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Phenotyping Superagers Using Resting-State fMRI
L.L. de Godoy, A. Studart-Neto, D.R. de Paula, N. Green, A. Halder, P. Arantes, K.T. Chaim, N.C. Moraes,

M.S. Yassuda, R. Nitrini, M. Dresler, C. da Costa Leite, J. Panovska-Griffiths, A. Soddu, and S. Bisdas

ABSTRACT

BACKGROUND AND PURPOSE: Superagers are defined as older adults with episodic memory performance similar or superior to
that in middle-aged adults. This study aimed to investigate the key differences in discriminative networks and their main nodes
between superagers and cognitively average elderly controls. In addition, we sought to explore differences in sensitivity in detect-
ing these functional activities across the networks at 3T and 7T MR imaging fields.

MATERIALS AND METHODS: Fifty-five subjects 80 years of age or older were screened using a detailed neuropsychological proto-
col, and 31 participants, comprising 14 superagers and 17 cognitively average elderly controls, were included for analysis. Participants
underwent resting-state-fMRI at 3T and 7T MR imaging. A prediction classification algorithm using a penalized regression model on
the measurements of the network was used to calculate the probabilities of a healthy older adult being a superager. Additionally,
ORs quantified the influence of each node across preselected networks.

RESULTS: The key networks that differentiated superagers and elderly controls were the default mode, salience, and language net-
works. The most discriminative nodes (ORs . 1) in superagers encompassed areas in the precuneus posterior cingulate cortex, pre-
frontal cortex, temporoparietal junction, temporal pole, extrastriate superior cortex, and insula. The prediction classification model
for being a superager showed better performance using the 7T compared with 3T resting-state-fMRI data set.

CONCLUSIONS: Our findings suggest that the functional connectivity in the default mode, salience, and language networks can
provide potential imaging biomarkers for predicting superagers. The 7T field holds promise for the most appropriate study setting
to accurately detect the functional connectivity patterns in superagers.

ABBREVIATIONS: ASSET ¼ array spatial sensitivity encoding technique; BOLD ¼ blood oxygen level–dependent; DMN ¼ default mode network; ECN-L ¼
executive control network left; ECN-R ¼ executive control network right; EN ¼ elastic net; ICA ¼ independent component analysis; IPAT ¼ integrated parallel
acquisition technique; rs-fMRI ¼ resting-state fMRI; OLS ¼ ordinary least squares; SN ¼ salience network

Aging is an increasingly global phenomenon, usually accompa-
nied by cognitive decline, with direct implications for the

health care system and individuals’ lives.1 In this setting, subjects
with superior memory performance in late life (80 years of age or
older) stand out because they have a model capable of clarifying
the brain mechanisms underlying cognitive resilience. These sub-
jects have been identified as “superagers” in the literature.2 To
date, it is known that superagers show selective cortical preservation

in particular regions of the default mode network (DMN) and sali-
ence network (SN), overlapped by stronger functional connectivity,
highlighting possible key hubs for memory and cognition.3-5

However, these studies included subjects from 60years of age,
which may be biased to obtain meaningful assertions about “youth-
ful”memory performance in late life (80 years of age and older).6

Cognitive maintenance in older adults may reflect intrinsic
functional integrity as a neurobiologic substrate.7 fMRI can play
an important role in detecting key brain hubs sustaining youthful
cognition, thereby contributing to understanding the most resil-
ient brain areas in superagers. Moreover, alterations in the brain
functional connectome were previously reported to provide bio-
markers for age-related cognitive decline and Alzheimer disease.8
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Resting-state fMRI (rs-fMRI) focuses on the temporal character-
istics and spatial organization of spontaneous fluctuations of the
blood oxygen level–dependent (BOLD) signal and is powerful for
characterizing brain organization and its abnormalities. Because the
discrepancies between superagers and cognitively average elderly
controls may be modest-but-important to detect early changes in
brain function, using an ultra-high-field rs-fMRI with increased
spatial and temporal resolution may allow study of more subtle dis-
ruption.9 This is the first time that older adults with superior mem-
ory performance have been investigated at a 7T field.

