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ORIGINAL RESEARCH
ADULT BRAIN

Crowd-Sourced Deep Learning for Intracranial Hemorrhage
Identification: Wisdom of Crowds or Laissez-Faire

E.I.S. Hofmeijer, C.O. Tan, F. van der Heijden, and R. Gupta

ABSTRACT

BACKGROUND AND PURPOSE: Researchers and clinical radiology practices are increasingly faced with the task of selecting the
most accurate artificial intelligence tools from an ever-expanding range. In this study, we sought to test the utility of ensemble
learning for determining the best combination from 70 models trained to identify intracranial hemorrhage. Furthermore, we investi-
gated whether ensemble deployment is preferred to use of the single best model. It was hypothesized that any individual model
in the ensemble would be outperformed by the ensemble.

MATERIALS AND METHODS: In this retrospective study, de-identified clinical head CT scans from 134 patients were included. Every
section was annotated with “no-intracranial hemorrhage” or “intracranial hemorrhage,” and 70 convolutional neural networks were
used for their identification. Four ensemble learning methods were researched, and their accuracies as well as receiver operating
characteristic curves and the corresponding areas under the curve were compared with those of individual convolutional neural
networks. The areas under the curve were compared for a statistical difference using a generalized U-statistic.

RESULTS: The individual convolutional neural networks had an average test accuracy of 67.8% (range, 59.4%–76.0%). Three ensemble
learning methods outperformed this average test accuracy, but only one achieved an accuracy above the 95th percentile of the
individual convolutional neural network accuracy distribution. Only 1 ensemble learning method achieved a similar area under the
curve as the single best convolutional neural network (Darea under the curve ¼ 0.03; 95% CI, �0.01�0.06; P ¼ .17).

CONCLUSIONS: None of the ensemble learning methods outperformed the accuracy of the single best convolutional neural net-
work, at least in the context of intracranial hemorrhage detection.

ABBREVIATIONS: AUC ¼ area under the curve; CNN ¼ convolutional neural network; ICH ¼ intracranial hemorrhage; SVM ¼ support vector machine

As clinical support systems in radiology evolve, artificial intel-
ligence has become prevalent for supporting myriad opera-

tions ranging from order entry, computer-aided diagnosis,
clinical decision support, triage, to back-end analytics. With the
development of new tools for design, implementation, and
deployment of artificial intelligence–based systems, many in-

house support tools are more accessible to clinicians as well as
researchers.1 In fact, many radiology practices are continuously
developing and deploying their internal artificial intelligence tools
and support systems, and the use of these tools has increased
exponentially.

At the same time, researchers and clinical radiology practices
are increasingly faced with the task of selecting the most accurate
tools from an ever-expanding range. With multiple methods
available for the same task, combining the results of multiple
tools presents an intriguing possibility. Such “crowd-sourcing”
may be able to achieve better performance than any individual
method. At the same time, there is the risk of corrupting the
results of better-performing methods with those from weaker
ones.

For example, while multiple artificial intelligence methods for
segmentation of intracranial hemorrhage (ICH) have been very
successful,2,3 those for identification and progression of ICH can
have variable accuracy.4,5 Part of this variability derives from dif-
ferences in the characteristics of the data used for training and the
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population encountered in practice. It is tempting to use the best-
performing method, but best performance on one specific data set
does not necessarily guarantee best performance on another.

Ensemble learning may mitigate this high variability by pool-
ing multiple methods. Since its introduction .2 decades ago,6,7

ensemble learning has garnered substantial attention as a tool for
improving the performance, accuracy, and robustness of existing

medical image-interpretation methods.8 It relies on a meta-algo-
rithmic technique wherein multiple machine learning methods
are trained individually and aggregated together. This approach
has been successfully applied to multiple medical problems, includ-
ing identification of lung cancer cells,9 colon polyp detection,10

automated classification of pulmonary bronchovascular anatomy
in CT scans,11 and the differential diagnosis of focal liver lesions
detected on CT scans.12

In this study, we sought to test the utility of ensemble learning
for determining the best combination of models from a set of 70
models that were individually trained to identify ICH (in all intra-
cranial compartments). Furthermore, we investigated whether
ensemble deployment is preferred over the use of the single best
model. We tested the hypothesis that an ensemble of different
models, developed using a single training set, will outperform
each individual model in the ensemble.

