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ORIGINAL RESEARCH
ADULT BRAIN

Segmentation of Brain Metastases Using Background Layer
Statistics (BLAST)

Chris Heyn, Alan R. Moody, Chia-Lin Tseng, Erin Wong, Tony Kang, Anish Kapadia, Peter Howard,
Pejman Maralani, Sean Symons, Maged Goubran, Anne Martel, Hanbo Chen, Sten Myrehaug, Jay Detsky,

Arjun Sahgal, and Hany Soliman

ABSTRACT

BACKGROUND AND PURPOSE: Accurate segmentation of brain metastases is important for treatment planning and evaluating
response. The aim of this study was to assess the performance of a semiautomated algorithm for brain metastases segmentation
using Background Layer Statistics (BLAST).

MATERIALS AND METHODS: Nineteen patients with 48 parenchymal and dural brain metastases were included. Segmentation
was performed by 4 neuroradiologists and 1 radiation oncologist. K-means clustering was used to identify normal gray and white
matter (background layer) in a 2D parameter space of signal intensities from postcontrast T2 FLAIR and T1 MPRAGE sequences.
The background layer was subtracted and operator-defined thresholds were applied in parameter space to segment brain metas-
tases. The remaining voxels were back-projected to visualize segmentations in image space and evaluated by the operators.
Segmentation performance was measured by calculating the Dice-Sørensen coefficient and Hausdorff distance using ground
truth segmentations made by the investigators. Contours derived from the segmentations were evaluated for clinical acceptance
using a 5-point Likert scale.

RESULTS: The median Dice-Sørensen coefficient was 0.82 for all brain metastases and 0.9 for brain metastases of $10mm. The me-
dian Hausdorff distance was 1.4mm. Excellent interreader agreement for brain metastases volumes was found with an intraclass
correlation coefficient ¼ 0.9978. The median segmentation time was 2.8minutes/metastasis. Forty-five contours (94%) had a Likert
score of 4 or 5, indicating that the contours were acceptable for treatment, requiring no changes or minor edits.

CONCLUSIONS: We show accurate and reproducible segmentation of brain metastases using BLAST and demonstrate its potential
as a tool for radiation planning and evaluating treatment response.

ABBREVIATIONS: BL ¼ background layer; BLAST ¼ Background Layer Statistics; BM ¼ brain metastases; DL ¼ deep learning; DSC ¼ Dice-Sørensen coeffi-
cient; HD ¼ Hausdorff distance; ICC ¼ intraclass correlation coefficient; IQR ¼ interquartile range; SRS ¼ stereotactic radiosurgery; TH ¼ threshold

Brain metastases (BM) are diagnosed in up to 40% of patients
with metastatic cancer and usually imply a short survival.1

However, recent advances in the treatment of BM, with, for

example, stereotactic radiosurgery (SRS) have led to improve-
ments in patient outcomes with less impact on neurocognition
and quality of life.2 A requirement for SRS is accurate detection
and contouring of BM. Additionally, treatment of BM requires
measurements of tumor burden at baseline and follow-up to
assess treatment response. To aid in this requirement, accurate
segmentation of the tumor is needed to provide precise lesion tar-
geting and to monitor changes in the size of the metastases
between baseline and follow-up scans.

During the past few years, advances in machine learning
methods have led to improvements in automated and semiauto-
mated brain tumor segmentation. Machine learning methods
can be grouped into supervised and unsupervised algorithms.
Supervised methods, such as those based on deep convolutional
neural networks, have recently garnered attention, showing
excellent performance in brain tumor segmentation tasks,3-5

with 1 algorithm now FDA-cleared.6 These supervised methods,
however, require large numbers of (manual) labels for training,
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which is a time-consuming and costly process and can be prone
to bias introduced by the training set. Additionally, optimal per-
formance of deep learning (DL) algorithms across multiple insti-
tutions commonly requires retraining with additional site-specific
data (distributions).7

