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ORIGINAL RESEARCH
ADULT BRAIN

Artificial Intelligence–Assisted Evaluation of the Spatial
Relationship between Brain Arteriovenous Malformations
and the Corticospinal Tract to Predict Postsurgical Motor

Defects
Y. Jiao, J. Zhang, X. Yang, T. Zhan, Z. Wu, Y. Li, S. Zhao, H. Li, J. Weng, R. Huo, J. Wang, H. Xu,

Y. Sun, S. Wang, and Y. Cao

ABSTRACT

BACKGROUND AND PURPOSE: Preoperative evaluation of brain AVMs is crucial for the selection of surgical candidates. Our goal
was to use artificial intelligence to predict postsurgical motor defects in patients with brain AVMs involving motor-related areas.

MATERIALS AND METHODS: Eighty-three patients who underwent microsurgical resection of brain AVMs involving motor-related
areas were retrospectively reviewed. Four artificial intelligence–based indicators were calculated with artificial intelligence on TOF-MRA
and DTI, including FN5mm/50mm (the proportion of fiber numbers within 5–50mm from the lesion border), FN10mm/50mm (the same but
within 10–50mm), FP5mm/50mm (the proportion of fiber voxel points within 5–50mm from the lesion border), and FP10mm/50mm (the same
but within 10–50mm). The association between the variables and long-term postsurgical motor defects was analyzed using univariate
and multivariate analyses. Least absolute shrinkage and selection operator regression with the Pearson correlation coefficient was used
to select the optimal features to develop the machine learning model to predict postsurgical motor defects. The area under the curve
was calculated to evaluate the predictive performance.

RESULTS: In patients with and without postsurgical motor defects, the mean FN5mm/50mm, FN10mm/50mm, FP5mm/50mm, and
FP10mm/50mm were 0.24 (SD, 0.24) and 0.03 (SD, 0.06), 0.37 (SD, 0.27) and 0.06 (SD, 0.08), 0.06 (SD, 0.10) and 0.01 (SD, 0.02), and 0.10
(SD, 0.12) and 0.02 (SD, 0.05), respectively. Univariate and multivariate logistic analyses identified FN10mm/50mm as an independent
risk factor for long-term postsurgical motor defects (P ¼ .002). FN10mm/50mm achieved a mean area under the curve of 0.86 (SD,
0.08). The mean area under the curve of the machine learning model consisting of FN10mm/50mm, diffuseness, and the Spetzler-
Martin score was 0.88 (SD, 0.07).

CONCLUSIONS: The artificial intelligence–based indicator, FN10mm/50mm, can reflect the lesion-fiber spatial relationship and act as a
dominant predictor for postsurgical motor defects in patients with brain AVMs involving motor-related areas.

ABBREVIATIONS: AI ¼ artificial intelligence; AUC ¼ area under the curve; BAVM ¼ brain AVM; CST ¼ corticospinal tract; EuDX ¼ Euler Delta Crossing;
FN ¼ fiber number; FP ¼ proportion of fiber voxel points; HDVL ¼ hemorrhagic presentation, diffuseness, deep venous drainage, and lesion-to-eloquence dis-
tance; LASSO ¼ least absolute shrinkage and selection operator; LCD ¼ lesion-to-corticospinal tract distance; LR ¼ logistic regression; M-AVM ¼ brain AVM
involving motor-related areas; MDs ¼ motor defects; ML ¼ machine learning; ROC ¼ receiver operating characteristic; S-M ¼ Spetzler-Martin grading;
XGBoost ¼ Extreme Gradient Boosting

Brain AVMs (BAVMs) are congenital vascular dysplasias of
the CNS that cause cerebral hemorrhage.1 Radical resection

by microsurgery to eliminate abnormal vascular masses is an

important curative treatment for BAVMs.2 However, surgical
management of BAVMs, particularly involving eloquent areas,
may lead to serious neurologic defects and a poor prognosis.3,4

Preoperative evaluation for BAVMs to identify proper surgical
candidates is crucial for reducing the risk of postsurgical defects.5Received March 18, 2022; accepted after revision November 7.
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In our previous studies using fMRI and DTI, lesion-to-cortico-
spinal tract distance (LCD) was used to evaluate the relationship
between white fibers and lesions, which has proved to be an impor-
tant predictive factor for postsurgical motor defects (MDs) in
BAVMs involving motor-related areas (M-AVMs).6,7

