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ORIGINAL RESEARCH
ADULT BRAIN

Quantifying Brain Iron in Hereditary Hemochromatosis Using
R2* and Susceptibility Mapping

S.K. Sethi, S. Sharma, S. Gharabaghi, D. Reese, Y. Chen, P. Adams, M.S. Jog, and E.M. Haacke

ABSTRACT

BACKGROUND AND PURPOSE: Brain iron dyshomeostasis is increasingly recognized as an important contributor to neurodegenera-
tion. Hereditary hemochromatosis is the most commonly inherited disorder of systemic iron overload. Although there is an increas-
ing interest in excessive brain iron deposition, there is a paucity of evidence showing changes in brain iron exceeding that in
healthy controls. Quantitative susceptibility mapping and R2* mapping are established MR imaging techniques that we used to non-
invasively quantify brain iron in subjects with hereditary hemochromatosis.

MATERIALS AND METHODS: Fifty-two patients with hereditary hemochromatosis and 47 age- and sex-matched healthy controls
were imaged using a multiecho gradient-echo sequence at 3T. Quantitative susceptibility mapping and R2* data were generated,
and regions within the deep gray matter were manually segmented. Mean susceptibility and R2* relaxation rates were calculated
for each region, and iron content was compared between the groups.

RESULTS: We noted elevated iron levels in patients with hereditary hemochromatosis compared with healthy controls using both
R2* and QSM methods in the caudate nucleus, putamen, pulvinar thalamus, red nucleus, and dentate nucleus. Additionally, the sub-
stantia nigra showed increased susceptibility while the thalamus showed an increased R2* relaxation rate compared with healthy
controls, respectively.

CONCLUSIONS: Both quantitative susceptibility mapping and R2* showed abnormal levels of brain iron in subjects with hereditary
hemochromatosis compared with controls. Quantitative susceptibility mapping and R2* can be acquired in a single MR imaging
sequence and are complementary in quantifying deep gray matter iron.

ABBREVIATIONS: CN ¼ caudate nucleus; GP ¼ globus pallidus; DGM ¼ deep gray matter; DN ¼ dentate nucleus; FDRI ¼ field-dependent relaxation rate
increase; HC ¼ healthy controls; HH ¼ hereditary hemochromatosis; PUT ¼ putamen; PT ¼ pulvinar of the thalamus; QSM ¼ quantitative susceptibility map-
ping; RN ¼ red nucleus; SN ¼ substantia nigra; SWIM ¼ susceptibility weighted imaging and mapping; THA ¼ thalamus

Brain iron deposition in subjects with hereditary hemochro-
matosis (HH) has received very little attention to date, and

very few descriptions of brain imaging showing iron deposition
for these patients have been reported in the literature.1-3

Hemochromatosis is an inherited disorder of parenchymal iron
overload characterized by several genetic mutations as its causa-
tive factor.4,5 The most common mutation in White patients that
leads to HH involves the HFE gene.5,6 Clinically, it manifests as

iron deposition in several organs including the liver, skin, pan-
creas, joints, bones, and heart.4,7 Hepatic iron deposition in sub-
jects with HH is thought to reflect total body iron stores.8

Noninvasive imaging methods using MR imaging have been used
to quantify hepatic iron deposition in subjects with HH.8,9 These
methods can also be applied to imaging brain iron.

Both R2* mapping and quantitative susceptibility mapping

(QSM) are highly sensitive and stable methods for assessing brain
iron in the form of ferritin, particularly in the deep GM where it
is concentrated.10,11 Furthermore, R2* and QSM have been vali-
dated in histologic studies.12,13 R2* maps can be used to calculate
putative iron via the magnetization transverse relaxation rates in

the gradient-echo images, and QSM reconstructs local suscepti-
bility differences from the filtered phase data.14 Furthermore,
both methods can be calculated from the same gradient recalled-
echo scan within a clinically acceptable imaging time. Iron quantifica-
tion using R2* mapping and QSM has been extensively investigated
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in patients with neurodegenerative disorders including Parkinson’s

disease, multiple sclerosis, neurodegeneration with brain iron accu-

mulation, and several other disorders.15-17 Therefore, we chose to

apply these methods in a unique cohort of subjects with hemochro-

matosis as well as age-matched healthy controls (HC) to characterize

cerebral iron deposition in deep gray matter (DGM) nuclei. Having

baseline levels of iron may be useful for diagnosis and longitudinally

tracking the course of the disease or the efficacy of therapeutic

interventions.