Unsupervised techniques do not require a priori training
and can be used to facilitate the creation of ground truth data,
which can be used to train DL models. Unsupervised techniques
using clustering methods (eg, K-means, fuzzy c-means, and the
expectation-maximization method) are iterative algorithms that
segment by grouping voxels with similar signal properties
(intensities), then estimating and optimizing cluster properties.8

K-means clustering groups signal intensity data into k classes by
iteratively computing a mean intensity for each class and clus-
tering voxels into the closest class centroid. Brain tumor seg-
mentation with these techniques can be challenging because
segmentation performance is highly dependent on initial condi-
tions and the algorithm used.9 Furthermore, the signal heteroge-
neity and the small size of BM relative to background brain are
additional challenges for clustering algorithms, to accurately
identify and classify these tumors.

In this article, we describe an alternative semiautomated
method for segmentation of BM using multiparametric MR
imaging. The methodology first establishes a parameter space
with origin and axes defined by the signal intensity statistics of
background brain (Background Layer Statistics [BLAST]). In
the present implementation of the methodology, K-means clus-
tering is used to define the statistics of the background layer on
a section of normal brain. Within the parameter space, voxels
related to the background layer are then removed from the
entire volume and additional operator-defined thresholds are
applied to preferentially detect and segment BM. In this study,
we evaluate BLAST methodology for segmentation of BM and
hypothesize that it is accurate and reproducible.

MATERIALS AND METHODS
Subjects
Consecutive patients with newly diagnosed BM undergoing pre-
treatment MR imaging from July 1, 2022, to September 30, 2022,
were included in this retrospective study. Research ethics board
approval was obtained at our institution (Sunnybrook Health
Sciences Centre, Toronto, Ontario, Canada). Inclusion criteria
were the following: 1) known biopsy-proved primary malignancy
at the time of brain MR imaging, 2) 10 or fewer BM, and 3) no rel-
evant treatment history at the time of brain MR imaging, includ-
ing chemotherapy, radiation therapy, or prior brain surgery.
Exclusion criteria were the following: 1) the presence of leptome-
ningeal disease or hemorrhagic metastasis, 2) the presence of
another coexisting acute process such as acute stroke, or 3) severe
corruption of MR imaging by motion artifacts.

MR Imaging Acquisition
All imaging was performed on 1.5T (Magnetom Aera or Sola;
Siemens) or 3T (Magnetom Vida; Siemens) MR imaging systems
using body-transmit and 20-channel head and neck receiver coils.
Patients were scanned with the institutional brain tumor imaging
protocol including axial RESOLVE DWI (Siemens) (b-values ¼ 0

and 1000 s/mm2, TR¼ 3650–8010ms, TE¼ 67.2–72.2ms, in-plane
resolution ¼ 0.54 � 0.54 mm2 to 1.25 � 1.25 mm2, section thick-
ness ¼ 5mm), axial T2 FLAIR postgadolinium (TR¼ 9000ms,
TE¼ 80–108ms, TI¼ 2500ms, in-plane resolution ¼ 0.75 � 0.75
mm2 to 0.83 � 0.83 mm2, section thickness ¼ 3 or 5mm), and 3D
T1 MPRAGE postgadolinium (TR¼ 1800 or 2240ms, TE¼ 2.4 or
3ms, flip angle¼ 8°, resolution¼ 1� 1� 1 mm3).

Image Processing and Analysis
T2 FLAIR and trace DWI (b¼1000 s/mm2) images were regis-
tered to 3D T1 MPRAGE using BRAINSFit (3D Slicer; https://
www.slicer.org/)10 with a 6-df rigid registration and linear inter-
polation to 1-mm isotropic resolution. Brain extraction was per-
formed using a custom-written script in Matlab and the Image
Processing Toolbox, Release 2022a and 2023a (MathWorks)
which uses a brain mask derived from a binary threshold of the
coregistered and interpolated trace DWI (b¼1000 s/mm2) data
set. Brain-extracted T2 FLAIR and 3D T1 MPRAGE data were
bias-field corrected using the N4ITK algorithm (3D Slicer)10 and
saved in a NIfTI format.