MATERIALS AND METHODS
Data
We used a retrospective data set of de-identified clinical head CT
scans from 134 unique patients treated at the Massachusetts General
Hospital (institutional review board protocol 2015P000607). Written
consent was not required by the institutional review board, given the
retrospective use of existing clinically available data. The clinical
images were acquired under standard clinical protocols in our tertiary
care hospital from January 2015 to September 2018. Patients were
excluded if external hardware was visible in the scan. Images were
obtained (Somatom Force; Siemens) with an exposure time of
1000ms and a section thickness of 1mm. Each section in the axial
plane in the CT data set was annotated by the treating neuroradiolo-
gists, not part of this study, as “no-ICH” or “ICH” (Fig 1), and anno-
tations were verified by a neuroradiologist with 20years of experience
(R.G.). Images were then down-sampled to 128� 128 pixels. The in-
tensity of each image was clipped between �15 and 155 HU13 and
rescaled to [0, 1] for normalization. Consequently, slices were saved
as TIFF images for further processing. Visible head support was
removed from the images to prevent any bias due to extraneous input
and to constrain the variability introduced by the head holder. Slices
from the upper part and bottom of the scan FOV were excluded if
they contained no or very limited parts of the head. These slices were
either completely black or were at the very top of the head. The final
data set included 4287 slices of which 34.4% were labeled as contain-
ing ICH.

The data set was split into 4 sets. Data sets 1 (48%) and 2 (12%)
were used, respectively, as training and validation sets for the indi-
vidual convolutional neural networks (CNNs). Data set 3 (28%)
was used as a training set for the ensemble learning methods. All
the remaining slices (data set 4; 12%, test set) were used to inde-
pendently test the accuracy of individual CNNs as well as that of
ensemble learning methods to evaluate the final performance.
These steps are described in detail below.

All subsets were created at the patient level (as opposed to
individual section level) to avoid superfluous correlation between
images that belong to the same patient. Models were trained and
their performance was evaluated on the section level, while
grouping slices within each patient before partitioning to avoid
bias due to overrepresentation of slices from a single patient. This

FIG 1. Head CT scan slices annotated as ICH (upper and middle,
arrows) and annotated as no-ICH (bottom).
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partitioning resulted in 61 cases and 2034 slices in data set 1, 16
cases and 516 slices in data set 2, 38 cases and 1208 slices in data
set 3, and 17 cases and 529 slices in data set 4. The slices in each
set included approximately the same proportion (�34%, varying
between 32.9% and 38.8%) with ICH.

CNNs
CNNs to classify slices as ICH or no-ICH were implemented by
graduate students as a part of a course taught by the authors. In 2
different courses, offered between 2019 and 2021, one hundred
forty students with comparable experience and education were
divided into teams of 2 students each. These teams developed 70
CNNs for detecting the presence or absence of ICH in each sec-
tion. Each CNN was built on the same base architecture (Fig 2),
designed to provide a minimum accuracy (�67%) and was modi-
fied, trained, and tested independently by each team on a virtual
machine running on Amazon Web Services (https://aws.amazon.
com/) using Matlab R2020a (MathWorks).

Each team customized the base architecture (Fig 2, left) to
improve the accuracy on identical data sets. Customization
included switching, adding, or removing layers and/or changing
layer parameters. Parameters other than those associated with
individual layers (ie, hyperparameters) were not varied so that
only variations in architecture and random initialization
impacted the performance during testing. Each team trained
their CNN model on data set 1 for 50 epochs with a batch size of
32. They used stochastic gradient descent with a momentum
optimizer with a learning rate of 0.001. Each CNN was then vali-
dated on data set 2. The final accuracy of each CNN was eval-
uated on data set 4 (Fig 2).

