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ORIGINAL RESEARCH
ADULT BRAIN

Generative Adversarial Network–Enhanced Ultra-Low-Dose
[18F]-PI-2620 s PET/MRI in Aging and Neurodegenerative

Populations
K.T. Chen, R. Tesfay, M.E.I. Koran, J. Ouyang, S. Shams, C.B. Young, G. Davidzon, T. Liang, M. Khalighi,

E. Mormino, and G. Zaharchuk

ABSTRACT

BACKGROUND AND PURPOSE:With the utility of hybrid t PET/MR imaging in the screening, diagnosis, and follow-up of individ-
uals with neurodegenerative diseases, we investigated whether deep learning techniques can be used in enhancing ultra-low-
dose [18F]-PI-2620 t PET/MR images to produce diagnostic-quality images.

MATERIALS AND METHODS: Forty-four healthy aging participants and patients with neurodegenerative diseases were recruited for
this study, and [18F]-PI-2620 t PET/MR data were simultaneously acquired. A generative adversarial network was trained to enhance
ultra-low-dose t images, which were reconstructed from a random sampling of 1/20 (approximately 5% of original count level) of
the original full-dose data. MR images were also used as additional input channels. Region-based analyses as well as a reader study
were conducted to assess the image quality of the enhanced images compared with their full-dose counterparts.

RESULTS: The enhanced ultra-low-dose t images showed apparent noise reduction compared with the ultra-low-dose images. The
regional standard uptake value ratios showed that while, in general, there is an underestimation for both image types, especially in
regions with higher uptake, when focusing on the healthy-but-amyloid-positive population (with relatively lower t uptake), this bias
was reduced in the enhanced ultra-low-dose images. The radiotracer uptake patterns in the enhanced images were read accurately
compared with their full-dose counterparts.

CONCLUSIONS: The clinical readings of deep learning–enhanced ultra-low-dose t PET images were consistent with those performed
with full-dose imaging, suggesting the possibility of reducing the dose and enabling more frequent examinations for dementia monitoring.

ABBREVIATIONS: AC1 ¼ Gwet’s agreement coefficient 1; AD ¼ Alzheimer’s disease; CNN ¼ convolutional neural network; GAN ¼ generative adversarial
network; SUVR ¼ standard uptake value ratio

More than 6 million individuals are living with Alzheimer’s
disease (AD) in the United States. By 2060, this number is

projected to increase to nearly 14 million (https://www.cdc.gov/
aging/aginginfo/alzheimers.htm). This neurodegenerative disorder

leads to progressive, irreversible loss of memory and behavioral
function.1 Pathologic features of AD include accumulation of amy-
loid b into extracellular plaques and hyperphosphorylated t into
intracellular neurofibrillary tangles, which can be identified with
PET imaging.2 Abnormalities of t mediate amyloid b –induced
toxicity3 and are a close proxy of clinical status.4 Furthermore,
because pathologic processes of AD begin decades before mild cog-
nitive impairment and dementia stages, in vivo measurements of
amyloid b plaques and tangles could enable early detection and an
opportunity for intervention.5 Along these lines, recent work has
shown that subtle elevations in t PET can be detected in clinically
healthy older adults and are predictive of subsequent decline.6

Advanced modalities such as simultaneous PET/MR imaging
provide complementary morphologic and functional information
with perfect spatiotemporal registration of the 2 imaging data
sets,7 all of which can facilitate the diagnosis and monitoring of de-
mentia.8,9 However, radiation exposure related to the radiotracers
administered to imaging subjects presents barriers to screening,
clinical follow-up, and research participation due to radiation dose
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thresholds. Therefore, radiotracer dose reductions have been a tar-
get for intervention for many researchers.