Ground truth segmentations of BM were manually acquired
on the 3D T1 MPRAGE images (ITK-SNAP; www.itksnap.
org)11 by C.H., a neuroradiologist with 8 years of postfellowship
experience. All ground truth segmentations were reviewed and
edited by H.S., a neuroradiation oncologist with 13 years of
postfellowship experience. The ROI was drawn around each me-
tastasis encompassing the entire enhancing portion of the brain
metastasis as well as central areas of necrosis and excluding
edema, generating a binary mask (for a 1-class segmentation
task). For this study, enhancing was defined as having a qualita-
tive signal intensity above the surrounding brain parenchyma
on the postgadolinium T1 MPRAGE sequence.

BLAST
Figure 1 illustrates the key concepts in defining the BLAST pa-
rameter space and performing segmentations of enhancing tu-
mor. An example of segmentation of enhancing tumor with
vasogenic edema is shown in the Online Supplemental Data.
The algorithm was implemented using a custom-written script
in Matlab. Signal intensities of the skull-stripped, coregistered,
and bias-corrected T1 MPRAGE and T2 FLAIR images were
first rescaled from 0 to 1. On a section of normal brain, K-means
clustering (2 clusters) of T1 MPRAGE and T2 FLAIR signal
intensities was used to define the cluster corresponding to nor-
mal gray and white matter (background layer). For this study,
the normal section (without any evidence of enhancing tumor
or edema) was selected beforehand by the investigators. The
centroid of this background layer cluster was then used to define
the origin of the parameter space. The rescaled signal intensities
in T1 MPRAGE and T2 FLAIR were divided by the SD of the
background layer to redefine the position of data points in this
parameter space as a z score.

Once signal intensities were put into the BLAST parameter
space, segmentations were performed by subtracting the back-
ground layer and applying additional thresholds in T1
MPRAGE and T2 FLAIR to exclude other nontumor tissues
such as blood vessels and dura. Background layer subtraction
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FIG 1. Key steps in defining the BLAST parameter space and performing segmentations with BLAST. Images and segmentations are shown in the left and
middle columns, and the corresponding parameter space is shown in the right column. Each point in the scatterplot represents a voxel in the image. A,
The statistics of the background layer (gray and white matter) are first defined using K-means clustering on a normal section of the brain. The origin of the
parameter space is defined by the centroid of the background layer cluster and the axes expressed as z score relative to the background layer cluster SD.
B, An ellipsoid approximating the background layer is applied to all slices (red ellipse). Voxels corresponding to enhancing brain tumor, edema, and CSF are
found in the upper right, lower right, and lower left corner of parameter space, respectively. C, Thresholds in both T1 MPRAGE and T2 FLAIR are applied
to exclude nontumoral voxels to perform segmentations. In the sample shown, thresholds in both parameters are set to the mean of the background
layer (z score¼ 0). D, Voxels falling within the background layer ellipsoid are subtracted to further exclude the background layer. The segmentation is
selected to save a mask of the 3D-connected enhancing BM voxels. An algorithm to fill in necrotic areas is applied for the final segmentation (not shown).

AJNR Am J Neuroradiol 44:1135–43 Oct 2023 www.ajnr.org 1137



was achieved by approximating the background layer voxels
using an ellipsoid with the center set to the origin of the BLAST
parameter space. The remaining voxels in parameter space were
projected back into the image space to visualize the resulting
segmentation of enhancing tumor. The 3D object consisting of
connected enhancing voxels was selected, and an algorithm to
“fill in” nonenhancing or necrotic regions was applied to finalize
the segmentation. This filling was completed using morphologic
dilations and erosion with structuring elements. To produce an
outline of the brain metastasis, we applied a line contour algo-
rithm to encompass the segmentation.