However, because BAVM lesions and the corticospinal tract
(CST) are both stereoscopic objects, LCD obviously has some lim-
itations in describing the spatial relationship between them. First,
LCD is measured on the basis of a 2D plane and is a measurement
that is too simple and crude to describe the complicated 3D spatial
relationship between CST and BAVM lesions.8,9 Second, LCD is
measured manually, which may lead to relatively inaccurate and
subjective measurements.10 Finally, as a basic step of LCD calcula-
tion, fiber tracking skills may have confounding bias, which might
vary with the operators’ different levels of clinical experience or in
different clinical centers.11

Artificial intelligence (AI) technology, with its powerful proc-
essing and analysis ability, is emerging to develop a predictive
model for clinical prognosis.12 AI-based tools have the capability

of overcoming the shortcomings of manual evaluation, such as
time-consuming workflows and substantial clinical experience
requirements.13 Meanwhile, AI also has great potential in calcu-
lating the sophisticated 3D spatial relationship between stereo-
scopic objects.14,15 Whether exploiting AI technology to evaluate
BAVMs has a better ability to predict postoperative motor func-
tion in M-AVMs remains unknown.

In this study, 83 patients who underwent microsurgical resec-
tion of M-AVMs were retrospectively reviewed. Four AI technol-
ogy–based indicators were calculated followed by a machine
learning (ML) model to predict the long-term postsurgical MDs
of patients. Our study indicated that AI technology is an excellent
method for predicting postoperative motor function in patients
with M-AVMs.

MATERIALS AND METHODS
Patients
All patients were retrospectively reviewed from our BAVM
database of a prospective clinical trial (ClinicalTrials.gov Identifier:
NCT02868008) conducted between July 2015 and December 2020.
Inclusion criteria were the following: 1) The lesions were near the
CST (LCDs were,10mm based on DTI tractography), 2) patients
underwent microsurgical resection of the BAVMs, 3) patients were
followed up for 6months with complete information of motor
function, and 4) patients’ TOF-MRA and DTI data were acquired
before microsurgery. The exclusion criteria included the following:
1) poor-quality neuroimaging, 2) atypical BAVM images after ste-
reotactic radiosurgery or interventional therapy, and 3) incomplete
imaging or follow-up data. The standard of postsurgical MDs was
defined as patients not recovering to the level of being able to carry
out all their usual activities (mRS . 2) 6months after microsur-
gery as previously reported.5,16 Finally, 83 patients with BAVM
lesions near the CST who underwent microsurgery were enrolled.
The study was reviewed and approved by the ethics committee of
the Beijing Tiantan Hospital Affiliated with Capital Medical
University (approval No. KY2016-031–01). Before the study, the
patients were informed about the design of the study, and each
participant provided his or her informed consent. The design and
all procedures adhered to the latest version of the Helsinki
Declaration. The flow diagram of patient selection, AI-based indi-
cator calculation, model development, and predictive ability evalu-
ation is shown in Fig 1.

Baseline Data
The clinical factors including patients’ age, sex, hemorrhage, and
seizure information were collected from the prospectively col-
lected database and the electronic medical records system by a
neurosurgeon (J. Zhang). The variables such as BAVM size, lobe,
diffuseness, deep venous drainage, deep perforating artery supply,
Spetzler-Martin (S-M) score, and hemorrhagic presentation, dif-
fuseness, deep venous drainage, and lesion-to-eloquence distance
(HDVL) score were determined with consensus by 2 experienced
neurosurgeons (H. Li and J. Weng) from preoperative angio-
grams, traditional MR imaging scans, and TOF-MRA images.5-7

As described in our previous study, the LCD was defined as the
nearest distance from the BAVM lesions to the CST. The
LCDManual, serving only as an inclusion criterion (LCDManual,