MATERIALS AND METHODS
Subjects
We enrolled 52 subjects (30 men; mean age, 58.23 [SD, 12.29] years
and 22 women; mean age, 58.00 [SD, 14.91] years) with HH and 47
age- and sex-matched healthy controls (19 men; mean age, 53.32
[SD, 12.82] years and 28 women; mean age, 54.46 [SD,13.38] years;
Table 1). No age differences were seen between these groups
(t ¼ �1.56, P= .12). The demographic details of the 52 subjects
who underwent MR imaging are given in Table 2.

MR Imaging and QSM Processing
All subjects were imaged using a 3T Discovery MR750 system
with a 32-channel head coil (GE Healthcare). Images were
collected with the following parameters using a spoiled multiecho
gradient recalled-echo sequence: 6 echoes with a TE from 5 to
30ms and an echo spacing of 5ms, flip angle ¼ 7°, TR ¼ 36ms,
FOV ¼ 220 mm � 220mm, matrix size ¼ 366� 366, section
thickness ¼ 2mm. Images were interpolated to an in-plane dis-
play resolution 0.43 mm �0.43mm. The scan time was 7minutes
20 seconds.

QSM data were reconstructed for each echo individually using
an in-house algorithm with the following steps: The FSL Brain
Extraction Tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET)18 was
used to isolate the brain tissue (threshold ¼ 0.2, erode ¼ 4, and
island ¼ 2000); a 3D phase unwrapping algorithm (3DSRNCP)19

was used to unwrap the original phase data; and the sophisticated
harmonic artifact reduction (SHARP)20 filter was used to remove
unwanted background fields (threshold¼ 0.05 and deconvolution
kernel size ¼ 6). A truncated k-space division-based inverse filter-
ing technique (threshold ¼ 0.1) with an iterative approach (itera-
tion threshold ¼ 0.1 and number of iterations ¼ 4) was used to
reconstruct the susceptibility map.21 The resulting susceptibility
map was constructed from the QSM data from TE2–TE6 using a
method that uses a weighted averaging of each TE based on its
SNR.22 R2* maps were generated using a previously established
conventional method.23 We did not use the first echo data because
it caused reconstruction errors when combining it with the others.

ROIs in the DGM were traced by 2 experienced raters on the
QSM images (due to high contrast) using Signal Processing In
NMR (SPIN) Software (SpinTech MR imaging) and reviewed by
a neurologist/radiologist (S.S.). Full width at half maximum
thresholding was used to delineate the boundary. Manual adjust-
ments were performed if the algorithm failed. Interrater agree-
ment was established using an intraclass correlation coefficient
for absolute agreement.24

We analyzed the following structures: caudate nucleus (CN),
globus pallidus (GP), putamen (PUT), pulvinar of the thalamus
(PT), red nucleus (RN), substantia nigra (SN), thalamus (THA),
and dentate nucleus (DN). The ROIs were then overlaid on the
R2* data. Subsequently, mean susceptibility and R2* values for
each region were calculated and compared between patients with
HH and healthy controls. All reported structural measurements
were averaged bilaterally. Statistical analysis was performed using
SPSS, Version 22 (IBM). Demographic details of the study sub-
jects are described as mean (SD) for continuous variables and as
frequency for categoric variables. Comparative analysis of the
mean R2* and the susceptibility of DGM nuclei between study
groups was performed using unpaired t tests. The significance
level was set at .05.

RESULTS
A total of 52 patients with HH and 47 HCs were included in the
MR imaging analyses. R2* and susceptibility results are shown in
Tables 3 and 4. In both analyses, we noted multiple structures
with elevated iron in the HH group compared with the HC
group. These structures included the CN, PUT, PT, RN, and the
DN. QSM showed elevated iron in the SN, while R2* showed ele-
vated iron in the THA.