In this study, we compared the differences in the resting-
state functional connectivity between superagers and cognitively
average elderly controls (elderly controls) in a range of neural
networks with the aim of identifying the most discriminative
networks and within-network nodes for predicting superagers.
We additionally examined differences in the prediction proba-
bility of being a superager between the rs-fMRI data at 3T and
7T magnetic fields. We hypothesized that hub regions are critical
to predicting youthful cognitive function in superagers, and the
measurements of functional connectivity would be improved at a
higher magnetic field.

MATERIALS AND METHODS
Selection of Participants
Initially, 55 participants were recruited from different centers in
the city of Sao Paulo, Brazil, as detailed previously by de Godoy et
al,10 and the neuropsychological tests were performed at the
Department of Neurology of Hospital das Clinicas (Medical
School of the University of Sao Paulo). Informed consent was
obtained from each participant and the research project was
approved by the Ethics Committee of the University of Sao
Paulo (#62047616.0.0000.0068). The study was designed and
conducted according to the Declaration of Helsinki.

The inclusion criteria for the participants were the following: 1)
80 years of age and older; 2) education of $ 4 years; 3) Mini-
Mental State Examination scores normal for the individuals’ edu-
cation;11,12 4) Functional Activity Questionnaire score of # 4;13 5)
Clinical Dementia Rating score equal to zero; and 6) a result of the
15-question version of the Geriatric Depression Scale of#5.

The exclusion criteria included the following: 1) a diagnosis
of dementia or mild cognitive impairment according to the
National Institute on Aging and Alzheimer’s Association crite-
ria;14,15 2) a diagnosis of a major psychiatric disorder by the
Diagnostic and Statistical Manual of Mental Disorders, Fifth
Edition; 3) a history of alcohol or psychoactive drug abuse; 4)
current or previous diagnosis of diseases of the CNS (ie, stroke
or seizure); 5) the presence of structural lesions in the CNS on
imaging that could distort the brain parenchyma (ie, tumor or
brain malformation); and 6) visual and/or auditory limitations
that impair the performance of cognitive tests.

The flow charts of participant selection and the neuropsychologi-
cal tests performed are shown in Fig 1 and the Online Supplemental
Data, respectively.

Neurocognitive Screening
The first assessment consisted of a semistructured interview with
the collection of sociodemographic data; cognitive assessment

using the Mini-Mental State Examination, Montreal Cognitive
Assessment, and the Brief Cognitive Screening Battery;16 screen-
ing for depressive symptoms and anxiety using the Geriatric
Depression Scale-15 and the Geriatric Anxiety Inventory, respec-
tively; and functional assessment with the Functional Activity
Questionnaire and Clinical Dementia Rating.

Subsequently, the subjects who met the inclusion criteria under-
went neuropsychological tests. The tests included the Forward and
Backward Digit Span, Trail-Making A and B, Verbal Fluency (ani-
mals) and Letter Verbal Fluency tests, Rey-Osterrieth Complex
Figure (copy and delayed recall), Logical Memory of the Wechsler
Memory Scale, Rey Auditory Verbal Learning Test, 60-item version
of the Boston Naming Test, and Estimated Intelligence Quotient
measured with theWechsler Adult Intelligence Scale, Third Edition.
Those who performed equal or less than �1.5 SDs from average
normative values adjusted by age and education for any cognitive
test aforementioned were excluded.

Healthy Older Adult Grouping
Participants were separated into 2 groups: superagers (n ¼ 14;
mean age, 82.93 [SD, 3.47] years) and cognitively average elderly
controls (n ¼ 17; mean age, 84.47 [SD, 4.29] years). Superagers
were defined as the participants who presented with a delayed recall
score (30minutes) in the Rey Auditory Verbal Learning Test, used
as a measure of episodic memory, equal to or greater than average
normative values for individuals 50–60years of age ($9 words),
according to the criteria established by the Northwestern
SuperAging research program.2 In addition, to conform with
these criteria, they had to perform at or above 1 SD of the average
for their age and demographics for cognitive function in the non-
memory domains tests, including Forward and Backward Digit
Span, 60-item version of the Boston Naming Test, Trail-Making
A, Trail-Making B, Rey-Osterrieth Complex Figure, and Verbal
Fluency (animals) and Letter Verbal Fluency tests.17,18 The cogni-
tively average elderly controls performed in memory and nonme-
mory domains within 1 SD of the average range for their age and
demographics, which means that they were average-performing
older adults according to their cognitive status.