FIG 1. Flow diagram of patient selection, AI-based indicator calcula-
tion, ML model development, and predictive ability evaluation. AI-
based indicators include FN5mm/50mm, FN10mm/50mm, FP5mm/50mm, and
FP10mm/50mm. Clinical variables include age, sex, side, lobe, size, deep
perforating artery supply, deep venous drainage, hemorrhage, seizure,
and S-M grading score. LASSO indicates least absolute shrinkage and
selection operator.
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,10 mm), was measured with consensus by 2 experienced neuro-
surgeons (H. Li and Y. Jiao) on the iPlan 3.0 workstation
(Brainlab). Sections for measurement were manually selected
where the tracked CST appeared to be nearest to the margin of
the lesions on the TOF-MRA images fused with fMRI and DTI.17

Meanwhile, the lesion-to-corticospinal tract distance measured
by the AI method (LCDAI) was used for developing a predictive
model. Distances of any 2 points between the surface of the seg-
mented lesions and tracked CSTs were measured by matrix oper-
ations. The minimum value among the distances was the nearest
LCDAI.

MR Image Acquisition
The MR images were obtained using a 3T MR imaging scanner
(Magnetom Trio; Siemens). The sagittal T1 anatomic image
acquired was a gradient-echo sequence: TR ¼ 2300 ms, TE ¼ 2.98
ms, section thickness ¼ 1mm, slices ¼ 176, FOV ¼ 256 mm, flip
angle ¼ 9°, matrix ¼ 64 � 64, voxel size ¼ 1 � 1 � 1 mm3, and
bandwidth ¼ 240 kHz. Axial TOF-MRA was performed using a
3D TOF gradient-echo acquisition sequence: TR ¼ 22 ms, TE ¼
3.86 ms, section thickness¼ 1mm, slices¼ 36� 4, FOV¼ 220�
220 mm2, flip angle ¼ 120°, and matrix ¼ 512 � 512. DTI was
performed using the DWI-EPI technique: TR¼ 6100 ms, TE 93¼
ms, section thickness ¼ 3mm, slices ¼ 45, FOV ¼ 230� 230
mm2, and matrix ¼ 128� 128 with a motion-probing gradient in
30 orientations.6,7

Lesion Segmentation, Fiber Tracking, Registration, and
Lesion Dilation
Lesion Segmentation Assisted by AI. In the segmentation phase,
we used the U-Net model proposed in our previous study to delin-
eate BAVM lesions automatically. Before we trained the model, all
AVM lesions on the TOF-MRA images were manually labeled
with lesion masks by 3 neuroradiologists (H. Li, J. Wang, and
J. Zhang) as the ground truth references according to their signal,
shape, course, texture, and so forth. The manually labeled images
were used to train and test the U-Net model. In the process of
developing the U-Net segmentation model, we set the number of
training epochs as 300 and evaluate the model after each epoch
with a Dice score. The criterion used to stop the iteration was no
more than a 0.5% increase of the Dice score in 50 consecutive
epochs. The results of AI segmentation were checked and verified
by 2 neurosurgeons (H. Li and J. Wang). Finally, the Dice score of
the model reached 0.80. In addition, the goal of our study was to
build a fully AI-based automatic prediction model for convenient
clinical application: inputting the raw imaging data into the model
without the time-consuming manual segmentation by neurosur-
geons and directly going to the prediction of the prognosis.
Therefore, in the present study, we used the U-Net model for seg-
mentation rather than using manual segmentation. The details of
the segmentation method were described in our previous work.18

Fiber Tracking. Fiber tracking was based on DTI, which could
reflect the anisotropy of the diffusion motion of water molecules.
The Constant Solid Angle model and the Euler Delta Crossing
(EuDX) algorithm were used to track the fibers on DTI with the
Python Library Dipy (https://github.com/dipy).19,20 The Constant

Solid Angle model was used to obtain the orientation distribution
function of each voxel on DTI scans. The orientation distribution
function was used to express the probability of the fiber distribu-
tion in finite directions per voxel.21 The EuDX algorithm used the
obtained orientation distribution function to connect the direc-
tions of these voxels with the highest probabilities to form a com-
plete fiber tract. The results of AI fiber tracking were checked and
verified by neurosurgeons (H. Li and J. Wang).

