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ORIGINAL RESEARCH
PEDIATRICS

Brain Abnormalities in Patients with Germline Variants in
H3F3: Novel Imaging Findings and Neurologic Symptoms

Beyond Somatic Variants and Brain Tumors
C.A.P.F. Alves, O. Sherbini, F. D’Arco, D. Steel, M.A. Kurian, F.C. Radio, G.B. Ferrero, D. Carli, M. Tartaglia,

T.B. Balci, N.N. Powell-Hamilton, S.A. Schrier Vergano, H. Reutter, J. Hoefele, R. Günthner, E.R. Roeder, R.O. Littlejohn,
D. Lessel, S. Lüttgen, C. Kentros, K. Anyane-Yeboa, C.B. Catarino, S. Mercimek-Andrews, J. Denecke,

M.J. Lyons, T. Klopstock, E.J. Bhoj, L. Bryant, and A. Vanderver

ABSTRACT

BACKGROUND AND PURPOSE: Pathogenic somatic variants affecting the genes Histone 3 Family 3A and 3B (H3F3) are extensively
linked to the process of oncogenesis, in particular related to central nervous system tumors in children. Recently, H3F3 germline
missense variants were described as the cause of a novel pediatric neurodevelopmental disorder. We aimed to investigate patterns
of brain MR imaging of individuals carrying H3F3 germline variants.

MATERIALS AND METHODS: In this retrospective study, we included individuals with proved H3F3 causative genetic variants and
available brain MR imaging scans. Clinical and demographic data were retrieved from available medical records. Molecular genetic
testing results were classified using the American College of Medical Genetics criteria for variant curation. Brain MR imaging abnor-
malities were analyzed according to their location, signal intensity, and associated clinical symptoms. Numeric variables were
described according to their distribution, with median and interquartile range.

RESULTS: Eighteen individuals (10 males, 56%) with H3F3 germline variants were included. Thirteen of 18 individuals (72%) presented
with a small posterior fossa. Six individuals (33%) presented with reduced size and an internal rotational appearance of the heads
of the caudate nuclei along with an enlarged and squared appearance of the frontal horns of the lateral ventricles. Five individuals
(28%) presented with dysgenesis of the splenium of the corpus callosum. Cortical developmental abnormalities were noted in 8
individuals (44%), with dysgyria and hypoplastic temporal poles being the most frequent presentation.

CONCLUSIONS: Imaging phenotypes in germline H3F3-affected individuals are related to brain features, including a small
posterior fossa as well as dysgenesis of the corpus callosum, cortical developmental abnormalities, and deformity of lateral ventricles.

H istones are nuclear proteins that bind to DNA in the nucleus
and help condense it into chromatin.1 Histones are dynami-

cally decorated with posttranslational modifications, which regu-
late the processes of DNA repair, gene expression, mitosis,
and meiosis. Abnormal dysregulation of these posttranslational

modifications has been linked to cancer, neurodevelopmen-
tal syndromes, psychiatric disorders, and cardiovascular
disease.2-5 Therefore, histone biology is critical to under-
standing the pathophysiology of many diseases and develop-
ing treatments.
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Pathogenic somatic variants affecting H3F3 have been exten-
sively linked to the epigenetic process of oncogenesis. In particular,
when these variants involve 2 critical amino acids, p.Lys27 and
p.Gly34, they are linked to central nervous system in children
(p.Lys27 is linked to diffuse midline gliomas, and p.Gly34 is linked
to supratentorial hemispheric gliomas).6-8 Currently, these variants
represent a major molecular feature for accurate classification of
these neoplasms according to theWorld Health Organization.9

Expanding the correlation of this gene with human disease,
Bryant et al10 have recently demonstrated that H3F3 plays a
major role during embryogenesis, and causative pathogenic var-
iants in these genes are associated with neurocognitive delay
along with other symptoms such as seizures and hypotonia. In
the present study, we sought to investigate the value of brain MR
imaging in individuals carrying H3F3A or H3F3B germline var-
iants, looking for an imaging pattern that would be recognizable
for diagnostic purposes.