Ablation Study
An ablation study was performed to evaluate the contribution of
different steps to segmentation performance. The complete
BLAST method consisted of application of thresholds in 2D (T1
MPRAGE and T2 FLAIR) and subtraction of the background
layer approximated by an ellipsoid with the semiaxis length set to
1.5 (threshold [TH] � 2 BL¼ 1.5). Algorithms consisting of
application of thresholds in 2D without background layer sub-
traction (TH � 2 background layer [BL] ¼ 0) and an algorithm
consisting of a threshold in 1D (T1 MPRAGE) without back-
ground layer subtraction (TH � 1 BL¼ 0) were also evaluated.
For TH � 2 BL¼ 1.5 and TH � 2 BL¼ 0, the thresholds in T1
MPRAGE were incremented by 0.5 from the z score ¼ �1 up to
z score¼ 3, and those in T2 FLAIR were incremented by 0.5
from the z score ¼ �2 up to z score¼ 3. For TH� 1 BL¼ 0, the
threshold in T1 MPRAGE was iterated from the z score ¼ �1 up
to z score¼ 5 by increments of 0.5. For each iteration, the seg-
mentation result was saved and the Dice-Sørensen coefficient
(DSC) for the tumor volumes was calculated in Matlab using the
manual segmentations as the ground truth.

Evaluation of Background Layer Subtraction on
Segmentation Performance
To understand the effect of background layer subtraction on seg-
mentation performance, we ran the algorithm with different
amounts of background subtraction by varying the ellipsoid
semiaxis length from 0 to 3 by increments of 0.5. This step was
performed for thresholds in T1 MPRAGE and T2 FLAIR of 0,
0.5, and 1. For each combination, the segmentation result was
evaluated by calculating the DSC.

Operator-Generated BLAST Segmentations and Contours
BM segmentation was performed by 5 operators (4 board-certified
neuroradiologists with BLAST using background layer subtraction
and thresholding in 2D [TH� 2 BL¼ 1.5]: E.W., T.K., A.K., and,
P.H., with 1–15 years of postfellowship experience and 1 board-
certified neuroradiation oncologist: C.-L.T with 8 years of postfel-
lowship experience treating and contouring BM). All definitive
BM were identified by the principal investigators, and the location
was provided to the operators. Operators segmented all BM
within a patient including dural-based metastases. Bone metasta-
ses were excluded because these were removed from the volume
by the brain-extraction algorithm.

The size of the metastases was estimated as the length of the
major axis of an ellipsoid with the same normalized second

central moment as the segmented 3D object. Volume was calcu-
lated from the number of voxels comprising the segmented 3D
object. In addition to the DSC, the Hausdorff distance (HD) for
the center section of a metastasis was calculated using Matlab.

To evaluate the clinical acceptance of the BLAST-generated
contours, we used a 5-point Likert scale adapted from the MD
Anderson Cancer Center.12 Scoring was performed by an experi-
enced neuroradiation oncologist (H.S.) using the contour from
the operator with the highest DSC for the case. A score of 4 or 5
on the Likert scale, for example, indicates that the contour is ac-
ceptable for clinical practice, while a score of 2 indicates that the
contour is completely unusable.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism software,
Version 9.5.1 for Mac OS (GraphPad Software). The Shapiro-
Wilk test was used to test for normality. For nonparametric group
comparison, the Mann-Whitney U test or Friedman test was per-
formed, and the results were considered significant if the P value
was less than .05. A linear regression of tumor volume measured
by BLAST segmentation versus ground truth segmentation was
performed. The difference in tumor volume between BLAST and
ground truth segmentation was also measured with a Bland-
Altman plot.

Interreader agreement of tumor volume measurements was
evaluated by a 2-way random effects model intraclass correlation
coefficients (ICC) in Matlab:13 ICC , 0.5 (poor), 0.5–0.75 (fair),
0.75–0.9 (moderate), and$0.9 (excellent) agreement. ICCs were
reported with their 95% CIs.

RESULTS
A total of 19 patients with 48 BMmet the inclusion and exclusion
criteria (Table). The median volume of BM was 0.70 cm3 (inter-
quartile range [IQR], 0.1–2.1 cm3) and the median diameter was
12.8 mm (IQR, 6.7–20.7) mm. Twenty-two BM measured
,10mm, and 6 BMmeasured,5mm.