Registration Assisted by AI. In this study, the registration method
included affine registration and deformable registration; the objec-
tives of using these methods were to find a coordinate transforma-
tion and to bring the 2 images as close as possible. The difference
between affine registration and deformable registration was that
the affine registration performed a linear transform operation and
each voxel of the image had the same transformation, so the 2
images had the same size and position after affine registration.22

Affine registration can be expressed as
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TA is a 4� 4 matrix that represents linear transformation in
affine registration. X; y; zð Þ is the coordinate of a voxel in an
image. xA; yA; zAð Þ is the coordinate of a voxel in an image after
affine registration.

On the other hand, deformable registration performed nonlin-
ear transformations for which each voxel of the image had its own
transformation direction, so the 2 images had the same shape and
texture after deformable registration.23 The whole process is rep-
resented as follows:
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DX;DY;DZ indicates the offset in each dimension of each
voxel. xF; yF; zFð Þ is the coordinate of a pixel in an image after
deformable registration. The nonlinear transformation opera-
tion was performed on the coordinates xA; yA; zAð Þ after affine
registration.

To obtain TA and ðDX;DY;DZÞ, we used U-Net neural net-
works to build a model for the 2 registration processes.24 In the
affine registration model, the decoder was designed as a fully con-
nected neural network, and the output was a 3 �\ 4 matrix. In
the deformable registration model, the output was a 3-channel
matrix, and each channel was represented as ðDX;DY;DZÞ. To
achieve end-to-end training, we added interpolation operations
into the neural network model for which the output of the net-
work was a registered image. In addition, our study could train
the affine registration and deformable registration in a cascade by
which the images input into the model could undergo both affine
and deformable registration.

The registration method was used to complete the functional
segmentation of the medical images. The ICBM-152 (https://
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nist.mni.mcgill.ca/icbm-152-nonlinear-atlases-2009/), which has
detailed anatomic structural segmentation, was used as an atlas.25,26

We first extracted all the data for fibers of patients in DTI scans
through the Constant Solid Angle model and the EuDX algorithm.
We performed affine registration and deformable registration oper-
ations on the patients’ DTI scans with the atlas, and the patients’
anatomic structural segmentation data were obtained. Then, we
found ROIs, the anterior half of the lower pons on the ipsilateral
side and precentral gyrus, related to motor function in the patients’
anatomic structural segmentation.27 The fibers between the 2 ROIs
were extracted from the patients’ DTI scans; these were the CST of
the patient. When we combined the results of segmentation and
fiber tracking on the patients’DTI scans, the fibers related to motor
function could be distinguished from all the fibers. Finally, the CST
tracked on DTI scans was registered to TOF-MRA scans with
BAVM segmentation by affine registration so that the AI-based
indicators reflecting the spatial relationship of the CST and lesion
could be calculated (Fig 2).

Lesion Dilation. To evaluate the spatial relationship, we performed
a dilation operation on the lesion mask segmented by the U-Net
model to obtain the AI-based indicators. The dilation operation was
implemented using affine transformation. The centroid position
xc; yc; zcð Þ of the lesion mask was calculated, and the position was
used as the center of the affine transformation. Then, all the param-
eters related to the times of dilation in the affine transformation
matrix were calculated. We recorded the size of each voxel in an
image as xv; yv; zv, which represented the size of each voxel in 3
dimensions. If the size of the area where the lesion was located was
h;w; dð Þ and we wanted to dilate the lesion by b mm, the dilated
lesion was in an hþ 2�b =xv;ð wþ 2�b =yv; dþ 2�b =zvÞ-sized
area—that is, the voxels b =xv,\ b =yv, and b =zv were expanded at
both ends of the region. Therefore, the lesions were dilated
hþ 2�b =xvð Þ=h; wþ 2�b =yv

� Þ=w; dþ 2�b =zvð Þ=d� �
times

in each dimension.
The affine transformation matrix was expressed as
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The dilation operation can be expressed as
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AI-Based Indicator Calculations in Patients with M-AVMs
In this study, 4 AI-based indicators were proposed to predict
postsurgical MDs, including fiber number (FN)5mm/50mm,
FN10mm/50mm, and proportion of fiber voxel points (FP)5mm/50mm,
and FP10mm/50mm. FN5mm/50mm and FN10mm/50mm, indicated the

proportion of fiber numbers from 5 to 50mm and from 10 to
50mm from the lesion border, respectively. FP5mm/50mm and
FP10mm/50mm indicate the proportion of fiber voxel points from 5
to 50mm and from 10 to 50mm from the lesion border, respec-
tively. The 4 indicators may reflect the lesion-to-fiber spatial rela-
tionship and the degree of potential CST damage caused by
BAVM lesions. These indicators were automatically calculated by
AI algorithm–assisted methods based on the results of lesion seg-
mentation, fiber tracking, registration, and lesion dilation. In the
process of indicator calculations, we used the method of lesion
dilation to illustrate the distances of 5mm, 10mm, and 50mm
from the borders of the lesion (Fig 3).