Deep learning methods such as convolutional neural net-
works (CNNs) have been used for image identification,10 gener-
ation,11,12 segmentation,13 and MR imaging–based attenuation
correction.14,15 CNNs that incorporate spatially correlated MR
imaging and PET information to produce standard-quality
PET images from low-dose PET acquisitions (though most
such studies were conducted on [18F]-fludeoxyglucose scans)
have been implemented.16-21 For example, deep CNNs can
reduce the radiotracer dose by at least 100-fold for [18F]-
florbetaben, an in vivo biomarker of amyloid plaque buildup,22

and enhancement of both simulated (undersampled in
PET/MR imaging reconstruction) and true (injected with
ultra-low-dose) ultra-low-dose images resulted in the produc-
tion of diagnostic-quality images comparable with standard
dose images.23

Here, we investigate whether similar techniques in deep learning
can be used to enhance ultra-low-dose [18F]-PI-2620 t2 PET/MR
images to produce diagnostic-quality images. Compared with
amyloid PET and plasma phosphorylated t biomarkers,24,25 t

PET has its strength in discriminating AD from other neurode-
generative disease26 and can aid in regional cerebral t analysis
for the identification of various tauopathies. With the uptake of
a t tracer being more focal and having a weaker signal than
amyloid PET images in general, we have found that directly
applying the CNN in our previous work carries over data bias
from the amyloid PET training data set.27 Therefore, in this
work, we implemented a generative adversarial network (GAN)
structure28 in addition to training the ultra-low-dose t enhance-
ment CNN from scratch. In addition, in this article, we have
focused on aging participants as well as those with a variety of
neurodegenerative diseases. Examining asymptomatic/early
dementia populations, including preclinical AD and mild cogni-
tive impairment, is increasingly important for dementia studies,
but these groups are difficult to image because the PET signal
can be lower and restricted to the medial temporal lobe com-
pared with those with AD dementia.29,30 Patients who are amy-
loid-positive and mild t -positive who are most likely in an
asymptomatic or mild cognitive impairment stage may also
require more frequent follow-up scans to monitor for disease
progression.

Unlike the use of PET for cancer monitoring, patients with
dementia may have much longer periods than patients with can-
cer in which to accrue the negative effects of medical radiation,
especially if the use of image monitoring expands, beginning in
the asymptomatic or minimally symptomatic stages. Reducing
the PET tracer dose can lead to safer scans and increase the utility

of hybrid PET/MR imaging for screen-
ing, clinical diagnoses, and longitudinal
studies (improved follow-up adher-
ence). With the increasing availability
of data and research participation,
researchers can also better understand
the pathogenesis and identify targets
for pharmacotherapy. At the popula-
tion level, reducing dosing has the

potential to decrease health care costs to individual patients as
well as research and health care institutions.

MATERIALS AND METHODS
Forty-four total participants were recruited for this study, approved
by the Stanford University institutional review board. Written
informed consent was obtained from all participants or an author-
ized surrogate decision-maker. Older healthy controls were
recruited through the Stanford Aging and Memory Study (SAMS;
https://www.alzheimers.gov/clinical-trials/stanford-memory-and-
aging-study). Patients with cognitive impairment (either a clini-
cal diagnosis of mild cognitive impairment or AD dementia)
and semantic-variant primary-progressive aphasia were re-
cruited through the Stanford Alzheimer Disease Research
Center or the Stanford Center for Memory Disorders. Demo-
graphics of the patient group, including their clinical diagnoses
(determined by clinical consensus of a panel of neurologists
and neuropsychologists), are shown in Table 1. In particular, 7
participants from the healthy controls were amyloid-positive
as determined by CSF (details in Trelle et al31).

PET/MR Imaging Data Acquisition
T1-weighted and T2-FLAIR MR imaging data and t PET data
were simultaneously acquired on an integrated 3T PET/MR imag-
ing scanner (Signa; GE Healthcare); 221 [SD, 61] MBq of the t

radiotracer [18F]-PI-2620 was injected, and imaging was per-
formed between 60 and 90minutes after injection. The raw list-
mode PET data were reconstructed for the full-dose ground truth
image and were also randomly undersampled by a factor of 20
(approximately 5% of original count level) and then reconstructed
to produce an ultra-low-dose PET image. Previous studies have
suggested that this method of simulation of ultra-low-dose imag-
ing is a good representation of the true injected ultra-lowdose.23

TOF ordered subsets expectation maximization, with 2 iterations
and 28 subsets and accounting for randoms, scatter, dead-time,
and attenuation, was used for all PET image reconstructions. MR
imaging attenuation correction was performed using the vendor’s
zero TE–based method, and a 4-mm postreconstruction Gaussian
filter was used for all reconstructions.

