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ORIGINAL RESEARCH
ADULT BRAIN

Radio-Pathomic Maps of Cell Density Identify Brain Tumor
Invasion beyond Traditional MRI-Defined Margins

S.A. Bobholz, A.K. Lowman, M. Brehler, F. Kyereme, S.R. Duenweg, J. Sherman, S.D. McGarry, E.J. Cochran,
J. Connelly, W.M. Mueller, M. Agarwal, A. Banerjee, and P.S. LaViolette

ABSTRACT

BACKGROUND AND PURPOSE: Currently, contrast-enhancing margins on T1WI are used to guide treatment of gliomas, yet tumor
invasion beyond the contrast-enhancing region is a known confounding factor. Therefore, this study used postmortem tissue sam-
ples aligned with clinically acquired MRIs to quantify the relationship between intensity values and cellularity as well as to develop
a radio-pathomic model to predict cellularity using MR imaging data.

MATERIALS AND METHODS: This single-institution study used 93 samples collected at postmortem examination from 44 patients with
brain cancer. Tissue samples were processed, stained with H&E, and digitized for nuclei segmentation and cell density calculation. Pre-
and postgadolinium contrast T1WI, T2 FLAIR, and ADC images were collected from each patient’s final acquisition before death. In-house
software was used to align tissue samples to the FLAIR image via manually defined control points. Mixed-effects models were used to
assess the relationship between single-image intensity and cellularity for each image. An ensemble learner was trained to predict cellular-
ity using 5 � 5 voxel tiles from each image, with a two-thirds to one-third train-test split for validation.

RESULTS: Single-image analyses found subtle associations between image intensity and cellularity, with a less pronounced relation-
ship in patients with glioblastoma. The radio-pathomic model accurately predicted cellularity in the test set (root mean squared
error ¼ 1015 cells/mm2) and identified regions of hypercellularity beyond the contrast-enhancing region.

CONCLUSIONS: A radio-pathomic model for cellularity trained with tissue samples acquired at postmortem examination is able to
identify regions of hypercellular tumor beyond traditional imaging signatures.

ABBREVIATIONS: CD31 ¼ cluster of differentiation 31; CPM ¼ cellularity prediction map; GBM ¼ glioblastoma; IHC ¼ immunohistochemically; MIB-1 ¼
Mindbomb Homolog 1 index; NGG ¼ non-GBM glioma; RMSE ¼ root mean squared error; TIC ¼ gadolinium-enhanced T1WI

H igh-grade primary brain tumors such as glioblastomas
(GBMs) are associated with particularly dismal prognoses,

with a mean survival rate of around 12–18months postdiagnosis.1

Precise localization of tumor margins, currently performed using

multiparametric MR imaging, is essential to maximizing the efficacy
of surgical and radiation treatments for these tumors as well as
monitoring tumor progression. T1WI acquired following injection
with a gadolinium contrast agent (T1C) is used to identify regions
where active tumor has disrupted the blood-brain barrier. Contrast
enhancement is used to define the extent of the primary tumor
region.2 Hyperintense regions on FLAIR images are thought to indi-
cate a combination of tumor-related edema3-5 and infiltrative non-
enhancing tumor.6 Multi-b-value DWI is also typically included in
glioma imaging protocols and is used to calculate quantitative ADC
maps. These maps identify areas of restricted diffusion that may
indicate either hypercellular tumor7-10 or coagulative necrosis.11

Tumor heterogeneity has been a recent focus in imaging stud-
ies of GBM. With noninvasive imaging, regional heterogeneity is
readily measurable, but capturing heterogeneity with pathology
samples is challenging. It can be achieved with en bloc resec-
tion12,13 or repeat sampling with image-guided biopsies. Each of
these techniques requires properly aligning samples to their loca-
tion on the imaging, which can be difficult due to the loss of
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orientation information during sectioning. Other issues such as
brain shift during craniotomy and the inability to sample regions
outside the suspected tumor region further complicate these
strategies. Despite these challenges, pathologic measurement of
tumor heterogeneity is crucial to improving the localization of
multiple tumor pathologies as well as validating imaging signa-
tures beyond the currently accepted tumor boundary.

