaging.

MATERIALS AND METHODS
Data Set
We trained the network using only 3T MR imaging and both 7T
and 3T MR imaging scans of the same healthy subjects. Data
from a total of 21 healthy subjects were available from 2 separate
institutions (Vanderbilt University and the University of
Amsterdam).19-21 A total of 6 healthy subjects from this data set
were completely withheld as a test data set.

An additional external data set of 14 paired 3T and 7T MR
images of patients with TLE was obtained. Half of the patients
had lesional changes on MR imaging, and the other half had
nonlesional changes. This data set was withheld from the train-
ing and validation process and was used only for testing of the
deep learning network on brains with neurologic disorders. The
demographics of both data sets can be seen in the Table.

Manual Segmentation
Although the anatomic borders of the NBM cannot be easily dis-
cerned on 3T MR imaging, 7T MR imaging enables enhanced
contrast in the NBM. According to the landmarks described in
the literature, the anatomic borders of the NBM were identified
for manual segmentation.1,22 The left and right NBMs were seg-
mented for each subject and patient using our in-house CRAnial
Vault Explorer (CRAVE) software (https://www.sciencedirect.
com/science/article/abs/pii/S1361841510001015).23 The segmen-
tations of the NBM were completed by 2 authors and were veri-
fied by 2 neurological surgeons.

Data Preprocessing
The 7T and 3T paired images were converted to Right Anterior
Superior (RAS) orientation, were skull-stripped, and were rigidly
registered to the same patient’s 7T scan with SPM8 (https://www.
fil.ion.ucl.ac.uk/spm/software/spm8/).24,25 The registration accu-
racy was then individually verified for every patient (Fig 2).

Data Augmentation
To enhance model generalization and promote learning of ana-
tomic variability, we augmented the healthy subject data set from
21 to 210 samples. Augmentations were performed with torchIO
(https://torchio.readthedocs.io/) and included random rigid affine
transformations, random elastic transformations, and random bias
field additions, examples of which can be seen in the Online
Supplemental Data.26

FIG 1. Comparison of the probabilistic and manual labels on a similar coronal section of the Montreal Neurological Institute 152 atlas space brain
and a subject’s 7T brain. The left NBM is shown in blue, and the right NBM is shown in red.

Data set demographicsa

Healthy subjects, Vanderbilt
No. 11
Sex 3 Female
Age (yr) 38.3 (SD, 10.9)

Healthy subjects, Amsterdam
No. 10
Sex 8 Female
Age (yr) 25.9 (SD, 5.8)

Patients with TLE
No. 14
Age (yr) 30.0 (SD, 7.5)
Sex 7 Female
Disease duration (yr) 11.0 (SD, 11.7)
Number lesional 7

a Demographics of both the healthy subject data set and the TLE data set. Data
are counts or mean (SD).
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Volume Reduction
Considering the large amount of video RAM required to train a
deep learning network using the whole brain, the size of the images
was reduced for ease of training. Given that the mamillary bodies
are the posterior anatomic borders of the NBM, we used the
patient-specific segmentation package implemented in FreeSurfer
ScLimbic (surfer.nmr.mgh.harvard.edu/fswiki/ScLimbic) to seg-
ment the mamillary bodies.15 The mamillary bodies were used as
the center of a 64 � 64 � 64mm region, which includes the entire
NBM in all cases. The final network performs this step automati-
cally, allowing for an end-to-end network that requires only 3T
MR imaging for accurate segmentation.

Convolutional Neural Network
The modified 3D U-Net architecture for biomedical image seg-
mentation was used.27 A complete visualization of the architecture
can be seen in the Online Supplemental Data. The network was
trained using the soft Dice loss function.28

The data were divided into train, test, and validation sets. The
data sets were split on the subject level. The train data set con-
sisted of 12 subjects (120 scans), the validation data set consisted
of 3 subjects (30 scans), and the test data set consisted of 6 sub-
jects (60 scans). The test data set was completely held out from
model selection and only used for the evaluation after the final
model was selected.

A 5-fold cross-validation was used on the train and validation
data sets. The average Dice performance from each fold on the
validation data set was used as the performance measure for
model selection. Hyperparameter tuning during model selection
was performed.29 The final network comprised an ensemble of 5
trained and optimized models.

Evaluation Metrics
Evaluation of the deep nuclei segmentation network (DnSeg)
encompassed methods to assess volumetric overlap of the NBM
and localization of the NBM. The Dice coefficient, mean surface
distance, and centroid distance were calculated between the

predicted and ground truth segmentation, defined as the overlap
of both rater segmentations.13,14,30

The performance of DnSeg was compared against that of the
probabilistic atlas. The probabilistic atlas was thresholded such
that all voxels with a .50% probability of being the NBM were
assigned as NBM. The probabilistic atlas was registered from
Montreal Neurological Institute 152 atlas space to patient-specific
space using SPM8 (https://www.fil.ion.ucl.ac.uk/spm/software/
spm8/). The same metrics were then computed on the probabilis-
tic atlas segmentation of the NBM.