Image Preprocessing
To account for any positional offset of the patient during differ-
ent acquisitions, we coregistered MR images to the PET images
using the FMRIB Linear Image Registration Tool (FLIRT; http://
www.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT),32 with 6 df and the corre-
lation ratio as the cost function. All images were resliced to the
dimensions of the acquired PET volumes: eighty-nine 2.78-mm-
thick slices with 256-by-256 1.17� 1.17 mm2 pixels. A head mask

Table 1: Demographics and clinical indications of study population

Healthy Control AD CBS MCI PSP svPPA
No. 31 5 1 4 1 2
Age (mean) (yr) 70.13 (SD, 6.43) 67.8 (SD, 13.48) 76 71.5 (SD, 10.54) 71 66, 78
Sex (female) 12 3 0 2 0 1
Amyloid status 7 P, 21 N 4 P 3 P, 1 N

Note:—CBS indicates cortical basal syndrome; MCI, mild cognitive impairment; N, negative; P, positive; PSP, pro-
gressive supranuclear palsy; svPPA, semantic variant primary-progressive aphasia.
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was made from the T1-weighted image through intensity thresh-
olding and hole filling and applied to the PET and MR images.
The voxel intensities of each volume were normalized using its z
score (mean divided by SD within a FreeSurfer-based brain mask
[http://surfer.nmr.mgh.harvard.edu] derived from the T1-
weighted images) and used as inputs to the CNN.

CNN Implementation
The ultra-low-dose t network was trained using a GAN struc-
ture28 with 3916 input slices (44 data sets with 89 slices each).
The generator portion of the GAN used the proposed structure
in Chen et al,22,23 which included an encoder-decoder CNN with
the U-Net33 structure (Fig 1, upper image) where the inputs were
the concatenation of multicontrast MR images (T1 and T2
FLAIR-weighted) and the ultra-low-dose PET image. The full-
dose PET image was treated as the ground truth and the network
was trained through residual learning.11 Briefly, the encoder por-
tion is composed of layers that perform 2D convolutions (using
3� 3 filters) on input 256-by-256 transverse slices, batch normal-
ization, and rectified linear unit activation operations. We used
2-by-2 max pooling to reduce the dimensionality of the data. In
the decoder portion, the data in the encoder layers are concaten-
ated with those in the decoder layers. Linear interpolation is per-
formed to restore the data to its original dimensions. In addition,
a discriminator (Fig 1, lower image) was added to distinguish
whether the output image is realistic or not. The discriminator
portion of the GAN consists of 5 convolution blocks, which are
composed of convolution layers with 4 � 4 filters and 2 � 2
stride, batch normalization, and leaky rectified linear activation
with the slope of 0.2. A convolution layer with a 3 � 3 filter is
added to map the features to 1 channel as the output. The final
objective for the encoder-decoder network is the combination of
a pixel-wise L1 loss and an adversarial loss:

LG ¼ Ex;y logD x; yð Þ
� �þ Ex log 1� D x;G xð Þð Þð Þ½ � þ l Ex;y½k y� GðxÞk1�;

where x is the input images, y is the standard dose image, and
G xð Þ is the enhanced image. The GAN was trained with an initial
learning rate of 0.0001 and a batch size of 16 over 50 epochs. The
training, validation, and testing data were split at the participant
level for an approximate 7:1:2 ratio, and 5-fold cross-validation
was used to employ all the data for training and testing.

Assessment of Image Quality
The reconstructed images were first visually inspected for arti-
facts. For each data set, the region within the brain mask was con-
sidered for voxel-based analyses. For each axial section, the image
quality of the enhanced PET images and the original ultra-low-
dose PET images within the brain mask were compared with the
full-dose image using the peak SNR, structural similarity,34 and
root mean square error. The metrics for each subject were
obtained by a weighted average (by voxel number) of the slices.