Imaging Data Acquisition
We acquired MR imaging data of 31 participants (14 superagers
and 17 elderly controls) on a 3T scanner, whereas 21 of them
(12 superagers and 9 elderly controls) were also imaged on a 7T
scanner. The fewer subjects scanned at the 7T field were due to
MR imaging safety concerns (eg, the presence of ferromagnetic
aneurysm clips, pacemakers, and stents)19 and the safety meas-
ures in place during the coronavirus disease 2019 (COVID-19)
pandemic.

The 3T MR imaging session was scheduled ,1 month after
the clinical and neuropsychological assessments. We used a Signa
PET/MR imaging 3T scanner (GE Healthcare) with a 32-channel
head coil. An anatomic whole-brain 3D T1-weighted scan was
acquired with the parameters as follows: TR ¼ 8ms, TE ¼ 3.2ms,
flip angle ¼ 80°, array spatial sensitivity encoding technique
(ASSET) factor ¼ 1.5, FOV ¼ 240� 240, matrix ¼ 240� 240,
and 180 slices of 1mm each yielding a voxel size ¼ 1� 1 � 1mm
during 5 minutes 16 seconds. rs-fMRI was acquired with a T2*-
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weighted echo-planar imaging sequence with the following
parameters: TR¼ 2000ms, TE¼ 30ms, flip angle ¼ 90°, FOV ¼
240 � 240, matrix ¼ 80� 80, section thickness ¼ 3.6mm (voxel
size ¼ 3� 3 � 3.6mm), number of slices ¼ 36, gap ¼ 0.4mm,
ASSET factor¼ 2.5. Although 208 volumes were acquired during
6 minutes 56 seconds, the first 4 volumes were discarded, so we
had 204 volumes per subject.

The 7T MR imaging was performed after acquiring all the
data on the 3T scanner and within 6 months after the clinical
evaluation. We used a Magnetom 7T scanner (Siemens) with a
32-channel coil (Nova Medical). The 3D T1 image was acquired
by the MP2RAGE technique with the following parameters: TR¼
6000ms, TE ¼ 2.25ms, flip angle ¼ 4°/5°, TI ¼ 800/2700ms,
integrated parallel acquisition technique (IPAT) ¼ 3, FOV ¼ 240
� 240, matrix ¼ 320 � 320, and 256 slices, yielding an isotropic
voxel size of 0.75 mm3 during 9 minutes 36 seconds. rs-fMRI was
acquired with a T2*-weighted EPI multiband sequence, provided
by the Center for Magnetic Resonance Research, with the follow-
ing parameters: TR ¼ 1500ms, TE ¼ 24ms, flip angle ¼ 70°,
FOV ¼ 210 � 210, matrix ¼ 120 � 120, section thickness ¼
1.75mm (isotropic voxel size ¼ 1.75 mm3), number of slices ¼
81, no gap, multiband accel factor 3, IPAT ¼ 2, and 250 volumes
were acquired in 6 minutes 38 seconds.

During the rs-fMRI at 3T and 7T,
participants were told to keep their eyes
open while looking at a fixation cross.
No cognitive tasks or tests were admin-
istered before the MR imaging session.

Brain Connectivity Analysis
rs-fMRI Preprocessing. The MR imag-
ing DICOM files were entered into an
automatic pipeline in GraphICA (https://
www.brainet.ca/) (Online Supplemental
Data).20 Anatomic and functional images
were kept in native space and prepro-
cessed using FSL 6.03 (http://www.fmrib.
ox.ac.uk/fsl).21 Preprocessing steps of the
T1-weighted anatomic images included
bias field correction, brain extraction,
tissue-type segmentation (CSF, gray
matter, white matter), and subcortical
segmentation. On the functional data,
we performed skull stripping, motion
correction, section-timing correction,
spatial smoothing (ceiling of 1.5� voxel
size), independent component analysis
(ICA)-based Automatic Removal Of
Motion Artifacts, high-pass filtering of
100 seconds, and nuisance regression
of white matter and CSF.