Results from the ablation experiment are included in the
Online Supplemental Data. The median DSC scores for TH � 2
BL¼ 1.5, TH � 2 BL¼ 0, and TH � 1 BL¼ 0 were 0.9 (IQR,
0.87–0.92), 0.90 (IQR, 0.88–0.92), and 0.86 (IQR, 0.78–0.9),
respectively. DSC scores for TH � 2 BL¼ 0 and TH � 2 BL¼
1.5 were significantly higher than those for TH � 1 BL¼ 0
(P, .001). DSC was not significantly different between TH � 2
BL¼ 0 and TH � 2 BL¼ 1.5 (P¼ .94). An illustrative case in
which TH � 1 BL¼ 0 failed to properly segment a brain metas-
tasis abutting the adjacent tentorium is also shown.

Results of varying the levels of background layer subtraction
on segmentation performance are included in the Online
Supplemental Data. The experiment was run on 46 of the 48 BM.
Two BM demonstrated low T2 FLAIR signal, and the signal inten-
sities for the tumor fell below the minimum T2 FLAIR (z score¼
0) used in the experiment. For a given threshold in T1 MPRAGE
and T2 FLAIR, increasing background layer subtraction by vary-
ing the semiaxis length from 0 to 3 resulted in improving segmen-
tation performance. The benefit of background layer subtraction
is more pronounced for lower thresholds and reduces at higher
thresholds in T1 MPRAGE and T2 FLAIR. Visually, background
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layer subtraction reduces the amount of background voxels
included in the segmentation mask, allowing better visualization
of metastases across the thresholds that were evaluated. While
there is greater background layer removal at higher thresholds or
with greater background layer subtraction, there is also reduction
in the tumor segmentation.

Sample contours for a cross-section of metastases contoured
by human operators are shown in Fig 2. Figure 3 shows the rela-
tionship between DSC versus metastasis size for the operators
and compares this with the results from the ablation analysis
(TH� 2 BL¼ 1.5). The median DSC for all BM and all operators
was 0.82 (IQR, 0.73–0.9). For operators, there was a significant
difference in DSC (P, .001) between metastases of ,10mm
(0.70; IQR, 0.65–0.8) and those of $10mm (0.90; IQR, 0.86–
0.92). A statistically significant difference in the median DSC for
metastases of ,10mm (0.90; IQR, 0.84–0.91) and those of
$10mm (0.91; IQR, 0.89–0.94) was not found for TH � 2 BL¼
1.5 from the ablation experiment (P¼ .05). The median HD for
all metastases and operators was 1.4 mm (IQR, 1–2 mm). The
median HD was significantly different (P, .001), for metastases
of,10mm (1.4 mm; IQR, 1–1.4 mm) and those of$10mm (1.8
mm; IQR, 1.1–2.2 mm).

Linear regression of tumor volume measured by human opera-
tors versus ground truth volume showed excellent fit with R2 ¼
0.9951 (Fig 4). Bland-Altman analysis showed a bias of 0.14 cm3

toward larger tumor volumes with BLAST compared with the
ground truth (95% limits of agreement, �0.38�0.66). There was
excellent interreader agreement for tumor volumes with ICC¼
0.9978 (95% CI, 0.9967�0.9987). The median segmentation time
using BLAST for all operators was 2.8 (IQR, 1.6–4.3) minutes/me-
tastasis and was not influenced by tumor size.

Forty-five contours (94%) were scored a 4 or 5, indicating that
the contours were acceptable clinically for treatment, requiring
no changes at all or minor edits that are not thought to be

clinically relevant. Only 3 contours (6%) scored a 3, indicating
that minor edits were needed.

DISCUSSION
The treatment of brain metastases with SRS requires accurate
detection and segmentation, which can be time-consuming and
challenging. Furthermore, the follow-up of brain metastases
necessitates reliable measurements of tumor burden to evaluate
treatment response, which is important in routine clinical prac-
tice and clinical trials. To this end, methodologies for accurate
and rapid segmentation of brain tumors have the potential to
greatly impact the treatment of BM by improving the accuracy of
treatments and measuring the response.