MATERIALS AND METHODS
Individual Population
This study included individuals with proved H3F3 pathogenic
and likely pathogenic variants that are causative of disease and
with available clinical MR imaging scans of the brain. Individuals
and their families were collected prospectively from the Myelin
Disorders Bioregistry Project with approval from the institutional
review board at Children’s Hospital of Philadelphia (institutional
review board approval No. IRB 14–011236). Written informed
consent for the collection of clinical information, neuroimaging,
and genetic information was obtained for each study participant.

Abstraction of Clinical Data
Clinical and demographic data were retrieved from available
medical records of affected individuals. Genetic testing reports
were reviewed, or variants were provided by the referring pro-
vider and classified using the American College of Medical
Genetics criteria for variant curation. All clinical and molecular
data were reviewed by a board-certified clinical and/or clinical
molecular geneticist.

MR Imaging Technique
We retrospectively reviewed all available brain MR imaging stud-
ies of the included subjects. Images were acquired at either 1.5T
or 3T MR using different imaging protocols including at least
sagittal and axial T1WI and T2WI. MR images not allowing
adequate visual assessment were excluded.

Imaging Analysis
MR images of all individuals were reviewed independently by 2
pediatric neuroradiologists (C.A.P.F.A. and F.D.) with final con-
sensus agreement in searching for structural features involving
the posterior fossa, major commissural structures, and cortex,
along with abnormalities in the ventricular system, basal ganglia,
and thalamus. Additional evaluation, measurements, and ratios
of the posterior fossa and corpus callosum, both evaluated in the
sagittal midline, were performed to confirm the size abnormal-
ities.11-15 Detailed analysis of characteristics of white matter mye-
lination was also performed.

Statistical Analysis
Statistical analyses were performed using R statistical and com-
puting software (http://www.r-project.org) and R studio (http://
rstudio.org/download/desktop). A 2-tailed P, .05 was consid-
ered statistically significant. The Shapiro-Wilk test was used to
assess the normality of continuous variables, which were presented
as median and first and third quartiles (1Q–3Q). Categoric varia-
bles were presented as counts and percentages. Mann-Whitney U
or Student t tests were used to compare continuous variables, and
the Fisher exact test was used to compare categoric variables
between clinical data and MR imaging findings. For statistical
analysis, individuals were divided into 2 groups, nonachievement
milestones versus normal achievement plus development delay.
Delayed and normal developmental milestones were grouped to-
gether due to the small number of subjects with normal develop-
ment. Delayed milestones were defined as sitting after 6months,
walking after 20months, and first word after 12months of age.

RESULTS
On the basis of the inclusion criteria, a cohort of 18 individuals
(mean age, 4.5 years; range, 1.9–12.1 years; 10 males/8 females)
with proved H3F3 variants causative of disease were included in
this study. All individuals underwent brain MR imaging. These
individuals had 1 of 2 genotypes: H3F3A variants (n ¼ 11) or
H3F3B variants (n ¼ 7). The details of each individual’s demo-
graphic, clinical, and genetic information are given in Table 1
and the Online Supplemental Data. The overall imaging findings
are described in Table 2.

Posterior Fossa
Thirteen of 18 individuals (72%) presented with a verticalized
tentorium and low insertion of the torcula, along with features

Table 1: Demographic, genetic, and clinical information of indi-
viduals with disease-causing missense variantsa

Characteristics
Individuals
(n = 18)

Age at last evaluation (yr) 4.46 (1.9–12.1)
Sex: female/male (8:10)
H3F3 variant
H3F3A 11 (61)
H3F3B 7 (39)

Microcephaly 8 (44)
Seizures 10 (56)
Febrile 5 (50)
Nonfebrile 5 (50)

Sitting (n = 17)
Normal 1 (6)
Delayed 12 (71)
Not achieved 4 (23)

Walking
Normal 2 (11)
Delayed 10 (56)
Not achieved 6 (33)

Speaking
Normal 1 (6)
Delayed 7 (38)
Not achieved 10 (56)

a Categoric variables are described as number (percentage). Continuous variables
are described as median (1Q–3Q).