Ensemble Learning Method Training
We tested 4 different ensemble methods to explore whether the
collective accuracy of 70 CNNs is higher than that of individual
models. Ensemble learning methods included majority voting,

decision tree, support vector machine (SVM), and the multi-
input deep neural network.

In majority voting, the final prediction of the ensemble was
determined to be that class predicted by the majority of CNNs. For
the remaining ensemble learning methods, the probability scores
for the no-ICH class were collected from each of the 70 CNNs for
every image in data set 3 and were used as input. In decision tree,14

a treelike model was created in which every end branch represents
a decision. One final predicted class label will be given as output.
Similarly, the SVM15 also returned 1 predicted class label, and
training was performed with a linear kernel. The last ensemble
learning method we tested was a multi-input deep neural network.
Unlike the ensemble learning methods described earlier, the multi-
input deep neural network requires an additional input, namely, a
CT image. The multi-input deep neural network provides a proba-
bility score for the no ICH and ICH classifications as output. A
more elaborate description of these ensemble learning methods
can be found in the Online Supplemental Data.

Each ensemble learning method was trained on data set 3 and
tested on data set 4 (Fig 2). Test accuracy was assessed via receiver
operating characteristic curves and the corresponding areas under
the curve (AUCs). The code for processing of data and training of
CNNs and ensemble learning methods can be found on: https://
github.com/UT-RAM-AIM/Ensemble_Learning.

Statistical Analysis
By design, each CNN had a different accuracy, resulting in a nor-
mal distribution of individual accuracies across 70 individual
CNNs (see Results). Thus, the accuracy of each of the 4 ensemble
learning methods was compared with the distribution of individ-
ual CNNs. For this comparison, an accuracy of.95% of the indi-
vidual accuracy distribution, ie, larger than 2 SDs, was considered
statistically significant. We also used the minimum redundancy
maximum relevance algorithm to rank the 70 CNNs in a way that
optimizes the amount of information each contained. This use
allowed us to determine the CNN that provides the most

FIG 2. Flowchart of the study. The upper left corner shows the base architecture underlying all 70 CNNs, which was then structurally optimized
by the 70 teams, resulting in 70 different CNNs. These were trained on data sets 1 and 2 and were used to train the 4 ensemble learning methods
(MV indicates majority voting; DT, decision tree; MI-DNN, multi-input deep neural network; see text) on data set 3. Both the 70 trained CNNs and
the trained ensemble methods were tested on data set 4. ReLU indicates rectified linear unit; tanh, hyperbolic tangent; EL, ensemble learning.
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information to predict the correct classification while having the
least amount of redundant information.16 The individual CNN
with the largest relevance was ranked first, and the previous steps
were repeated to determine the individual CNN with the second
highest relevance and least redundancy. This process was
repeated until all individual CNNs were ranked. Thus, minimum
redundancy maximum relevance provided insight into the added
value that each CNN contributed to the ensemble. The difference
between AUCs across different ensemble methods was tested for
statistical significance using a generalized U-statistic, analogous
to the Mann-Whitney statistic.17

RESULTS
The base architecture achieved an accuracy of 62.6% on data set
4. Individual CNNs had an average test accuracy of 67.8% with a
range of 59.4% to 76.0% (Fig 3).

All except 1, the multi-input deep neural network, ensemble
learning method outperformed the average accuracy of individual
networks. However, of these, only SVM resulted in a statistically
significant improvement in accuracy (ie, above the 95th percen-
tile of the accuracy distribution from individual CNNs). None of
the ensemble learning methods resulted in an accuracy greater
than the individual CNN with highest accuracy (76.0%). The base
architecture achieved an AUC of 0.66 (95% CI, 0.61–0.70). The
AUCs attained by SVM, majority voting, and the single best
CNN were, respectively, 0.79 (95% CI, 0.75–0.83), 0.79 (95% CI,
0.75–0.83), and 0.82 (95% CI, 0.78–0.85) (Fig 4).