In the present work, we show the results of a methodology
that provides highly accurate and reproducible segmentation of
BM using multiparametric MR images. The methodology is
based on using the statistics of normal background brain to iden-
tify abnormal tissue. As opposed to using K-means clustering to
detect and segment BM directly, K-means clustering is used to
identify normal background brain voxels from a section of nor-
mal brain, allowing them to be excluded and resulting in segmen-
tation of enhancing tumor. Conveniently, the thresholds used to
exclude nontumoral voxels are set relative to the statistics of the
centroid of the background brain cluster.

Brain lesion segmentation based on the detection of outlier
voxels has been previously described by Seghier et al.14 In their
methodology, a fuzzy clustering procedure was used to identify
outlier voxels corresponding to brain pathology from gray and
white matter using T1-weighted images alone. The methodology
was subsequently adapted to detect and segment BM on postga-
dolinium T1-weighted sequences, but the performance of the
detection and segmentation task was limited by false-positives,
mainly from vascular structures (arteries and veins), the dura,
and the choroid plexus.15 These methods require training on a set
of normal brains to model the intensity distribution of tissue
types. One of the advantages of BLAST is that no training is
required to perform segmentations because the normal brain
cluster is defined on the basis of the statistics from the subject.
Additionally, another main difference between these methods
and BLAST is the use of multiparametric data in BLAST to better
separate the normal brain cluster corresponding to gray and
white matter from outlier voxels corresponding to BM and other
normal structures such as blood vessels or the dura. In particular,
the use of a black-blood sequence such as T2 FLAIR in combina-
tion with postcontrast T1 MPRAGE provides excellent separation
of contrast-enhancing blood vessels from tumors in parameter
space, resulting in fewer false-positives. This finding was high-
lighted in the results of the ablation study, which showed the
superior performance of thresholding in both T1 MPRAGE and
T2 FLAIR compared with thresholding in T1MPRAGE alone.

The ablation study found no significant effect of background
layer subtraction on the overall segmentation performance using
BLAST. This finding is probably the result of adequate separation
of enhancing tumor from the background layer in parameter
space for most of the BM in this study, allowing the use of higher
thresholds in T1 MPRAGE and T2 FLAIR. An analysis of the
effect of background layer subtraction, however, showed that

Patient demographics and tumor characteristics
Parameter

Demographics
No. of patients 19
Average age (yr) 65.7 (SD, 14)
No. women 9 (47.3%)

Primary cancer type
Lung
NSCLC 9
SCLC 1

Breast 2
Melanoma 2
Esophagus 1
Gastric 1
Pancreas 1
Vagina 1
Nasopharynx 1

Metastasis information
Total No.
Parenchymal 38
Dural 10
Median No./patient 2 (IQR, 1–3.5)
Median size (mm) 21.8 (IQR, 6.7–20.7)
Median volume (cm3) 0.70 (IQR, 0.10–2.1)

Note:—NSCLC indicates non-small cell lung cancer; SCLC, small cell lung cancer.
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FIG 2. Sample contours derived from BLAST segmentations for parenchymal and dural metastases. The first column shows ground truth segmentations
for 5 metastases (red). Corresponding contours created with BLAST are shown in the second column (green) for the operator with the best DSC. The mean
DSCs for A, B, and C are 0.90, 0.83, 0.80, respectively. Two small metastases measuring 7 and 8mm are shown inDwith DSCs of 0.67 and 0.82, respectively.
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increasing levels of background layer subtraction improve seg-
mentation performance at lower thresholds, which may be impor-
tant for segmenting faintly enhancing metastases. Background
layer subtraction also reduced the amount of background voxels
included in the segmentation mask, possibly aiding users in the
detection of metastases. Further work will be required to under-
stand whether background layer subtraction provides any added
benefit for segmenting or detecting faintly enhancing tumors or
other pathologic processes whose signal characteristics overlap
with normal brain (such as edema or nonenhancing tumor).
Additionally, the optimal level of background subtraction for
these applications will require further experimentation.