Extraction of the Functional Networks.
Graphica performs ICA with dual
regression implemented in FSL.21 As a
part of this process, a set of independ-
ent component maps were identified
for each network, and dual regression

was implemented to identify subject-specific spatial maps using
11 resting-state network masks: auditory, DMN, executive con-
trol network left (ECN-L), executive control network right (ECN-
R), hippocampal, language, SN, sensorimotor, visual lateral, vis-
ual medial, and visual occipital.

Regional Parcellation. Each subject’s T1-weighted image was auto-
matically segmented with a pipeline implemented in FreeSurfer
(Version 7.1.0; http://surfer.nmr.mgh.harvard.edu). Further parcel-
lation was performed with Graphica using a gradient-weighted
Markov Random Field Model procedure described in Schaefer et
al.22 The procedure yielded 832 parcellated brain regions, which
were included as network nodes for further analyses.

Functional Network Construction and Thresholding. After we
coregistered each of the functional resting-state networks to the
subject, a mean z value was calculated by averaging the scalar
map values of the voxel belonging to each one of the 832 ROIs.
The resulting z-standardized correlation coefficients describe the
loading of each nodal time course on the respective resting-state
networks. To remove spurious or weak z values, for instance, due
to noise, the loadings were thresholded with a data-driven mix-
ture modeling approach at a single-subject level.23

FIG 1. Flow chart of participant selection. RAVLT indicates the Rey Auditory Verbal Learning
Test; y/o, years of age.
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Global Properties. Global properties include the number of found,
missing, and extra regions. These properties were calculated on the
basis of template masks created and separated by sex for each one
of the functional networks using healthy controls to create a base-
line for the quality index and to exclude or keep the subjects on the
basis of their motion. The data from healthy controls came from
the Human Connectome Project24 and Openneuro,25 comprising
319 female subjects (mean age , 22.18 [SD, 25.19] years) and 482
male subjects (mean age, 25.05 [SD, 28.26] years). The number of
found regions was defined as the regions with z values different
from zero that survived the thresholding process. Missing regions
were defined as the regions that have not been identified but do
belong to the specific functional template mask. The number of
extra regions was defined as regions that do not belong to the re-
spective functional network template mask but were found.

Regions Belong Template Maskð Þ ¼ Regions Foundð Þ
þ Regions Missingð Þ � Regions Extrað Þ:

Statistical Analysis
Classification Analysis. The whole-brain connectivity parcellation
comprises 832 ROIs. To avoid overfitting in the regression model,
we selected 6 key networks for successful aging,3-5 encompassing
397 distinct ROIs, with some ROIs overlapping the networks,
including the DMN, SN, ECN-L, ECN-R, hippocampal, and lan-
guage networks. Penalized regression analysis used these networks
and within-network nodes to determine brain regions with statisti-
cal differences between superagers and cognitively average elderly
controls.

Each of the ROIs, grouped within the specific 6 networks, was
considered as a covariate in the penalized regression modeling in
the following way: For a set of predictors X ¼ X1; . . . ;XN with p
measurements taken on each, and the response variable y, regres-
sion allows estimation of the coefficients b i in the following linear
regression model:

y ¼ x1b 1 þ � � � xNb N ¼ Xb :

The ordinary least squares (OLS) regression finds a set of b i

that minimize the sum-squared approximation error y� xbð Þ2.
However, in general, OLS solutions are often unsatisfactory
because there is not a unique solution when p � n, and it is diffi-
cult to pinpoint which predictors are most relevant to the
response. Various regularization approaches have been proposed
in order to handle “large- p, small-n” data sets and to avoid over-
fitting, such as LASSO (Least Absolute Shrinkage and Selection
Operator) and ridge regression, or a combination of both. Elastic
Net (EN) addresses these shortcomings since variable selection is
embedded into their model-fitting process. These methods were
previously applied to a similar problem, with results suggesting
that the EN regression was a more robust approach to extreme
correlations among the predictors.26 Briefly, sparse regularization
methods include the L1-norm regularization on the coefficients,
which is known to produce sparse solutions, ie, solutions with
many zeros, thus eliminating predictors that are not essential.