Examples of how increases in iron manifest (appearing as
hyperintense regions) in both methods for patients with HH and

HC are shown in Fig 1. One of the sub-
jects with extreme iron deposition also
had iron increases in the cuneus and
cingulate sulcus (Fig 1C, -G). In this
same patient, the iron was so high
(approaching 1 part per million in some
cases) that we could not reconstruct the
R2* values for the whole regions of the
CN and PUT due to lack of signal in
the magnitude images. This case also
showed elevated iron within the SN and
the GP. We plotted iron content in

Table 1: Mean age of subjects with HH and healthy controls
Subjects with HH

(n = 52) No. Mean Age (yr) 95% CI P Value
Men
HH 30 58.23 (SD, 12.29) –12.29–2.52 .19
HC 19 53.32 (SD, 12.82)

Women
HH 22 58.00 (SD, 14.91) –11.59–4.52 .38
HC 28 54.46 (SD, 13.38)

Table 2: Demographics of patients with HH who underwent MR imaging
Demographics of Patients with HH

Age at HH diagnosis (mean) (yr) 51.09 (SD, 12.92) (n = 52)
Handedness Right: 50, left: 2
Family history of HH Yes: 30, no: 21, unknown: 1
Average duration from time of diagnosis to MR imaging (yr) 7.29 (SD, 5.22) (n = 51)
Genetic diagnosis (n = 60) C282Y homozygous: 41

H63D homozygous: 2
C282Y heterozygous: 2
H63D heterozygous: 1

Compound heterozygous: 3
Unknown status: 3
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Figs 2 and 3 to highlight the group differences between the 2
cohorts.

DISCUSSION
R2* mapping and QSM are complementary MR imaging postpro-
cessing techniques for detecting abnormal iron in the DGM in sub-
jects with hemochromatosis. Furthermore, they are also sensitive
for discriminating HH from HC as noted by the low P values for
numerous structures (Table 3). These methods have the potential
to detect abnormal brain iron in patients with HH.

HH is the most common inherited disorder of systemic iron
excess in populations of Northern European descent.25 HFE

C282Y mutations are the most frequent cause of HH.26-28 As a
result of HFE mutations, iron accumulates in excess in several

organs, in particular the liver, skin, pancreas, endocrine organs,
and heart.29 Brain iron deposition has been controversial in HH
because the presence of an intact blood-brain barrier is proposed
to protect against brain iron overload.30,31 However, recent find-
ings suggest that HFE is expressed strategically at the blood-brain
barrier in the endothelium, and several authors have argued that
this expression of HFE would lead to excessive brain iron deposi-
tion becauseHFEmutations are associated with high iron accumu-
lation in several other organs.32-36 The present study validated this

finding of excess brain iron deposition in a fraction of the HH

Table 3: Comparative analysis of mean susceptibility (parts per billion) in the DGM nuclei between patients with HH and HCa

Group Statistics T Test for Equality of Means

Structure Diagnosis No. Mean SD
Standard Error
of the Mean t df

Significant
(2-Tailed)

Mean
Difference

Standard Error
Difference

95% CI of the
Difference

Lower Upper
CN HC 47 24.43 8.7 1.3 �2.08 97 .040a �6.86 3.30 �13.41 �0.31

HH 52 31.29 21.0 2.9
GP HC 47 85.48 20.1 2.9 1.09 97 .278 4.57 4.19 �3.74 12.89

HH 52 80.91 21.4 3.0
PUT HC 47 33.06 14.4 2.1 �3.37 97 .001b �19.63 5.83 �31.20 �8.07

HH 52 52.70 37.5 5.2
THA HC 47 3.45 3.6 0.5 �1.78 97 .079 �1.58 0.89 �3.36 0.19

HH 52 5.04 5.1 0.7
PT HC 47 36.40 13.5 2.0 �2.66 97 .009b �9.79 3.68 �17.09 �2.48

HH 52 46.19 21.7 3.0
RN HC 47 94.91 24.1 3.5 �4.32 97 ,.001c �23.40 5.41 �34.15 �12.66

HH 52 118.32 29.2 4.1
SN HC 47 129.69 22.8 3.3 �2.26 97 .026a �11.66 5.15 �21.88 �1.43

HH 52 141.35 27.9 3.9
DN HC 47 92.53 24.2 3.5 �5.10 97 ,.001c �32.09 6.30 44.59 �19.59

HH 52 124.62 36.5 5.1
a P , .05.
b P , .01.
c P , .001.