Development of a Machine Learning Model
In our study, we used the least absolute shrinkage and selection
operator (LASSO) regression with the Pearson correlation coeffi-
cient to select the optimal features to develop the ML model
among clinical features (including age, sex, lobe, size, deep perfo-
rating artery supply, deep venous drainage, diffuseness, hemor-
rhage, seizure, S-M score, LCDAI, and AI-based features (including
FN5mm/50mm, FN10mm/50mm, FP5mm/50mm, and FP10mm/50mm).

The aim of this process was to minimize the prediction error,
determined by the following equation:

argminb jjY � Xb jj2 subject to jjb jj ¼ Xd

j¼ 0
b j � t;

where b j is the regression coefficient of variables selected and t is
the L1-norm of the regression coefficient that controls the degree
of penalty.28 The impact of the penalty function was that coeffi-
cient estimates with a small contribution to the model were
forced to be exactly zero.

On the basis of LASSO regression, a nomogram was built to
provide a quantitative tool for clinical use. Additionally, different
ML algorithms were used to build the model to find the best algo-
rithm, including logistic regression (LR), random forest, Extreme
Gradient Boosting (XGBoost) (https://www.geeksforgeeks.org/
xgboost/), and support vector machine.

In this study, nested cross-validation comprising an outer
cross-validation loop and an inner cross-validation loop was used
for model optimization and evaluation. In the outer cross-valida-
tion loop, the data set was split into 10 equally sized folds based
on k-fold stratified cross-validation. For each cross-validation
iteration, 9 folds of data were used as the training set and 1 was
used as the testing set. The training set was used as input in the
inner cross-validation loop and was split into 5 folds (4 were used
for training and 1 was used for validation) for feature selection
and hyperparameter optimization.29 The nested cross-validation
was randomly repeated 50 times, and 50 different experimental
results were obtained to ensure the robustness and stability of the
model. The mean areas under the curve (AUCs) of the models
built by different algorithms were compared to find the best per-
forming algorithm to build the MLmodel.

Statistical Analysis
Statistical analyses were performed with SPSS, Version 20.0.0
(IBM). Nomograms, calibration plots, and decision curves were
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generated using R statistical and computing software, Version R-
4.0.5 (http://www.r-project.org). Receiver operating characteristic
(ROC) plots were generated using Python, Version 3.6.0. The
association between the variables and postsurgical MDs was

analyzed using univariate and multivar-
iate analyses. The AUCs of different
ML algorithms were compared to select
the optimum algorithm with the high-
est AUC to build the ML model. The
AUCs were calculated to compare the
predictive ability of the AI-based indi-
cator and ML model with reported pre-
dictive methods (LCDAI, S-M score,
and HDVL score).7,30 The DeLong test
was performed to compare the AUC
between FN10mm/50mm and other pre-
dictive methods. The accuracy, specific-
ity, sensitivity, precision, recall, and F1
score of different predictive methods
were calculated to evaluate their predic-
tive abilities. A calibration plot was
used to graphically represent the agree-
ment between the probability predicted
by the nomogram and the actual proba-
bility of postsurgical MDs. The Brier
Score of the calibration plot was calcu-
lated to evaluate the predictive ability of
the nomogram. All statistical tests were
2-sided with a significance level of
P, .05.

RESULTS
Clinical Characteristics
A total of 83 surgically treated patients
with M-AVM were included in this
study. Among all the patients, there
were 53 (62.4%) male and 30 (37.6%)
female patients, with a mean age of 30.2
(SD, 11.5) years. The mean lesion di-
ameter was 35.1 (SD, 11.4) mm. A deep
perforating artery supply was present in
22 patients (26.5%), and deep venous
drainage was present in 7 (8.4%)
patients. Twenty-five (30.1%) patients
had diffuse lesions, and 58 patients
(69.9%) had compact lesions. Thirty-
three (39.8%) and 41 (49.4%) patients
had preoperative hemorrhages and
seizures, respectively. The mean LCDAI

was 4.3 (SD, 5.1) mm. More general in-
formation on the patients is shown in
Table 1. After a mean follow-up of 6
months, 26 (31.3%) patients had long-
term postsurgical MDs.