For the analysis here, we used the EN regression that finds an
optimal solution to the OLS problem objective, augmented with

additional regularization terms that include the sparsity-enforcing.
Specifically, there are 2 types of regularizations that EN allows:
L1-norm constraint on the regression coefficients that penalizes
the absolute size and “shrinks” some coefficients to zero, and a
“grouping” L2-norm constraint, which penalizes the squared size
of the coefficients and enforces similar coefficients on predictors
that are highly correlated with each other, which L1-constraint
alone does not provide. Formally, EN regression optimizes the fol-
lowing function,

L l 1;l 2; bð Þ ¼ y� xbð Þ2 þ l 1kb k1 þ l 2kb k2;

where l 1 is L1-penalty term and l 2 is the quadratic penalty
term.

In our case, for each of the networks, we let y be a binary out-
come of either being a superager or an elderly control and X con-
sisted of 397 covariate measurements representing the regions
(nodes) across the 6 neural networks. We modeled the relationship
as,

logit pi
� �

¼ Xib i; i ¼ 1; 2; . . . ; n:

Model Prediction and Classification.Using these models, we cal-
culated the expected probabilities of an individual being a super-
ager predicted from the penalized regression model using the
measurements of the network and plotted this as an outcome (on
the y-axis) versus the binary observed values of the individual
being either an elderly control or superager to evaluate the pre-
diction performance of the model (Fig 2). The diagonal lines in
Fig 2 represent the mean difference between predicted probabil-
ities for superagers and elderly controls. The prediction model
can be thought of as an OLS linear regression,

pcontrol þ ð psuperager � pcontrolÞs;

where s is the observed data superager indicator variable, px is

the mean predicted probability of being a superager for the observed
group (either control or superager), and psuperager � pcontrol is the

slope of the line, which indicates the discriminatory ability of the
model. Larger values demonstrate better performance (steeper lines),
and zero corresponds to no predictive ability with a horizontal line
for that network.

Quantification of Regression Analysis Results. We used the
regression models in Equation logit pi

� � ¼ Xib i; i ¼ 1; 2; . . . ; n
to infer the ORs describing the difference between the odds of ex-
posure in each network and region (node) among superagers and
elderly controls. In our study, they can be interpreted as a measure
of the relative influence of a network and region within on the like-
lihood of being a superager. We obtained the ORs using the fitted
models to give an average comparison between individuals with or
without a unit increase in a particular region j; if p is the probability
of being a superager then,

ORj ¼
pj= 1� pjð Þ
p= 1� pð Þ ¼ exp b j

� �
:

We used the ORs to quantify the influence of each region
within each of the 6 networks. We identified the regions with the
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ORs that are.1 to be the regions that are most differentiable/dis-
criminative between superagers and elderly controls. If the OR
values were equal to 1 (OR ¼ 1), there was no discrimination in
the examined regions between groups. Finally, if the OR values
were ,1, the regions negatively discriminated the examined
region as characteristic for a superager. We noted that the P value
was not generated from this analysis but the significance of the
influence from a network/region could be inferred from the 95%
CI for an OR.27

Because the number of variables in the model was very large, the
maximum number of nonzero variables was limited to 10. For the
analyses, we used the statistical programming language R (https://
cran.r-project.org/web/packages/glmnet) and the package glmnet.26

RESULTS
Demographics and Neuropsychological Performance Scores
Superagers and elderly controls did not differ in terms of age (P ¼
.304), education (P ¼ .299), or sex distribution (P ¼ .224).
Superagers had statistically significantly better performance com-
pared with elderly controls in the Montreal Cognitive Assessment
(P ¼ .003) and some episodic memory tests, including the
Delayed-Recall Brief Cognitive Screening Battery (P ¼ .036),
Delayed-Recall Rey Auditory Verbal Learning Test (P, .001), and

Logical Memory Delayed-Recall (P ¼ .01) (Online Supplemental
Data).

Discriminative Networks and Brain Nodes for Predicting
Superagers
The lollipop plots (as an alternative to bar charts) in Fig 3 show the
magnitude (dot) and the range (line) of the nodes within each net-
work that are discriminative between superagers and elderly con-
trols. Here ORs . 1 suggest nodes that are more likely to be
different in superagers (ie, larger influence on the predicted proba-
bility of being a superager) and are illustrated by lollipops in green.
Conversely, nodes with ORs , 1 are less likely to be different in
superagers (ie, these regions are negatively discriminated as a char-
acteristic of a superager) and are illustrated by lollipops in red.