RESULTS
All results were computed in the patient’s 3T MR imaging space
on nonaugmented data with 1-mm isotropic slices. The results
were all computed on the test data sets of 6 healthy subjects,
which were held out from the training and validation of the
DnSeg. Results were also computed on held-out external data sets
of 14 subjects with diagnosed TLE that were not used in develop-
ment of the DnSeg.

Dice Coefficient
The Dice coefficient was computed between the predicted and
ground truth–segmented NBM.30 The Dice coefficient is known
to underestimate the performance of small, complex structures,
for example, segmentation studies of other small structures such
as the ventral tegmental area and the interposed nuclei report
Dice coefficients of 0.52 and 0.69, respectively.13-16,31 The Dice
coefficient of the NBM computed from the DnSeg (mean, 0.68
[SD, 0.10]) significantly outperformed that of the probabilistic
atlas (0.45 [SD, 0.11]) in the completely withheld data sets of 6
healthy subjects (paired t test, P ¼ .001), as seen in Fig 3B.
Additionally, the Dice coefficient was significantly increased in
DnSeg (mean, 0.64 [SD, 0.10]) compared with the probabilistic
atlas Dice coefficient (mean, 0.37 [SD, 0.22) for the TLE data set
(paired t test, P, .001). The probabilistic atlas demonstrated sub-
stantial variability in the Dice coefficient for the TLE data set,
likely due to anatomic changes that have been noted in the NBM
for TLE.

Mean Surface Distance
The mean surface distance between the predicted surface and the
ground truth surface of the NBM segmentation was calculated for
the test data set and the TLE data set (Fig 3C). For healthy sub-
jects, DnSeg demonstrated significantly lower mean surface dis-
tance (mean, 0.65 [SD, 0.24]mm) computed with the probabilistic
atlas (mean, 1.18 [SD, 0.35]mm) in the completely withheld data
set of 6 healthy subjects (paired t test, P ¼ .002). Furthermore, the
mean surface distance was significantly lower with DnSeg (0.69
[SD, 0.15]mm) compared with the probabilistic atlas (mean, 1.91
[SD, 2.03]mm) in the TLE data set (paired t test P ¼ .027). The
variability of the probabilistic atlas on the TLE data set was far
more exaggerated than that of the healthy subject data set, as seen
with the 95% confidence intervals of 1.2 and 0.2mm, respectively.

Centroid Distance
The centroid distance represents the error in localization of the
NBM that can occur due to patient-specific anatomic variability.

FIG 2. Flow chart describing how the 7T NBM segmentation is used
for training the network to segment the NBM on 3T MR imaging.
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It is most relevant for DBS applications because it could contrib-
ute to a targeting error. The centroid distance performance of
DnSeg (mean, 1.35 [SD, 0.86]mm) was not significantly different
from the probabilistic atlas (mean, 2.19 [SD, 1.36]mm) in the
completely withheld data sets of 6 healthy subjects (paired t test,
P ¼ .014), as can be seen in Fig 3D. However, the centroid dis-
tance of DnSeg (mean, 1.18 [SD, 0.43]mm) was significantly
lower than that of the probabilistic atlas (mean, 3.09 [SD,
2.56]mm) in the TLE data set (paired t test, P¼ .007).

Qualitative Comparison
Because localization and overlap are difficult to quantify for
small structures, the results were also analyzed qualitatively.
An evaluation of NBM prediction of DnSeg compared with the
ground truth manual segmentation was completed qualita-
tively by visual inspection (Fig 3A). The poor-performance
example demonstrates that even the poor-performing exam-
ples perform relatively well. Additionally, it is seen that the
NBM shape differs slightly from patient to patient and that
DnSeg successfully accounts for heterogeneous patient anat-
omy (Online Supplemental Data).

DISCUSSION
The purpose of this work was to enable study of the NBM by
accounting for patient-specific differences. DnSeg may have
widespread impact across several diseases, perhaps enabling new
treatment modalities targeting the NBM.