Calculation of AI-Based Indicators
In patients with and without postsurgi-

cal MDs, the mean FN5mm/50mm was 0.24 (SD, 0.24) and 0.03 (SD,
0.06), the mean FN10mm/50mm was 0.37 (SD, 0.27) and 0.06
(SD, 0.08), the mean FP5mm/50mm was 0.06 (SD, 0.10) and 0.01
(SD, 0.02), and the mean FP10mm/50mm was 0.10 (SD, 0.12) and

FIG 2. The workflow of segmentation, fiber tracking, and registration. Segmentation and fiber
tracking were performed by the algorithm independently on TOF-MRA and DTI scans. The CSTs
tracked on DTI scans were registered to TOF-MRA with BAVM segmentation to calculate the AI-
based indicators.

FIG 3. Schematic diagram of AI-based indicator calculation. The letters a–h indicate CSTs. The
red, green, and blue circles indicate the borders of the BAVM lesion and the border with radii
extended by the dilation algorithm to 10 and 50mm from the lesion, respectively. Letters a–b
indicate CSTs within 10mm of the border of the BAVM lesion. Letters a–d indicate CSTs within
50mm from the border of the BAVM lesion. Na-b and Na-d indicate the number of fibers between
a and b and between a and d, respectively. Pa-b and Pa’-d indicate the sum of voxel points of fibers
between a and b and between a and d, respectively.

AJNR Am J Neuroradiol 44:17–25 Jan 2023 www.ajnr.org 21
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0.02 (SD, 0.05), respectively (Table 2). The values of the AI-based
indicators are detailed in the Online Supplemental Data.

Risk Factors for Postsurgical MDs
According to the univariate analysis, significant differences in size
(P ¼ .006), deep perforating artery supply (P= .031), deep venous
drainage (P ¼ .032), diffuse nidus (P= .009), LCDAI (P ¼ .011),
S-M score (P ¼ .007), FN5mm/50mm (P ¼ .001), FN10mm/50mm

(P, .001), FP5mm/50mm (P ¼ .003), and FP10mm/50mm (P, .001)
were found between the patient cohorts with and without postop-
erative MDs. No significant difference was found in the other fac-
tors. According to the multivariate analysis, FN10mm/50mm (P ¼
.002) was significantly associated with an increased risk of MDs.
No significant difference was found in the other factors (Online
Supplemental Data).

Development of the ML Model and Nomogram
FN10mm/50mm, the S-M score, and diffuseness were selected by
LASSO regression to establish the ML model. The Pearson coeffi-
cient between any 2 of these factors was ,0.35 (Fig 4A). The
AUCs of LR, random forest, XGBoost, and support vector
machine algorithms in prediction were 0.88 (SD, 0.07), 0.86 (SD,
0.07), 0.86 (SD, 0.07), and 0.77 (SD, 0.12), respectively. The LR
with the highest AUC of 0.88 (SD, 0.07) was selected as the algo-
rithm for the ML model (Fig 4B). The ML model resulted in Log
[p(x)/1-p(x)] ¼ �3.516 1 (10.046� FN10mm/50mm) 1 (0.279� S-
M score) 1 (1.203�Diffuseness), where p(x) was the probability
of postsurgical MDs. The AUC of the ML model achieved 0.88
(SD, 0.07) with a specificity of 0.74 at a high sensitivity of 0.92 for
prediction (Online Supplemental Data).

A nomogram was created combining FN10mm/50mm, the S-M
score, and diffuseness based on LASSO regression (Online
Supplemental Data). The graphic preliminary score for each of
the 3 factors was summed to generate the total score, which indi-
cates the probability of postsurgical MDs. The calibration curve
with a Brier Score of 0.131 showed excellent agreement between
the predicted probabilities of the nomogram and the observed
probabilities for postsurgical MDs (Online Supplemental Data).