Table 4: Comparative analysis of R2* (s21) in the deep gray matter nuclei between subjects with HH and HC

Group Statistics T Test for Equality of Means

Structure Diagnosis No. Mean SD
Standard Error
of the Mean t df

Significant
(2-Tailed)

Mean
Difference

Standard Error
Difference

95% Confidence
Interval of the
Difference

Lower Upper
CN HC 47 25.23 3.0 0.4 2.89 97 .005a �2.94 1.02 �4.95 �0.92

HH 52 28.17 6.3 0.9
GP HC 47 40.12 4.6 0.7 1.88 97 .064 �2.22 1.18 �4.57 0.13

HH 52 42.35 6.8 0.9
PUT HC 47 29.67 4.9 0.7 4.19 97 ,.001b �5.98 1.43 �8.81 �3.15

HH 52 35.65 8.6 1.2
THA HC 47 21.01 1.5 0.2 �3.59 97 .001a �1.31 0.37 �2.04 �0.59

HH 52 22.32 2.1 0.3
PT HC 47 24.15 3.0 0.4 �4.36 97 ,.001b �3.20 0.73 �4.66 �1.74

HH 52 27.35 4.2 0.6
RN HC 47 36.26 5.3 0.8 �2.65 97 .009a �3.46 1.31 �6.05 �0.87

HH 52 39.72 7.4 1.0
SN HC 47 36.60 4.5 0.7 �1.94 97 .056 �2.02 1.04 -4.08 0.05

HH 52 38.62 5.7 0.8
DN HC 47 32.23 5.2 0.8 �3.95 97 ,.001b �6.28 1.59 �9.43 �3.13

HH 52 38.50 9.7 1.3
a P ,.01.
b P ,.001.
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cases using both QSM and R2*, whose postprocessing is derived

from 1 spoiled gradient recalled-echo MR imaging sequence.
Kalpouzos et al37 studied the influence of brain iron overload

and the link to the genetic polymorphisms associated with iron
dysregulation (C282Y and H63D) in healthy subjects. They
hypothesized that elevated iron content in these structures would
negatively influence cognitive outcome. Using QSM, we found
that carriers of the C282Y allele had higher levels of iron only in
the PUT compared with noncarriers. Both brain iron and trans-
ferrin saturation, a serum marker of elevated iron, are associated
with status, but the authors suggested a beneficial effect of HFE-
positive carrier status relating to brain iron and executive func-
tion. Conversely, subjects withHFE-negative status showed a cor-
relation between brain iron and working memory, a finding
similar to that in Bartzokis et al.2 They observed a correlation
between iron measured via susceptibility and transferrin satura-
tion, though age did not magnify the effect ofHFE-positive status
on brain and blood iron. Subjects with iron overload were not
part of the cohort. Our work showed elevated iron content in the
rest of the DGM (SN, DN, CN, RN, THA, and PT) in either
QSM, R2*, or both in the cohort with the C282Y allele with a
hemochromatosis diagnosis. Another recent article using the
same data set addressed the influence of regional brain iron depo-
sition as measured with QSM and development of specific move-
ment disorders in subjects with HH. Therefore, we did not
include any correlative analysis with clinical data in the current
article.38

The field-dependent relaxation rate increase (FDRI) method
has been used to demonstrate higher iron accumulation in the
brain of male cohorts who are carriers of gene variants of iron

metabolism, namely HFE H63D and transferrin C2, compared
with noncarriers.1 Berg et al39 reported increased iron in the basal
ganglia using CT, MR imaging, and sonography; however, the
sample size was only 14 subjects. Additionally, multiple case
reports with movement disorders have been associated with HH
andMR imaging signal changes related to iron.40 Large-scale stud-
ies using quantitative MR imaging are scarce; however, Bartzokis
et al1 have mapped basal ganglia iron FDRI and found increased
iron in the DGM in subjects lacking at least 1 gene for HH. One
of the key differences between FDRI and R2* is that FDRI meas-
ures R2 relaxation (relaxation from spin-spin interactions) but
R2* includes both spin-spin interactions and the effects from field
inhomogeneities induced by local increases in iron. FDRI is cum-
bersome to acquire data because it requires scans from multiple
systems and field strengths to calculate R2 (1/R2). Additionally, it
is subject to scanner variability.41

Measurements from the 3 methods (FDRI, R2*, and QSM)17,42,45

correlate with postmortem iron measurements from the seminal
work by Hallgren and Sourander.43 FDRI is believed to be impervi-
ous to the presence of myelin as R2* and phase are; however, gray
matter is not well-myelinated so the confounding effects frommyelin
may be negligible.41 Furthermore, smaller changes in iron as well as
heterogeneity within structures can be more easily detected using R2*
and QSM, with the latter being the most sensitive.17 We noted a
discrepancy in the results for the GP, THA, and the SN when
comparing QSM and R2* results in discriminating groups. The GP is
a known source of physiologic mineralization and calcification, which
may explain the discrepant (though nonsignificant) results between
the 2 measures. QSM can discriminate between paramagnetic signal
like nonheme iron and diamagnetic signal from mineralization and