When we used the 3T and 7T data sets, though all networks
were overall distinct in superagers compared with elderly controls
(Fig 2), some of them were more differentiable and predictive of
superagers than others. For example, for the 3T data (Fig 3A), the
ORs for the SN and language networks were .1 across some
regions, with relatively good predictive performance (Fig 2), sug-
gesting that these regions were discriminative in superagers. In
contrast, the ECN-L presented only a few regions of ORs. 1 and
others with ORs , 1, showing a poor predictive performance.
For the 7T data analysis (Fig 3B), the lollipop plots in most

FIG 2. Plots showing the classification results for superagers across several networks examined on 3T and 7T fields. These plots show the
observed superager status for each participant (blue and red dots) plotted against the probability of being a superager predicted from the fitted
model. The diagonal lines represent the mean difference between predicted probabilities for superagers and elderly controls. The steeper the
gradient of the lines, the higher the superagers’ prediction.
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networks had ORs . 1 across several nodes and great predictive
performance, characterized by a steeper slope of the diagonal
lines in Fig 2. The DMN, SN, hippocampal, and language net-
works were the most discriminative networks in our model pre-
diction classifier for the 7T data set. In addition, for the 7T
magnetic field, we had improved sensitivity in detecting a higher
number of essential regions within each network. Therefore, on
the basis of the classification algorithm, when differentiating
superagers from elderly controls, we were more confident using
the model fit from the 7T rather than the 3T scanner.

The Online Supplemental Data delineate the anatomic space of
each network studied (networks masks). Figures 4, 5, and 6 illus-
trate the nodes within each network in brain maps, with OR values
. 1, which predict superagers for the 3T and 7T data sets (Online
Supplemental Data). We used Montreal Neurological Institute
coordinates to plot the nodes and heatmaps, varying from dark
blue to dark red (OR values furthest away from 1 have higher
superager prediction), to demonstrate the discriminative power of
each node. The Online Supplemental Data show the elastic model
results for the 3T and 7T data sets for all ROIs included.

DISCUSSION
In this study, we identified functional networks showing that
superagers exhibited distinct intrinsic connectivity compared with

elderly controls in a range of brain networks and the core net-
works predicting a superager were the DMN, SN, and language.
Areas in the precuneus posterior cingulate cortex, prefrontal cor-
tex, temporoparietal junction, temporal pole, extrastriate superior
cortex, and insula were the most discriminative nodes within these
networks. By exploring the 7T and the 3T data sets separately, we
could demonstrate higher prediction task confidence in rs-fMRI
data sets acquired with the 7T rather than with the 3T scanner.

During the past years, clinical fMRI at 7T has gained trac-
tion28 because it offers a beneficial increased SNR and BOLD
contrast over conventional 1.5T and 3T MR imaging scan-
ners,29,30 translated into a greatly enhanced spatial resolution of
functional activity, the main clinical advantage of 7T fMRI.31,32 A
prior study33 demonstrated up to 300% improvement in the tem-
poral SNR and resting-state functional connectivity coefficients
provided by ultra-high-field 7T fMRI compared with 3T, indicat-
ing enhanced power for the detection of functional neural archi-
tecture. We have shown that the higher BOLD contrast-to-noise
ratio available at 7T yielded improved sensitivity in detecting dif-
ferences in the activity across all networks compared with the 3T
field, reflected by a steeper gradient of the lines in the prediction
classification algorithm. Moreover, higher ORs (OR. 1) were
observed across several nodes for the 7T compared with the 3T
data set. These differences imply that 7T scanners may facilitate