Clinical Readings
The enhanced PET images, the ultra-low-dose PET image, and
the full-dose PET image of each data set were anonymized, and
their series numbers were randomized and then presented by se-
ries number to 3 physicians (M.E.I.K., a dual-boarded nuclear
medicine and diagnostic radiology physician; S.S., a neuroradiol-
ogy fellow; G.Z., a neuroradiologist) for independent reading
(reading protocol for the identification of regional uptake is avail-
able in the Online Supplemental Data). Ten random full-dose
PET images were also presented to the physicians to evaluate
intrareader reproducibility. The consensus t status read from the
3 reviewers on the full-dose images was treated as the ground
truth. For each PET image, the physicians also assigned a

FIG 1. A schematic of the GAN (generator network, upper image; discriminator network, lower image) used in this work and its input and output
channels. The arrows denote computational operations, and the tensors are denoted by boxes, with the number of channels indicated above
each box. BN indicates batch normalization; Conv, convolution; Max, maximum; ReLU, rectified linear unit; tanh, hyperbolic tangent.
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subjective image-quality score on a 5-point scale: 1¼ uninterpretable,
2¼ poor, 3¼ adequate, 4¼ good, 5¼ excellent. Also, image-quality
scores were dichotomized into 1–2 (low) versus 3–5 (high), with the
percentage of images with high scores calculated for each method.
The agreement of the 3 readers was assessed using the Gwet’s agree-
ment coefficient 1 (AC1)35 on the full-dose readings, and if high
agreement was found, the readings of the 3 readers were pooled for
further analysis.

Region-Based Analysis
Region-based analyses were performed to assess the agreement of
the tracer uptake among images. Cortical parcellations and cere-
bral segmentations based on the Desikan-Killiany Atlas36 were
derived from FreeSurfer and analyses focused on the medial tem-
poral lobe, comprising the entorhinal cortex and amygdala and
the inferior temporal cortex. The inferior cerebellum was used as
the reference region for standard uptake value ratio (SUVR) calcu-
lations for all 3 (full-dose, ultra-low-dose, and enhanced) image
types. The SUVRs were compared between methods (full-dose to
ultra-low-dose and full-dose to enhanced) and evaluated by
Bland-Altman plots. Focus was on the healthy controls positive
for amyloid, and these participants were labeled separately on the
plots. The coefficient of variation (SD divided by the mean
uptake) in the medial temporal lobe and the inferior temporal cor-
tex were also calculated to assess image noise in the image types.

Statistical Analysis
For quantitative tests, paired t tests at the P¼ .05 level were per-
formed to compare peak SNR, structural similarity, and root
mean square error metrics between the ultra-low-dose images
and their CNN-enhanced counterparts.

Pair-wise t tests were also performed to compare the values of
the image-quality metrics across the different image-processing
methods. The accuracy, sensitivity, and specificity were calculated
for the readings of the ultra-low-dose and enhanced PET images.
Symmetry tests were also performed to examine whether the
readings produced an equal number of false-positives and -nega-
tives. The agreement of the 3 readers was assessed using Gwet’s
AC1.35 Average image scores for each method are presented. The

95% confidence interval for the differ-
ence in the proportions of high scores
was constructed and compared with a
predetermined noninferiority bench-
mark of 15%. Tests were conducted at
the P¼ .05 level (Bonferroni correction
to account for multiple comparisons
when necessary).

RESULTS
The enhanced t images showed appa-
rent noise reduction with smoother
image texture compared with the ultra-
low-dose images (Fig 2). Quantitatively,
the 3 image-based metrics all improved
significantly (P, .05/3, Fig 3) after
enhancement of the ultra-low-dose
images. The regional coefficient of vari-
ation in regional SUVRs was reduced
in the enhanced image types (P, .001
for all comparisons with the enhanced
images), indicating noise reduction in
the images (Fig 4). The regional SUVRs
showed generally low bias and variabili-
ty between the full-dose images and
other image types. While there is an
underestimation in the SUVRs for both

FIG 2. Representative t PET images and their corresponding T1-
weighted MR image in 2 individuals positive for amyloid. The enhanced
PET image shows greatly reduced noise compared with the ultra-low-
dose PET image. Arrows correspond to regions of abnormal elevated t
uptake. MCI indicates mild cognitive impairment.