AJNR Am J Neuroradiol 43:1048–53 Jul 2022 www.ajnr.org 1049

http://www.r-project.org
http://rstudio.org/download/desktop
http://rstudio.org/download/desktop


suggestive of a small posterior fossa and hypoplasia of the occipi-
tal bone, later confirmed with additional posterior fossa measure-
ments and ratios (Online Supplemental Data).13-15 The occipital
bone, measured by the supraoccipital line, of those patients with
a small posterior fossa was disproportionally small, and it was sig-
nificantly smaller (P ¼ .001) compared with the subjects with a
normal posterior fossa. Of those, 7 individuals (7/13 54%) had pos-
terior fossa structures (brainstem and cerebellum) that appeared
crowded (Fig 1A–D). A low disposition of the cerebellar tonsils
fitting in the Chiari I deformity criteria15 was observed in 4

individuals. Further mild malformative features of the brainstem
were observed in 2 children: both with abnormal anterior-posterior
pattern of malformations, one with disproportional predominance
of the midbrain (Online Supplemental Data) and the other with dis-
proportional size reduction of the midbrain compared with the me-
dulla oblongata (Online Supplemental Data). Hypoplasia of the
clivus and signs of platybasia were noted in 3 individuals.

Major Commissures
Malformative features of the corpus callosum, accompanied or
not accompanied by anterior commissure hypoplasia, were pres-
ent in 5 individuals (28%). The involvement of the splenium of
the corpus callosum was the most remarkable feature, being
absent or elongated and hypoplastic according to the patient’s
age in all 5 cases. Agenesis of the body and splenium of the cor-
pus callosum was observed in 1 case (5.5%) (Fig 1A–D and
Online Supplemental Data).

Cortex
The cerebral cortex of 8 individuals (44%) presented with malfor-
mative features. Six of them showed variable degrees of diffuse dys-
gyria, (Fig 2A–D) 1 anterior pachygyria, and 1 diffuse simplified
cortical appearance. Along with the cortical abnormalities, all 8
individuals also had bilateral temporal lobe hypoplasia (Fig 2E–H).

Basal Ganglia and Lateral Ventricles
Six individuals (33%) presented with a relatively reduced size and/
or internal rotational appearance of the heads of the caudate nuclei.
These features resulted in a characteristic deformity of the lateral

FIG 1. Brain MR images. A and D, Variable degrees of corpus callosum deformities, particularly involving the body and splenium, noting partial
agenesis in D. Deformed morphology of the posterior fossa, with variable degrees of low insertion of the torcula and size reduction of the
supraoccipital line (SOL). Note the crowded appearance of the structures in the posterior fossa along with low disposition of the cerebellar ton-
sils, fitting in the Chiari I deformity criteria in C and D. E–H, Variable degrees of reduced size and/or internal rotational appearance of the head
of the caudate nuclei, resulting in an enlarged and squared appearance of the frontal horns.

Table 2: Abnormal imaging information of individuals with dis-
ease-causing H3F3 missense variantsa

Imaging Features
Individuals
(n = 18)

Small posterior fossa 13 (72)
Cerebellum 2 (11)
Brainstem 2 (11)
Thalamus 0
Caudate 8 (44)
Putamen 0
Globus pallidum 0
Corpus callosum 5 (28)
Fourth ventricle 6 (33)
Lateral ventricle 7 (38)
White matter 2
Cortex 8 (44)
Optic nerves and chiasm 1 (6)
Temporal lobes/hippocampus 8 (44)
Clivus/sella 4 (22)

a Categoric variables are described as number (percentage).
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ventricles, with an enlarged and squared appearance of the frontal
horns (Fig 1E–H).

Clinical Correlation
Our entire cohort (n ¼ 18) presented with at least 1 clinical symp-
tom, including microcephaly, the presence of seizures, and delayed
or not delayed achieved development milestones (Table 1).

No statistically significant (P, .05) correlation between clinical
symptoms (absence of achievement of gross motor and speaking
milestones, presence of seizures) and main imaging findings (small
posterior fossa, basal ganglia abnormalities, and corpus callosum
and cortical malformations) was found. However, all individuals
included in our cohort except for 1 had severe clinical symptoms
and marked abnormalities involving the brain. Moreover, 50% of
individuals presenting with seizures also had malformative features
involving the cortex (Online Supplemental Data).

DISCUSSION
Somatic variants in H3F3 are well-known promoters of oncogen-
esis;16-19 however, the role of germline variants remain underre-
cognized. The recent discovery of disease-associated missense
variants in H3F3 that cause a neurodevelopmental disorder, but
not cancer, profoundly impacts histone biology research.10 In the
present study, we sought to investigate the value of brain MR
imaging of individuals carryingH3F3 germline variants, assessing
imaging patterns and the neurodegenerative clinical symptoms.
We found a constellation of malformative features of the brain,
including a small posterior fossa, along with changes in the basal
ganglia, cortex, and corpus callosum.