FIG 3. The lollipop plots in the 3T data set (A) and the 7T data set (B) indicate the nodes within networks that can differentiate superagers from
elderly controls. Within the plots, we show the magnitude (dot) and the range (line) of the difference between superagers and elderly controls.
ORs of.1 (OR. 1) suggest a larger influence on the predicted probability of being a superager (lollipops in green). ORs of, 1 indicate regions
negatively discriminated as characteristic of a superager (lollipops in red). Cingp indicates posterior cingulate cortex; ContA, control A; ContB:,
control B; ContC, control C; DorsAttnA, dorsal attention A; DorsAttnB, dorsal attention B; ExStrSup, extrastriate superior cortex; FrMed, frontal
medial cortex; Ins, insula; IPL, inferior parietal lobule; IPS, intraparietal sulcus; LH, left hemisphere; OFC, orbital frontal cortex; ParOper, parietal
operculum; PCC, precuneus posterior cingulate cortex; pCun, precuneus; PHC, parahippocampal cortex; PFCd, dorsal prefrontal cortex; PFCl, lat-
eral prefrontal cortex; PFClv, lateral ventral prefrontal cortex; PFCm, medial prefrontal cortex; PFCmp, medial posterior prefrontal cortex; PFCv,
ventral prefrontal cortex; PostC, postcentral cortex; RH, right hemisphere; Rsp, retrosplenial cortex; SalVentAttnA, salience/ventral attention A;
SalVentAttnB, salience/ventral attention B; SPL, superior parietal lobule; Temp, temporal cortex; TempPar, temporoparietal junction; TempPole,
medial temporal pole; TempOcc, temporo-occipital junction; VisPeri, peripheral visual.
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high-quality connectivity measurements capturing stronger evoked
rs-fMRI responses, hence offering potentially greater group-level
power. This possibility raises our confidence for the results of the

within-network nodes and overall model fit from the 7T scanner.
Therefore, in the discussion below, the discriminatory nodes for

identifying superagers at the 7T data set are emphasized more.
In line with previous studies including successful agers from

60 years of age,4,34 we have found important features for predicting
superagers in the DMN and SN. The DMN is implicated in mem-
ory encoding, storage, and retrieval, while the SN is believed to be
associated with executive processes and detecting emotionally rele-
vant stimuli, as well as alerting.5 In parallel, normal aging is associ-
ated with decreased signal complexity within the DMN and SN
nodes,35 and there is a disrupted variability in these networks in
mild cognitive impairment and Alzheimer disease.36 It stands to
reason that the DMN and SN hubs may potentially provide valid
and reliable biomarkers for early age-related cognitive decline.

Beyond the classic hubs of the DMN and SN, we also found
discriminative nodes within the ECN-L/R, language, and hippo-
campal networks for predicting a superager among elderly con-
trols. The ECN is generally involved in tasks relying on executive
functions, such as the control process and working memory.37

The hippocampal network plays an important role in the consoli-
dation of short-term memory and spatial memory.38 The lan-
guage network, a critical connectome in our model, encompasses
regions of the Broca (inferior frontal) and Wernicke (superior
temporal with extension into the inferior parietal cortex) areas39

and has not been previously investigated in understanding the
superior preservation of cognitive abilities. Although our groups
did not show significant differences in verbal fluency tests,

modifications in the language functional connectivity may
anticipate changes in language performance in healthy older
adults. Moreover, it is well-known that the language network
can accurately discriminate patients with mild cognitive impair-
ment from healthy controls40 and is also known to demonstrate
weaker functional connectivity in Alzheimer disease.41

The nodes with superior importance for predicting superagers
encompassed areas in the extrastriate superior cortex, precuneus
posterior cingulate cortex in both hemispheres; inferior parietal
lobule, the temporoparietal junction, intraparietal sulcus, insula,
and medial temporal pole in the right brain hemisphere; and the
prefrontal/dorsal prefrontal cortex, temporo-occipital junction,
and retrosplenial cortex in the left hemisphere. Most interesting,
most of these cortical nodes presented with stronger intrinsic
functional connectivity4,34 and volumetric preservation,5,42,43

akin to features of younger adults in previous studies.3 These
nodes also have been considered as key brain functional hubs for
diverse cognitive functions and information integration among
segregated functional networks.44

Our results indicate that the posterior cingulate cortex, a
region mainly engaged in episodic memory,45 plays a crucial role.
Our previous study on superagers10 showed a higher total NAA
concentration in superagers than in elderly controls in the poste-
rior cingulate cortex, reflecting a metabolically active brain region
contributing to superior cognition in late life. Therefore, the
functional and metabolic features of this structure observed in
our cohort may underlie the superagers’ significantly higher
scores in the episodic memory tests. The prefrontal cortex, one of
the most discriminative nodes in our cohort, is known to be asso-
ciated with executive functions (planning, decision-making) and