FIG 3. Image-quality metrics comparing the ultra-low-dose PET (LD) and the ultra-low-dose
enhanced PET (E) images with the ground truth full-dose PET image. PSNR indicates peak signal-
to-noise ratio; SSIM, structural similarity; RMSE, root mean square error.
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image types on average (influenced by regions with higher uptake,
though the slight overestimation by the ultra-low-dose images
contributed to a smaller coefficient of variation than that of the
full-dose images) when focusing on the healthy-but-amyloid-posi-
tive population (with generally lower t uptake), this bias was
reduced (P, .025, paired t tests corrected for 2 comparisons) in
the enhanced images (average SUVR difference: 0.0101 [SD,
0.0312] in the inferior cortex and �0.0014 [SD, 0.1238] in the
medial temporal lobe) relative to that in the ultra-low-dose images
(average SUVR difference: �0.0153 [SD, 0.0374] in the inferior
cortex and �0.0566 [SD, 0.1451] in the medial temporal lobe)
(Fig 5).

While the 3 readers have discussed and agreed to a reading
protocol for the identification of regional uptake, they exhibited
different preferences in reading the images based on the 5-point
scale (Fig 6). However, when using the dichotomized scale, the
readers showed agreement in their ratings of the 3 image types.
Noninferiority tests at the predetermined threshold of �15% for
subjective image quality showed that both the ultra-low-dose and
enhanced images were inferior to the full-dose images.

The intrareader reproducibility and interreader agreement was
high in reading the full-dose images (Tables 2 and 3). Among
image types, the readers also had high agreement in evaluating the
status of t uptake in the regions (Gwet’s AC1. 0.65, Table 1); the
uptake in the ultra-low-dose and ultra-low-dose enhanced images
was read accurately (accuracy.0.84 for all relevant regions,
Table 2) compared with their full-dose counterparts.

DISCUSSION
In this study, we have proposed a GAN structure to produce
diagnostic-quality t PET images from input representing a

simulated 5% dose PET acquisition.
There are many reasons to reduce the
dose for dementia PET imaging, includ-
ing enabling more frequent follow-up
scans (under current radiation safety
levels) to monitor for disease progres-
sion, especially in individuals who are
asymptomatic or in the mild cognitive
impairment stage. Another value is to
extend the access of advanced tracers to
more rural regions that are not within
current service regions for radiotracer
delivery, a problem that affects up to
10% of the US population. Because t

PET images generally show reduced and
focal uptake compared with other radio-
tracers such as amyloid and also contain
more image noise, we have chosen a
GAN structure for training to generate
images with more similar image texture
compared with those generated with
only a U-Net such as in Chen et al.22

We have shown in a previous study that
directly using a U-Net trained on amy-
loid images to generate images is infe-
rior to using a network trained with t

images, which took the image properties of the different radio-
tracers into account during training.27

The generated images show that the noise in the PET images
is greatly reduced through network training. The lower coeffi-
cient of variation in selected regions relevant to the participant
population also reflects this finding. In addition, the peak SNR,
structural similarity, and root mean square error metrics show
that the generated images also resemble the full-dose images
more than their ultra-low-dose counterparts.

The Bland-Altman plots showed that the ultra-low-dose
and enhanced images were similar in their regional SUVR
biases compared with the full-dose images (Fig 5). In general,
in participants with high uptake in the inferior temporal cor-
tex, SUVR underestimation was present compared with the
values in the full-dose images. However, when we examined
the healthy control population positive for amyloid, a demo-
graphic that needs close attention in tracking the participants’
progression, the enhanced images showed less bias when cal-
culating the SUVRs in regions relevant to neurodegeneration.
This finding shows the potential of using deep learning–based
enhancement of ultra-low-dose PET images in subjects need-
ing more frequent PET follow-up and is a first step in translat-
ing this method to routine clinical and scientific use for these
subjects.

For the reader study, the readers rated 2 aspects of each image:
subjective image quality and whether the images provide clinical
information related to the t imaging. For the former, a 5-point
Likert scale was used; for the latter, because there is no official
rating scale established for this particular t radiotracer, the read-
ers evaluated whether there is increased uptake in a number of
regions relevant to t imaging.