Neuroimaging plays an important role in the diagnosis of pe-
diatric glial tumors related to pathogenic somatic variants affect-
ing Histone 3 Family 3A and 3B.9,16,20-22 Because some recent
studies have demonstrated the critical importance of histone turn-
over in neuronal transcription and plasticity in the mammalian
brain23-25 and Bryant et al10 have demonstrated the role of germ-
line variants of H3F3 during embryogenesis as a causative factor
of neurocognitive delay in young individuals, we have investigated
the potential presentation of malformative features in the brain
MR imaging of these individuals and how these would impact the
patient’s prognosis.

Individuals with disease-causing germline variants in histone
3.3 in our cohort had a characteristic clinical background, usually
presenting with neurocognitive delay, seizures, and microcephaly.
On neuroimaging, our cohort also shared some similar features;
the most prevalent was a small posterior fossa (13/18 individuals),
with some of them presenting with Chiari I deformity and malfor-
mative features affecting the brainstem or cerebellum. There is a
wide spectrum of congenital abnormalities associated with a small
posterior fossa, including developmental malformations caused by
a genetic defect26-28 as well as disruptive causes due to injury of a
structure with normal developmental potential.29-32 Understanding
the spectrum of congenital posterior fossa anomalies and their diag-
nostic criteria is of paramount importance for optimal therapy,
accurate prognosis, and correct genetic counseling.29

We have encountered further neuroimaging findings in our
cohort of individuals with disease-causing germline missense var-
iants in H3F3. The findings included enlarged frontal horns of
the lateral ventricles, reflecting reduced size and/or an internal

FIG 2. Brain MR images. Axial T2WI (A–C) and axial T1WI (D) showing 4 different patients with variable degrees of diffuse abnormal orientation
and morphology of the gyri and sulci. Note particular abnormal morphology involving both frontal lobes (open arrows, A), a deformed periro-
landic region (asterisks, B), and abnormal gyration of the medial frontal lobes in C and D (open arrowheads, C and D). Axial T2WI (E–H) shows 4
different patients with temporal pole hypoplasia.
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rotational appearance of the nuclei of the caudate heads, dysgenesis
of the corpus callosum, and malformations of cortical development,
such as dysgyria. Cortical malformation implies abnormalities in
both the migration of neurons to the cortex and abnormal cortical
organization33,34 and may underlie the relatively high frequency of
epilepsy in those individuals.35,36

No statistical significance (P, .05) was found correlating mile-
stones delay (in sitting, walking, and speaking the first word) or
the presence of seizures with the main imaging findings, including
a small posterior fossa, basal ganglia abnormalities, and corpus
callosum and cortical malformations. Fifty percent of individuals
presenting with seizures also had malformative features involving
the cortex, suggesting a potential correlation between both.

Despite presenting promising findings, our study also had limi-
tations, including the retrospective nature of our study design. Our
cohort was biased because all individuals included in our study
except for 1 had severe clinical symptoms and significant abnor-
malities involving the brain, making correlative analysis more diffi-
cult. The other limitation was that we had a relatively small sample
size of individuals who had brain MR imaging assessment, though
it represents almost half of the 43 reported individuals in the litera-
ture. On the other hand, we found consistent neuroimaging find-
ings among our cohort, which is helpful for guiding appropriate
genetic investigations of these individuals. Our imaging findings
may reflect the spectrum of abnormalities seen in individuals with
germline variants in histone 3.3; however, these results need to be
validated in a larger cohort with broader disease severity.

CONCLUSIONS
The current series, including a subset of individuals previously
reported in the original work of Bryant et al,10 represents the larg-
est cohort of neuroradiologically characterized subjects carrying
disease-causing H3F3 germline variants. The identified constella-
tion of neuroimaging findings, namely a small posterior fossa,
reduced size and/or a rotational appearance of the nuclei of the
caudate heads, dysgenesis of the corpus callosum, and malforma-
tions of cortical development, offer novel diagnostic pattern able
to guide the diagnosis ofH3F3-related disorder.
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