FIG 4. The most discriminative nodes among the DMN and SN in superagers compared with elderly controls. The heatmap varies from dark
blue to dark red (denoting a higher prediction rate for classification as a superager using ORs). RH indicates right hemisphere; LH, left hemi-
sphere; L, left; R, right.
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social-cognitive processes.46 Another powerful discriminatory
node, the right temporoparietal junction, is engaged in the social
domain (empathy, sympathy) and self-evaluating behavior.47 It
was previously observed that superagers present with an increased
level of positive relations with others, defined by truthfulness and
satisfaction, and they manage stress better.48

Among the discriminative nodes from the classifier, the infe-
rior parietal cortex is known to be involved in semantic process-
ing and attention.49 The insula contributes to various brain
functions through the integration of sensory, emotional, and cog-
nitive information.50 Moreover, the extrastriate superior cortex,
involved in visual-processing information, plays an important
role in the DMN and hippocampal networks.51 These nodes
highlight how structures not directly involved with memory can
contribute to superior memory performance.

Our study has a number of limitations. Our cohort was small
due to the constraints in data collection and for prioritizing a rig-
orous selection protocol, preventing splitting the data set into
training and validation samples. Also, the individuals scanned at
7T were a subset of those scanned at 3T due to patient contrain-
dication heightened at 7T. Because for each individual, there
were hundreds of measurements introducing a risk of overfitting,
the penalized regression methodology was selected. The results
should be seen as a contribution to the field and not definitive,
because we aimed to investigate the signal that can be found in
the data set in the presence of a low number of subjects and pos-
sible measurement error. The regression method used did not
generate significant P values; however, even if we used standardized
methodologies, these would have to be caveated. Moreover, we
compared superagers with cognitively healthy older adults, reflect-
ing early and subtle age-related cognitive functional changes; there-
fore, remarkable differences would not be expected.

The increased spatial resolution of BOLD on 7T and sec-
ondary higher detection of intrasubject variability can overes-
timate the intragroup differences in a small sample size.52

There are also problems concerning B0 and B1 inhomogeneity
created by higher field strengths, resulting in geometric distor-
tion and drop-out, respectively, demanding advanced shim-
ming and specialized pulse sequence designs.53 The shorter TE
(7T: 24ms versus 3T: 30ms), thinner slices (7T: 1.75mm ver-
sus 3T: 3.6mm), and parallel imaging can avoid some of these
issues by reducing intravoxel inhomogeneity and through-plane
dephasing.53,54 The present study also had constraints regarding
differences in acquisition protocols between the 3T and 7T scan-
ners. First, the voxel size was different in 7T (isotropic voxel size¼
1.75 mm3) compared with 3T (voxel size ¼ 3� 3 � 3.6mm). The
precision of the whole-brain functional connectivity maps shown
in this study may have been impacted by the smaller voxel size
of the 7T protocol compared with 3T.55 The TR was also longer
at 3T (TR ¼ 2000ms) compared with 7T (TR ¼ 1500 ms), indi-
cating that the number of frames was higher for 7T for the same
scan time. The higher number of frames is expected to improve
the temporal resolution of the 7T scan compared with 3T.
Ultimately, the acceleration factor was higher at 7T (multiband
acceleration factor 3, IPAT 2) compared with 3T (ASSET factor
2.5), which can reduce signal distortion, signal drop-out, and
partial volume effects but can also increase motion sensitivity
and reduce the SNR.29,56 Even though we highlight advance-
ments in numerous metrics, including temporal SNR, sensitivity
to detect connectivity measurements, and whole-brain connec-
tivity maps for the data set at 7T compared with 3T, some
results may be affected by differences in acquisition protocols
and different scanners.

FIG 5. The most discriminative nodes among the ECN-L and ECN-R in superagers compared with elderly controls. The heatmap varies from
dark blue to dark red (denoting a higher prediction rate for classification as a superager using ORs). RH indicates right hemisphere; LH, left hemi-
sphere; L, left; R, right.
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CONCLUSIONS
Our findings indicated that rs-fMRI may be a useful technique in
assessing youthful memory performance in late life and identifying
potential superagers, particularly in nodes among the DMN, SN,
and language network. Our results highlight the benefit of 7T over
the 3T magnetic field scanners for this diagnostic and classification
task and warrant further validation in larger prospective studies.
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