To evaluate the performance of segmentations using BLAST,
we recruited human operators to use the methodology to gener-
ate contours of BM. Volumetric measurement of BM with the
BLAST algorithm showed excellent interobserver agreement
(ICC¼ 0.9978). Furthermore, tumor volumes measured with

BLAST showed excellent correlation with ground truth manual
segmentation. The excellent interobserver agreement and accu-
racy are features of BLAST that could make this algorithm well-
suited for assessing response to treatment.

The results of the human operator study demonstrated a
poorer segmentation performance for smaller metastases com-
pared with larger metastases. Most interesting, this difference did
not exist when evaluating BLAST performed by iterating a com-
bination of thresholds in T1 MPRAGE and T2 FLAIR with back-
ground layer subtraction. The poorer performance of BLAST by
human operators for smaller metastases was, therefore, seen to be
a limitation of the users and the interface of the current Matlab
implementation rather than a limitation of the BLAST algorithm.
We expect that this situation will be improved in future versions
of the software, which will allow operators to better visualize
smaller metastases and allow real-time evaluation of the segmen-
tation as thresholds are manipulated by the operator.

While a head-to-head comparison of BLAST and DL was not
performed, compared with recently published state-of-the-art DL
methods, BLAST fared well. Using a 2.5D fully convolutional
neural network based on the GoogLeNet architecture (https://
www.mathworks.com/help/deeplearning/ref/googlenet.html)
trained on multiparametric MR imaging including 3D T1
BRAVO (GE Healthcare) postgadolinium, 3D T1 CUBE (GE
Healthcare) pre- and postgadolinium, and T2 FLAIR, brain me-
tastasis segmentation with a mean DSC¼ 0.79 (SD, 0.12) has
been reported.3 With a 3D U-Net trained on 3D T1 echo-spoiled
gradient echo postgadolinium or subtraction images, segmenta-
tion of BM with a median DSC¼ 0.75 and a median HD¼
1.5mm has been achieved.4 By means of a self-adaptive nnU-Net
model (https://www.nature.com/articles/s41592-020-01008-z) trained
on 3D T1 postgadolinium images, excellent segmentation perform-
ance with an overall mean DSC¼ 0.822 (SD, 0.095) for all metastases
in the test set (mean size¼ 12.3 [SD, 9.2] mm) and DSC¼
0.868 (SD, 0.075) for metastases of $6mm has been recently
shown.5 Further work will be required to evaluate the perform-
ance of BLAST compared with DL algorithms for brain tumor
segmentation.

The median segmentation time for BLAST (2.8minutes/me-
tastasis) was longer compared with most DL algorithms, which
report whole-brain inference times ranging from 20 seconds to
5minutes.3,4,16,17 Inference times, however, may not be a fair com-
parison because they do not take into consideration the quality or
clinical usability of the segmentations. A recently FDA-approved
algorithm based on a 3D U-net and DeepMedic (https://github.
com/deepmedic/deepmedic) of volumetric MR imaging and CT
data showed whole-brain inference times of 90 seconds but an av-
erage of 6.1minutes/case for users to finalize segmentations of
BM for treatment planning.18

The median segmentation time presented herein is primarily
a function of operator manipulation of thresholds and re-evalua-
tion of the resulting segmentation, which varied between opera-
tors (IQR, 1.6–4.3) minutes/metastasis. With the current Matlab
implementation, the process of adjusting the threshold requires a
re-computation of the brain metastasis mask after each change in
threshold, which can be a lengthy process. In the future, this time
can be shortened with improvements in the user interface.

FIG 3. BLAST segmentation performance measured by DSC (mean) as
a function of metastasis size for all operators (black open circles).
Segmentation performance for BLAST generated by automatically
iterating through combinations of thresholds with fixed background
layer subtraction (red closed circles) outperforms operator-generated
segmentations for small (,10mm) metastases (P, .001).