FIG 4. Mean (SD) of SUVR coefficient of variation in selected brain regions. E indicates enhanced
images; FD, full-dose images; Inf. Cerebel, inferior cerebellum; MTL, medial temporal lobe; LD,
ultra-low-dose image; Inf. Temporal, inferior temporal cortex
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The results from subjective image quality showed that the read-
ers had different preferences in reading the images. In fact, the
readers each had a different preference: Reader 1 was generous in
assigning quality scores for all image types; reader 2 showed a pref-
erence against the ultra-low-dose images, where there was more
image noise; reader 3, on the contrary, did not prefer the enhanced
images where more image-smoothing occurred. However, when
we examined the dichotomized scale, the ratings from all 3 readers

showed that there are more full-dose images scored as “high-
quality” than the other 2 image types, in which the proportion of
high-quality images for the ultra-low-dose and enhanced images
fell below the noninferiority threshold. This finding also high-
lights the challenge of deep learning enhancement of PET images
that have a weak focal uptake. It is possible that 95% undersam-
pling is too great for the current GAN to synthesize similar qual-
ity, given the number of cases to which we had access.

FIG 5. Bland-Altman plots comparing mean SUVRs in the ultra-low-dose PET and the enhanced PET with the full-dose PET images. The red dots
denote healthy controls positive for amyloid, and the regions selected are the FreeSurfer labels, which make up the bilateral medial temporal
lobe (entorhinal, amygdala) and the bilateral inferior temporal cortex.

FIG 6. Quality scores of different image types as rated by 3 expert readers. Image quality scores: 1, uninterpretable; 2, bad; 3, adequate; 4, good;
5, excellent. FD indicates full-dose; LD, ultra-low-dose; E, enhanced.
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In reading the uptake in relevant regions, Gwet’s AC1 showed

intrareader agreement (reproducibility) as well as interreader

agreement in the radiotracer uptake of selected regions. Most

interesting, the readings of different image types across the 3

readers also showed high agreement, indicating that both the

enhanced images and the ultra-low-dose images could provide

uptake information, similar to the full-dose images, with slight

benefit for the enhanced images. Therefore, the enhanced ultra-

low-dose images provide a tool for readers who do not prefer

noisy images.
This study has several limitations. Because there is no official

guideline on how to read t images and how to evaluate their
image quality, we evaluated the uptake patterns on the basis of cri-
teria agreed to by the 3 readers, using a positive/negative scale in
several important ROIs. Most (31/44) of the participants in this
study were healthy controls, which would contribute to an imbal-
ance in our training data. On the other hand, healthy controls are
an important focus. We have shown, in a previous study, that
matching target populations in the training and testing data is im-
portant for optimal results;37 if the training data were over-
weighted to patients with AD, the performance of the GAN might
be suboptimal in a healthy control test set. Moreover, healthy con-
trols are increasingly becoming the focus of research studies38 and
early prevention clinical trials, highlighting the value of tracking t
in at-risk healthy controls in addition to patients with AD (when
cognitive decline symptoms have already manifested).

In the future, more sophisticated networks will be evaluated
to better replicate the image texture of the full-dose images. More
complex networks could potentially allow further dose reduction
to show differences between the ultra-low-dose and the enhanced
images and minimize the effects of the network for reader prefer-
ence. On the other hand, we did not experiment with simpler,
non-deep-learning–based methods such as image filtering and
their results in noise reduction. However, from our experience in
training PET-only networks (which does not provide as much

morphologic information as the results indicate),22 such methods
tend to produce inferior results, and we suspect that this finding
would be more likely for t because its uptake is weaker and more
focal. A larger and more diverse population in the participant
population for the training and testing sets would also likely
improve performance. Through data-acquisition of participants
with higher t uptake or those with more advanced dementia, we
could expand our analyses to regions relevant to those popula-
tions, instead of solely focusing on the 3 regions in this work. We
examined only 1 dose-reduction level, which was estimated on
the basis of earlier work with FDG and amyloid tracers, partially
to mitigate the demands on the 3 clinical readers. The use of low-
dose images with less undersampling could produce improved
results, and the results could be further confirmed with actual
low-dose studies and region-based validation of SUVRs between
the 2 low-dose regimens.

CONCLUSIONS
The deep learning–enhanced images could be read clinically for
regional uptake patterns of t accumulation, similar to the full-
dose images. With further refinements, this technique can poten-
tially increase the utility of hybrid PET/MR imaging in clinical
diagnoses and longitudinal studies.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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