Studies at postmortem examination have shown that viable tu-
mor can exist as far as 10 cm beyond contrast enhancement, where
heterogeneous pathologic features may confound traditional MR
imaging interpretations.9,11,14 Due to the sampling limitations of bi-
opsy samples, pathologic validation of the MR imaging signatures is
warranted beyond the contrast-enhancing region and in the post-
treatment state. This study used large tissue samples collected across
the brain at postmortem examination to validate current imaging
signatures as well as develop predictive tools to assess prospective
tumor beyond the contrast-enhancing region. Specifically, this
study tested the hypotheses that multiparametric MR imaging

intensity values are associated with tu-
mor cellularity at postmortem examina-
tion and that a radio-pathomic model
trained on postmortem data can accu-
rately identify regions of hypercellular
tumor beyond traditional imaging
signatures.

MATERIALS AND METHODS
Patient Population
This single-institution study was
approved by the institutional review
board of the Medical College of
Wisconsin, and written, informed con-
sent was obtained from each partici-
pant. A total of 44 consecutive patients
with pathologically confirmed brain
tumors were enrolled in this study.
Subjects collected before 2021 have
been retrospectively reclassified in con-
cordance with the 2021 World Health
Organization Classification standards
for brain tumors.15 Patients underwent,
on average, 1.55 operations, with 19
patients undergoing .1 operation and
3 patients undergoing no operation.
Subjects included in this study par-
tially overlap with small subsets used
for prior articles.9,16,17 Clinical histor-
ies and demographic information are
shown in Table 1. A diagrammatic
representation of the tissue and the
imaging data-collection process is
shown in Fig 1.

MR Image Acquisition and
Preprocessing
T1, T1C, and FLAIR and DWI-derived
ADC images collected from the

patient’s last clinical imaging session before death were included
for analysis (See the Online Supplemental Data for sample acquisi-
tion parameters). All images were rigidly aligned with each sub-
ject’s FLAIR image using the FMRIB Linear Image Registration
Tool (FLIRT; http://www.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT).18-20

All nonquantitative images (T1, T1C, FLAIR) were intensity-nor-
malized by dividing the voxel intensity by its whole-brain SD.21,22

Gray and white matter probability maps were computed using
SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).

Pathologic Feature Extraction
A total of 93 tissue samples were collected across all patients using
previously described methods (See the Online Supplemental Data
for further details).9,11,16 After digitization, images were processed
using Matlab 2020b (MathWorks) to extract pathologic features for
quantitative analyses. First, a color deconvolution algorithm was
used to project color data in terms of relative stain intensities,
resulting in an image with color channels representing hematoxylin,

Table 1: Clinical and demographic summary for study samplea

Overall GBM NGG Other
No. of subjects 44 32 10 2
Age (yr) 60.2 (13.7) 62.4 (11.6) 50.3 (15.3) 75.5 (13.4)
Overall survival (mo) 40.4 (61.5) 35.3 (64.9) 64.3 (46.1) 2.0 (0)
Radiation treatment (y/n) 39/5 29/3 10/0 0/2
Chemotherapy (y/n) 40/4 30/2 10/0 0/2
Tumor-treating fields (y/n) 28/16 16/16 0/10 0/2
Other treatment (y/n) 7/37 5/27 2/8 0/2
Time between last MR imaging
and death (days)

63.0 (62.1) 49.6 (42.3) 111.8 (93.1) 33.0 (13.4)

Note:—Y/n indicates yes/no.
a Quantitative values are presented as mean (SD).