The CNN with the best accuracy had a minimum redundancy
maximum relevance score of 0.15, while the second one scored
only 0.0006—that is, the relevance of the single best CNN model

contributed most to the ensemble learning model while the con-
tribution of the rest was effectively zero. Additional exploration
of the SVM method confirmed this observation. Training the
SVM with only the network with the highest minimum redun-
dancy maximum relevance score led to a test accuracy of 73.9%,
while adding the second most relevant CNN increased the accu-
racy only by 0.2%–74.1%.

Statistical Analysis
The AUC for each ensemble model was statistically different
from that of the base model (Fig 4; base versus decision tree,
DAUC¼ 0.05; 95% CI, �0.00008�0.11; P ¼ .05; base versus ma-
jority voting, DAUC ¼ 0.14; 95% CI, 0.10�0.17; P, .001; base
versus multi-input deep neural network, DAUC ¼ 0.05; 95% CI,
0.0004�0.09; P ¼ .05; and base versus SVM, DAUC ¼ 0.13; 95%
CI, 0.09�0.18; P, .001). The AUC for majority voting and SVM
was statistically different from that of the CNN with average ac-
curacy (average versus majority voting, DAUC ¼ 0.07; 95% CI,
0.04�0.10; P, .001; and average versus SVM, DAUC ¼ 0.07;
95% CI, 0.02�0.12; P ¼ .001). All except the SVM method,
including the CNN with average accuracy, were statistically dif-
ferent from the best-performing CNN (best CNN versus SVM,
DAUC ¼ 0.03; 95% CI, �0.01�0.06; P ¼ .17). Thus, the SVM
method performed better than the base model and CNN with av-
erage accuracy, but comparable with the best-performing CNN.

DISCUSSION
As mentioned earlier, many artificial intelligence–based support
tools are available for a wide variety of tasks, and researching ra-
diology practices are faced with the task of how to develop the

FIG 3. Accuracy of individual CNNs and ensemble learning methods. The purple solid vertical lines show the accuracy achieved by each ensem-
ble learning method, and the black dashed vertical lines showmeans and lower and upper 95% confidence intervals for the distribution of accu-
racy of individual CNNs. Additionally, the first purple solid line indicates the accuracy of the base network. DNN indicates deep neural network.
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most accurate ones for internal deployment. Ensemble learning
was suggested to mitigate the high variability between multiple
tools by pooling them. Our results affirm that all ensemble learn-
ing methods, with the notable exception of the multi-input deep
neural network, outperform the average of different crowd-
sourced CNN models. Thus, the “wisdom of crowds” can exceed
the average wisdom of individuals, at least in the context of ICH
identification. It was surprising that only the SVM resulted in a
statistically significant improvement in accuracy. Our most im-
portant finding, however, is that none of the other methods out-
performed the CNN with the highest accuracy. Thus, our study
provides several important lessons for crowdsourcing.

There was a relatively large variation in accuracy of individual
models, ranging from �0.60 to �0.75. However, this variability
does not necessarily imply variation in information; in the con-
text of our study, the magnitude of redundancy between the indi-
vidual CNNs is high. In fact, our results show that individual
models contribute little, if at all, to the overall performance of the
ensemble beyond the model with the best accuracy. Uncorrelated
models contribute to the ensemble most, because they can reflect
features that other models do not. Consequently, a combination
of different models that include different, uncorrelated features is
likely to result in a better-performing ensemble.