DnSeg Can Distinguish Subject-Specific Anatomic Differences
The NBM has anatomic variability among healthy subjects and
has been shown to change in size in patients with Parkinson

disease, Alzheimer disease, and TLE.32-40 This variability presents
a substantial challenge in studying the NBM and a barrier for
possible treatment innovations such as DBS. Manual segmen-
tation to capture these differences would be preferable; how-
ever, the NBM cannot be accurately visualized on 3T MR
imaging. Thus, current research is limited by the non-patient-
specific atlas that does not capture variability in the NBM, as
seen by the wide 95% confidence intervals for patients with TLE
(Fig 3). DnSeg was able to capture patient-specific differences in
the NBM and accurately segment it using only 3T T1-weighted
MR imaging. The results of DnSeg in patients with TLE were
comparable with those of healthy subjects, indicating that it
can accurately segment the NBM despite anatomic changes
(Fig 3B–D), demonstrating that DnSeg can capture pathologic
changes in the NBM in at least 1 disease state.

DBS Targeting
DBS targeting for the NBM has been explored in several studies
with mixed results.8,9 One possible factor in these studies is DBS
targeting accuracy. In this investigation, DnSeg localized the
NBM with far more accuracy than the probabilistic atlas, which
can have a substantial impact on targeting (Fig 3). The impact of
this distance can be seen in Fig 4, where an electrode planned
with DnSeg seems to target the NBM accurately, while an elec-
trode planned with the center of the 50% thresholded probabilis-
tic atlas targets the border of the true NBM.

In addition to this practical application, DnSeg also has 10�
faster run-time than standard registration methods required for
applying a Montreal Neurological Institute 152 atlas space to
patient-specific space. With a modern CPU, it takes approxi-
mately 1minute per scan if skull-stripping is not required and

FIG 3. Example of favorable (A, right), average (A, middle), and poor (A, left) performance. Blue is the correct prediction of NBM, red is the over-
predicted NBM (false-positive), and yellow is the ground truth label that was not predicted (false-negative). The Dice coefficient of the favor-
able example (right) was 0.82, the Dice coefficient of the average example (middle) was 0.63, and the Dice coefficient of the poor example (left)
was 0.55. B, The Dice coefficient. C, The mean surface distance. D, The centroid distance of DnSeg versus the probabilistic atlas for both healthy
subjects and patients with TLE. The healthy subjects included the nonaugmented held-out test data set (n¼ 6). The patients with TLE were also
not augmented and were held out until final analysis (n¼ 14). Paired t test: single asterisk indicates P, .05; double asterisks, P, .01; triple aster-
isks, P, .001.
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approximately 2minutes if skull stripping is required. The pipe-
line does not require the patient data to be registered to any
standard space; thus, it is much faster than other methods that
require a registration step.

Limitations
Despite these benefits of the deep learning pipeline, there are
some limitations. Most notably, the expert segmentations could
not be verified with a postmortem histologic analysis. While the
segmentations were verified by 2 neurological surgeons, a histo-
logic analysis would be ideal. Furthermore, the current analysis
validates only DnSeg in one disease state. The NBM is both of in-
terest and has pathologic changes in several disease states. Thus,
it would be preferred to validate DnSeg in other disease states.
However, paired 7T and 3T MR imaging scans of the same
patients needed to achieve this goal are rare. Furthermore, DnSeg
is limited by the small sample size used for training. Although
this limitation is common among studies of paired 3T and 7T
MR imaging, it has the potential to limit the generalizability of
DnSeg. Aggressive augmentation was used to attenuate this limi-
tation and increase generalizability.

CONCLUSIONS
In this work, we have presented an accurate, patient-specific
method of segmenting the NBM using only 3T T1-weighted MR
imaging. The NBM has been implicated in Alzheimer disease,
Parkinson disease dementia, and TLE.3,6,7 It has been shown to
change in neuronal density and gray matter volume across age and
disease states.32-40 With the use of an expertly segmented NBM
and aggressive data augmentation, we have trained a deep learning
network to capture anatomic differences when segmenting the

NBM. We have presented evidence that
DnSeg is a powerful and accurate NBM
segmentation model.

Methodologically, this work repre-
sents an innovative approach to the seg-
mentation of regions with little contrast
enhancement. The NBM represents a
small region of the brain with little con-
trast on commonly used 3T MR imaging
but with high importance to several dis-
ease states. Paired 3T and 7T MR imag-
ing of the same subjects is a useful
approach to providing accurate labels for
training a deep learning network to seg-
ment structures that cannot be accurately
visualized on 3T imaging. However, this
approach is intrinsically limited by the
rarity of paired 3T-7T data sets.

DnSeg, therefore, opens the possi-
bility of further study of the NBM. The
NBM has long been considered a
region of key interest, but study of the
NBM in vivo has been difficult, in part
because of the lack of an adaptive,
patient-specific atlas. The presented
model is available (https://github.com/

DerekDoss/DnSeg) and may greatly assist in novel studies of the
NBM.
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