FIG 1. Overview of the data-collection process. A, MR imaging data are collected from the
patient’s final imaging session before death and coregistered, and T1, T1C, and FLAIR images are in-
tensity-normalized. Tissue fixation and sampling involve the use of 3D printed brain cages and
slicing jigs to preserve structural integrity relative to the MR imaging. Following staining, tissue
samples are digitized for cellularity calculation using an automated nuclei segmentation algo-
rithm. B, In-house software is used to align each tissue sample to the FLAIR image using manually
defined control points and ROIs. C, Single-image cellularity associations are computed using
mixed-effects models, and a bagging regression ensemble is trained to predict cellularity using 5
� 5 voxel tiles from each image using a two-thirds to one-third train-test split.
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eosin, and residual color information.23,24 Images were then down-
sampled by a factor of 10 to smooth color data for improved nuclei
segmentation as well as to decrease processing time. Cell nuclei
were highlighted by applying filters on each color channel to selec-
tively identify positive hematoxylin staining, and individual nuclei
were identified using Matlab’s regionprops function. Cell count was
computed across 50 � 50 superpixels and converted to cells per
square millimeter. Segmentations for extracellular fluid and cyto-
plasm were computed and converted to proportions of the super-
pixel occupied by the component of interest. All segmentations
were visually inspected for quality assurance, and sample segmenta-
tions are provided in the Online Supplemental Data.

MRI-Histology Coregistration
Previously published in-house software (written in Matlab) was
used to precisely align histology images to each patient’s clinical
imaging (See the Online Supplemental Data for further
details).9,11,16,25,26 Voxel intensity values from T1, T1C, FLAIR, and
ADC images as well as cellularity values for each studied voxel were
then collected across the aligned tissue sample area and used for
subsequent analyses. Across all 93 samples, a total of 578,668 voxels
were included. All MR imaging and histology data were then
sampled to the most common cross-sectional MR imaging dimen-
sions (matrix size¼ 512� 512, voxel size¼ 0.4397 � 0.4397mm).

Statistical Analyses
Single-Image Analyses. Linear mixed-effects models were used to
quantify associations between MR imaging values and cellularity.
Image intensity was included as a main effect, with time between
the last MR imaging and patient death (in days) and gray/white
matter probability included as covariates. Patient number was
included in the model to account for patient-specific confounds.
Regression coefficients and R2 values (conditional and marginal)
were reported to quantify the relationship between MR imaging
intensity and cellularity in terms of slope and explained variance,
respectively.

To specifically compare diagnosis-level differences in the rela-
tionship between MR imaging intensity and cellularity, we com-
puted similar mixed-effects models for each image type, including a
term for the interaction between image intensity and diagnosis, with
diagnostic groups corresponding to GBM, non-GBM glioma
(NGG), and Other. The Other category consisted of 1 patient with
brain metastases originating from the colon and 1 patient with a
classically hypercellular diffuse large B-cell lymphoma. Both patients
did not receive treatment for their brain tumors and can thus pro-
vide a proxy for radiologic-pathologic relationships in the untreated
state. Due to the large number of observations relative to the
patient-level data set size, P values were considered a poor measure
of meaningful significance (all P, .00001). Therefore, measures of
effect size are reported for this subanalysis. Analogous models were
also calculated for extracellular fluid and cytoplasm as the depend-
ent variables to examine other cellular factors that may drive imag-
ing values, which are presented in the Online Supplemental Data.

Radio-Pathomic Modeling. A random forest ensemble algorithm
was used as the framework for developing a radio-pathomic
model of cellularity in 30 subjects. Specifically, a bootstrap

aggregating (bagging) model was used (100 learning cycles, learn
rate ¼ 1), which fits independent weak learners across several in-
dependent bootstrapped samples from the training data set to
obtain a combined ensemble model that minimizes variance
across learners.27,28 Inputs for this model were intensity values
from 5 � 5 voxel tiles across each image to incorporate spatial
and contextual information. The models were then applied to
MRIs from 14 held out test set subjects to test generalizability
(Table 2). Performance was quantified using root mean squared
error (RMSE) values. Predictions were then plotted for test set
subjects to assess successful identification of hypercellularity
beyond traditional imaging signatures, defined for this study as a
substantial relative increase in cell density compared with the sur-
rounding tissue and corresponding area on the contralateral
hemisphere. Due to the inter- and intratumoral heterogeneity of
the tumors included in this study, an absolute threshold for tu-
mor-related hypercellularity could not be defined, though relative
hypercellularity estimations aligned well with pathologically iden-
tified regions of tumor on a subset of samples used for validation
(Online Supplemental Data).