FIG 4. Comparison of tumor volumes measured by operators with
BLAST versus ground truth. Linear regression of the data (dashed lines
indicate 95% CI) shows an excellent fit (R2 ¼ 0.9951). The measured
volumes closely approximate the ground truth volumes, with a slope
close to unity (1.05; 95% CI, 1.04–1.06).
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The clinical acceptance of the BLAST-generated contours
measured using a 5-point Likert score was excellent. Of the 3 con-
tours that required editing, 2 were small metastases that were
located superficially in the brain, and partial volume averaging
effects were the cause of the poor segmentations. For the other
contour, an adjacent blood vessel altered the shape and size of the
contour, requiring minimal editing.

There are several limitations to the presented technique:

1) Hemorrhagic metastases were excluded from the study.
These hemorrhagic BM have a propensity for lower T2
FLAIR signal within areas of hemorrhage, which overlap in
signal intensity with adjacent dura or blood vessels.
Segmentation of these metastases could be aided in the
future by additional parameters such as pregadolinium T1
MPRAGE, which can better distinguish between the brain
metastasis and T2 hypointense normal brain structures
such as the dura or blood vessels.

2) Another limitation of the algorithm is how the necrotic core
is segmented. In the present study, the algorithm fills in the
necrotic core on the basis of the boundaries of surrounding
enhancing tumor. In some cases, areas of necrosis could be
excluded if the rim of enhancing tumor is very poorly
enhancing or thin. In the future, these areas of necrosis could
be segmented separately with the addition of other parame-
ters, including pregadolinium T1MPRAGE.

3) The present study uses postgadolinium T2 FLAIR, which is
not a widespread practice. At our center, T2 FLAIR is rou-
tinely acquired postgadolinium administration to save table
time and enable a longer delay between gadolinium adminis-
tration and the acquisition of T1 MPRAGE. The acquisition
of T2 FLAIR after gadolinium administration also enables the
detection of subtle leptomeningeal enhancement, which can
be missed on T1 sequences alone.19 It is possible that the use
of postgadolinium T2 FLAIR could provide an advantage for
segmenting enhancing BM because the signal enhancement
on T2 FLAIR resulting from intratumoral gadolinium leakage
could result in better separation of background brain and the
metastasis in T2 FLAIR parameter space. While this article
has not addressed this possibility, our experience with BLAST
has shown the feasibility of BLAST with pregadolinium T2
FLAIR data as well.

4) The current study is a single-center validation study with a
small number of patients scanned using MR imaging systems
from a single vendor. To address the possibility that the sam-
ple size was too small to detect a difference between arms, we
calculated that a total sample size of 21 brain metastases
would have been required to have an 80% power to assess the
equivalence of the contoured volumes between the experi-
mental method and the criterion standard, assuming an
equivalence limit of 620% of the criterion standard volume
and an a threshold of .05, assuming that the dispersion of the
results in the study reflected the true population dispersion.
A larger sample size will be required in future studies to
reduce the equivalence limit and increase overall power. The
general utility of BLAST in a larger multicenter study of BM
will also be needed to evaluate the generalizability of our
results.

Despite these limitations, the segmentations produced by
BLAST were easy to generate and could be used for BM treat-
ment-planning or response-evaluation. The algorithm could
also be adapted for diagnostic metastasis detection. The BLAST
algorithm was able to detect and distinguish BM adjacent to
arteries and other enhancing structures like venous sinuses and
the dura, which can be challenging to detect. While it is possible
that the BLAST algorithm alone may be sufficient for segment-
ing most BM, it can likely have the greatest impact through
using the generated segmentations to train new DL models on
improved and larger ground truth data sets for metastasis detec-
tion and segmentation.

Finally, the general framework of BLAST is not limited to me-
tastases. The algorithm could be used to segment primary brain
tumors (including enhancing and nonenhancing tumor subre-
gions) or other brain pathology (such as white matter disease for
instance). It could also be used with other MR imaging pulse
sequences and in combination with other modalities, including
CT and PET.

CONCLUSIONS
We present here an alternative methodology for brain metastasis
segmentation, which provides accurate and reproducible segmen-
tations of both parenchymal and dural metastases without exten-
sive a priori training. Combined with the relative simplicity of the
algorithm, the methodology could be widely implemented for
brain metastasis treatment and response assessment.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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