We have adopted a “laissez-faire” approach (leaving people to
take their own course, without interfering) as opposed to direct
guidance. This indicates that a simple agglomeration of all models
may be counterproductive and may drive the model toward the
average accuracy. For example, the poorly performing models
may corrupt the overall performance of the ensemble rather than
collaborating to improve accuracy. In fact, it can be seen in the
Results that the worst-performing single CNN achieves an accu-
racy (59%) lower than that of the base model (63%) accuracy.
The effort of the team to improve the base architecture actually
had the opposite effect in this CNN, and it most likely did not aid
in improving ensemble performance. For ensemble learning over

multiple individually trained models,
the assumption of holistic perform-
ance from crowdsourcing may not
hold, unless some basic conditions
about model independence can be
ensured. To that end, analysis of an en-
semble of models with a feature-selec-
tion algorithm, such as minimum
redundancy maximum relevance, is an
essential step toward finding the opti-
mal model.

In general but more specifically for
our use case ICH identification, the
apparent impact of the size of the used
data set is underestimated. If the data
set is not large enough, the CNNs
might be unable to learn different
mappings, ie, the problem does not
have many solutions. Ultimately, this
issue also results in redundancy within
the individual CNNs. Especially in our
case, ICH comprises roughly 15%18 of

all cases of stroke and is, therefore, not as common in stroke. It
can be difficult to acquire enough variation in a data set to allow
the CNNs to learn different mappings. It may be more useful to
examine safe ways of sharing data and consequently training 1
best tool with this method.

The relevant literature includes multiple studies using ensem-
ble learning that found a positive effect from its application. For
example, in their research into skin lesion classification from der-
mascopic images, Shahin et al19 found that by averaging the pre-
dictions of the trained ResNet-50 (accuracy 87.1%) and
Inception-V3 (accuracy 89.7%) models, their accuracy improved
to 89.9%. Furthermore, Rajaraman et al20 reported an accuracy
increase by weighted averaging (90.97%) of their trained ResNet-
18 (89.58%, highest), MobileNetV2, and DenseNet-121, to detect
coronavirus disease 2019 (COVID-19) on chest radiographs. Most
interesting, adding 2 more models to the ensemble in fact deterio-
rated the accuracy slightly. Most similar in approach to our case is
the research by Zabihollahy et al,21 who trained 7 U-Nets for the
localization of prostate peripheral tumors. The U-Nets differed in
the depth and number of filters used in the convolution layers and
were pooled using majority voting. Pooling 3 U-Nets was optimal,
but this did not outperform the single best U-Net in terms of sen-
sitivity or specificity. However, it did find the best trade-off
between the two.

In contrast to the cases above, many more networks were
pooled together in our study to improve the performance via en-
semble learning methods. Additionally, our results did not show
that an ensemble learning method outperformed the single best
CNN model. However, as was also found in the research by
Zabihollahy et al21 and Rajaraman et al,20 using multiple models
in the ensemble learning method does not necessarily increase
the performance. While Zabihollahy et al found that the overall
performance did not improve when adding .3 models, in our
case that point was reached at 2. Combining fewer, but structur-
ally different, models might be more efficient as is shown in
Rajaraman et al.20

FIG 4. Receiver operating characteristic curves of the base network (dark blue) and the single
best CNN (dark red), the curve of the average performing CNN (orange), and ensemble learning
methods. The dashed black line indicates the performance of a random classifier (ie, accuracy of
50%). DNN indicates deep neural network.
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CONCLUSIONS
Using ICH identification as a use case, we sought to identify the
best combination from a set of 70 CNNs. Furthermore, we inves-
tigated whether an ensemble of the CNNs is preferred over using
the single best CNN. It was hypothesized that an ensemble of dif-
ferent models, optimized from a base model, would outperform
each individual CNN. While the SVM ensemble learning method
did perform statistically better than the average CNN, its per-
formance was comparable with that of the single best CNN. Even
though this classroom experiment does not represent a real-
world scenario when multiple artificial intelligence tools are at
your disposal, it may be preferable to search for structurally dif-
ferent models and analyze them with a feature-selection algo-
rithm before applying an ensemble learning method. Otherwise,
a focus on the single best model may be more productive.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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