Comparison of Different Predictive Methods
The AUC of FN10mm/50mm was 0.86 (SD, 0.08), which was statisti-
cally higher than that of LCDAI (0.75 [SD, 0.08], P ¼ .032), the
S-M score (0.61 [SD, 0.07], P ¼ .011), and the HDVL score (0.78
[SD, 0.06], P ¼ .045) (Fig 4C). Furthermore, the ML model had a
mean AUC of 0.88 (SD, 0.07), slightly improved by 0.02 compared
with FN10mm/50mm (Fig 4D). The difference was not significant
(P ¼ .48). Details of the AUC, accuracy, sensitivity, specificity,
precision, recall, and F1 score of different predictive methods are
shown in the Online Supplemental Data.

DISCUSSION
To the best of our knowledge, there is no satisfactory method that
is able to accurately reflect the 3D spatial relationship between
BAVM lesions and the CST to predict postsurgical motor func-
tion. In this study, we proposed a novel indicator, FN10mm/50mm,

acquired by AI, which has excellent performance for predicting
postsurgical MDs. Meanwhile, an ML model consisting of
FN10mm/50mm, the S-M score, and diffuseness was developed, hav-
ing better prediction performance.

Currently, AI is widely used to develop a predictive model for
clinical prognosis because of its irreplaceable advantages.12 First,
AI has the ability to analyze diverse data types (eg, demographic
data, imaging data, and doctors’ free-text notes) and incorporate
them into predictions for prognosis.13 Second, AI can alleviate
the subjectivity and need for expertise in the interpretation of
medical images and clinical evaluation. Oermann et al31 used an
ML model to predict outcomes after radiosurgery for BAVMs
and achieved good performance. Third, AI is able to reconstruct
the complex geometry of stereoscopic objects captured through
sophisticated imaging instruments and calculate the quantita-
tive indicators reflecting their spatial relationship that go
beyond those measured by human readers.14,15 In this study, we
used the FN10mm/50mm automatically calculated by AI to indi-
cate the potential for CST damage due to surgery, which could
reflect the spatial relationship of the 3D orientation of the CST
and the border of the BAVM lesion. Furthermore, an ML model
consisting of FN10mm/50mm, diffuseness, and S-M grading was
also developed for prognosis prediction and achieved a better
performance.

The distances of 5 and 10mm were chosen as variables on the
basis of our previous studies.6,17 In our previous study, we found
that for the BAVMs involving the eloquent areas, the LCDs of 5
and 10mm were the cutoff values for predicting postoperative
dysfunction.6,17 It suggested that the fibers within 5 or 10mm
from the border of AVM lesions may be most likely to be injured
during the resection of AVMs.6,17 Meanwhile, according to the
anatomic evaluation, for the recruited AVMs adjacent to CSTs

Table 1: Baseline characteristics of patients with BAVM

Total Patients (n = 83)
Age (mean) (yr) 30.2 (SD, 11.5)
Sex (No.) (%)
Male 53 (62.4)
Female 30 (37.6)

Lobe (No.) (%)
Frontal 37 (44.6)
Temporal 18 (21.7)
Parietal 18 (21.7)
Occipital 8 (9.6)
Insula 2 (2.4)

Size (mean) (mm) 35.1 (SD, 11.4)
Deep perforating artery supply (No.) (%) 22 (26.5)
Deep venous drainage (No.) (%) 7 (8.4)
Diffuse nidus (No.) (%) 25 (30.1)
LCDAI (mean) (mm) 4.3 (SD, 5.1)
Hemorrhage (No.) (%) 33 (39.8)
Seizure (No.) (%) 41 (49.4)
S-M score (No.) (%) 2.4 (SD, 0.9)

Table 2: Values of the calculated AI-based indicators

Postsurgical MDs

Yes No
FN5mm/50mm (mean) 0.24 (SD, 0.24) 0.03 (SD, 0.06)
FN10mm/50mm (mean) 0.37 (SD, 0.27) 0.06 (SD, 0.08)
FP5mm/50mm (mean) 0.06 (SD, 0.10) 0.01 (SD, 0.02)
FP10mm/50mm (mean) 0.10 (SD, 0.12) 0.02 (SD, 0.05)
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(the shortest distance between AVM lesions and CSTs of
#10mm), a range of 50mm from the boundary of AVM lesions
may include all CST fibers. Therefore, we used 5mm/50mm and
10mm/50mm to reflect the potentially injured fiber proportion
of CSTs in surgery. In addition, consistent with our previous
study, we used the mRS score at 6months after microsurgery to
define the postoperative MDs (mRS. 2).5,32 Patients’ visual or
language deficits were also taken into consideration when grading
the mRS.33