FIG 1. Upper row: QSM showing 2 HC (A and B) and 2 subjects with HH (C and D). Lower row: Corresponding R2* maps. Elevated striatal and PT
iron is depicted in both subjects with HH (C and D, F and G). For 1 subject (C and F), high iron can be seen in the cuneus and striatal cortex.
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calcification, whereas R2* mapping cannot. When comparing the
QSM and R2* plots in Figs 2 and 3 for the GP, we did not see a
clear separation between the groups on the QSM plot, demon-
strating the additive effect of both diamagnetic and paramagnetic
substances on R2* values.44 The differences in the results between
the methods when evaluating the THA and SN may be due to the
heterogeneity of iron both within the group, because there were
some cases with excessive iron, as well as within the structures
themselves. Therefore, future analyses may consider using thresh-
olding approaches to reduce within-structure variance.45

The susceptibility and R2* results for the HC are in accord-
ance with multiple articles.46-48 Work from Ghassaban et al48

compared iron content between subjects with Parkinson disease
and aged HC using similar methods and found that QSM is more
sensitive at detecting iron generally using the same processing
algorithm with thinner sliced data. Although we did not compare
the sensitivity or specificity of QSM and R2* in discriminating
patients with HH and HC on the basis of on iron content, Feng et
al49 have also reported less variation in QSM results compared
with R2*. Yi and Sethi47 have shown repeatability with multisite,
multiscanner data using iterative SWIM reconstruction methods
in a large, multi-site cohort of subjects. Although iterative SWIM
can mitigate streaking artifacts inherent in truncated k-space divi-
sion susceptibility mapping, the weighted combination of SWIMs
by TE may lessen these effects while providing good SNR. Using
a structurally constrained iterative SWIM approach may reduce
noise and streaking artifacts even further.22

Although QSM and R2* are generally highly stable measure-
ments, they are still subject to multiple sources of error from col-
lection and errors propagated from the different processing
steps.10 Susceptibility is a relative measurement in that the values
reported are changes compared with the surrounding tissue. We
did not use a reference area such as WM or CSF, and whether the
effect size of iron deposition in hemochromatosis is large enough

compared to the magnitude of iron in a reference area remains to
be seen. It is possible that the THA, being close in susceptibility to
WM (�0parts per billion), may have been affected by these shifts
in QSM that led to similar susceptibility values between patients
with HH and HC. R2* has an advantage because it does not need a
reference region to normalize measurements. On the other hand,
for abnormally high iron, the lack of signal in the images will cause
the algorithm to fail. In this particular study, we capitalized on the
multiecho nature of the sequence and created not only R2* maps
but also QSM with higher SNR as opposed to a single-echo
approach. If scanning time is an issue, then single-echo approaches
for QSM may be run to save time.44 Additionally, short TEs (10–
15ms) may be beneficial to collect data to avoid phase aliasing for
subjects with abnormally high iron content.

This study has several limitations: 1) Manual demarcation
of ROIs may generate unwanted sources of error from inter-
rater variation; therefore, using an automated deep gray matter
segmentation technique may help mitigate these errors.48 2)
This study is cross-sectional in nature and only provides a
snapshot of iron content in time for an individual. Future study
designs should be longitudinal; this approach may yield esti-
mates of change and provide information about the cause-and-
effect relationship of iron deposition with respect to disease
progression or treatment models. 3) Not all subjects with HH
had abnormal iron, and there was overlap with some of the
HC.

CONCLUSIONS
Subjects with HH have abnormal brain iron in the DGM com-
pared with controls. QSM and R2* are complementary ways to
noninvasively quantify putative iron content from 1 MR imaging
sequence. Future study designs should involve multiple time
points to track iron deposition longitudinally.

FIG 2. Comparison of susceptibility (parts per billion) between
patients with HH and HC. Asterisk indicates P, .05; double asterisks,
P, .01; triple asterisks, P, .001.

FIG 3. Comparison of R2* (s�1) between patients with HH and HC.
Double asterisks indicate P, .01; triple asterisks, P, .001.
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