Most interesting, our results showed that the proportion of
potentially affected fiber numbers was more effective than the
proportion of potentially affected voxel points in predicting long-
term postsurgical MDs. This finding suggested that once the
CSTs were injured at 1 point, they affected the whole length of
the CSTs. We speculated that this situation might be related
to the characteristics of nerve axons. According to previous
reports, the interruption of axon anatomic continuity will destroy
the function of the whole nerve fiber, resulting in partial or total
loss of its functions due to the degeneration of nerve fibers distal

to the lesion and eventual death of axotomized neurons.34 This
outcome means that neural fibers have less plasticity.35 Therefore,
neurosurgeons should be more cautious and alert when crossing a
section perpendicular to CSTs in an operation to reduce the possi-
bility of postsurgical MDs.

Our study presents novelty in the algorithm: First, we pro-
posed a method of automatically tracking WM fibers on DTI.36

DTI has been indicated as the only noninvasive way to display
WM tracts in vivo and has a unique advantage in identifying and
estimating neural fibers at the subcortical level.37,38 However, in
clinical work, the differences in fiber tracking techniques in
diverse clinical centers and the experiences of diverse clinicians
may lead to a divergence in the accuracy of fiber tracking among
different clinicians.8-11 In this study, the Constant Solid Angle
model and the EuDX algorithm were used to track the CST auto-
matically; this approach could reduce the bias of identification
and improve the accuracy and efficiency of fiber tracking in dif-
ferent clinical centers.21,39 Second, for our registration method,
compared with traditional registration methods, we used a neural

FIG 4. Results of feature screening of the ML model and different predictive methods in predicting postsurgical MDs. A, Result of feature
screening with LASSO. The FN10mm/50mm, diffuseness, and S-M score were selected for ML model building. The values in every square indicate
the Pearson coefficient between every 2 features. B, ROC curves of different algorithms for the ML model in prediction. C, ROC curves of
FN10mm/50mm, LCDAI, S-M score, and HDVL score in prediction. D, ROC curves of FN10mm/50mm and the ML model in prediction. RF indicates ran-
dom forest; SVM, support vector machine; XGB, XGBoost.
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network to perform both affine and deformable registration in a
cascade. The deep learning–based registration has higher accu-
racy and shorter execution time than conventional registration
methods.40,41 Third, the lesion-dilation operation in our study
was implemented using affine transformation, which can accu-
rately control the expansion of the lesions at any distance in all
directions. Finally, the LR algorithm with L2 regularization was
used for model establishment. The algorithm also unified the
LASSO characteristics and ridge characteristics to generate sparse
weights to eliminate irrelevant features, possibly preventing over-
fitting and improving the generalization of the model.42

Our study had several limitations. First, it was conducted in a
single center with a limited number of patients due to a relatively
small number of this kind of surgery performed. Second, due to
its retrospective nature, it may be difficult to avoid information
bias, selection bias, and confounding factors. Third, the automated
segmentations and fiber tracking may have some errors because
of the unclear boundary of AVM lesions themselves, rough sur-
face of the manually section-by-section labeled lesions, and so
forth. The model will be trained with more cases to minimize
these errors in our following study. Finally, although internal
cross-validation was performed, further external validation studies
including more patients and from other centers are needed.

CONCLUSIONS
Surgical treatment for M-AVMs is challenging for neurosur-
geons. An accurate prediction of the possibility of postsurgical
MDs would help guide neurosurgeons in the selection of surgical
candidates. In this study, a new AI-based indicator FN10mm/50mm

and a corresponding ML model are proposed that both benefit
from the assistance of AI techniques. This approach will have
potential in the development of predictive software and to assist
doctors with different levels of clinical experience in various clini-
cal centers, providing more precise consultation to patients with
M-AVM.
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