RESULTS
Single-Image Analyses
Mixed-effects model results for the single image analyses are pre-
sented in Fig 2. T1, T1C, and FLAIR images demonstrated posi-
tive associations with cellularity (T1 b ¼ 160.23 [5.11],
conditional R2 ¼ 0.35, marginal R2 ¼ 0.012; T1C b ¼ 480.60
[4.00], conditional R2 ¼ 0.44, marginal R2 ¼ �0.074; FLAIR
b ¼ 152.50 [3.12], conditional R2 ¼ 0.34, marginal R2 ¼ 0.010).
ADC values demonstrated a negative association with cellularity
(b ¼ �153.72 [5.45], conditional R2 ¼ 0.34, marginal R2 ¼
0.008). When we split data by diagnostic group (GBM versus
NGG versus Other), stronger relationships between image inten-
sity and cellularity were observed for NGG and Other patients
across each image except the precontrast T1, with the largest
diagnostic discrepancy seen in the ADC-cellularity relationship
(T1 b ¼ 135.56 [4.10], conditional R2 ¼ 0.15, marginal R2 ¼
0.014; T1C b ¼ 615.22 [3.76], conditional R2 ¼ 0.30, marginal
R2 ¼ 0.126; FLAIR b ¼ 277.51 [2.83], conditional R2 ¼ 0.18,
marginal R2 ¼ 0.036; ADC b ¼ 168.24 [2.84], conditional R2 ¼
0.16, marginal R2 ¼ 0.016). The GBM group showed an opposite-
direction relationship compared with the Other group for the
precontrast T1 intensity, with only a subtle relationship seen in
the NGG group.

Table 2: Clinical and demographic summary for training and
test set groupsa

Training Test
Diagnosis (GBM/NGG/Other) 24/4/1 8/6/1
Age (yr) 62.5 (12.9) 55.8 (14.5)
Overall survival (mo) 39.9 (69.5) 41.3 (44.9)
Radiation treatment (y/n) 25/4 14/1
Chemotherapy (y/n) 26/3 14/1
Tumor-treating fields (y/n) 12/17 4/11
Other treatment (y/n) 3/26 4/11
Time between last MR imaging
and death (days)

46.2 (39.2) 95.5 (83.9)

Note:—Y/n indicates yes/no.
a Quantitative values are presented as mean (SD).
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Radio-Pathomic Mapping
A summary of model performance, including training and test
set RMSE values and a scatterplot summarizing sample predic-
tion values, is provided in Fig 3. Overall training and test set
RMSE values (389 and 1015 cells/mm2, respectively) show some
degree of overfitting regarding the training data set, but they gen-
erally indicate accurate prediction of cellularity. A small subset of
subjects also performed worse than the general test set, as indi-
cated by the high RMSE outliers in Fig 3. The scatterplot, which
demonstrates sample predictions in terms of T1SUB (T1C–T1),
FLAIR, and ADC intensity values, shows indications of expected

relationships (ie, FLAIR-ADC mis-
match associated with hypercellular-
ity) but also shows that traditional
hypercellularity signatures are often
nonspecific. Sample predictions for
test set subjects are included in Fig 4,
in which cellularity predictive maps
(CPM) for the whole brain are pro-
vided with the clinical images for each
patient, as well as the pathologic
ground truth from the aligned post-
mortem slide. These sample predic-
tions show that the CPMs calculated
from the radio-pathomic model accu-
rately predict several regions of
increased cellularity beyond the tradi-
tional contrast-enhancing region and
discriminate between hypercellular
and nonhypercellular regions within
contrast enhancement. Additionally, a
tissue sample from a region of pre-
dicted hypercellularity beyond con-
trast enhancement on a 64-year-old

man’s test set subject (diagnosed with a GBM) was sampled and
immunohistochemically (IHC) stained to confirm the presence
of active tumor (Fig 5). Specifically, Ki-67 staining, which is used
to calculate the Mindbomb homolog-1 Index (MIB-1 index) as a
measure of mitotic activity, and cluster of differentiation 31
(CD31), which stains positive in regions of angiogenesis, were
collected in addition to standard H&E staining. Sample MR
images and CPMs are presented for the test set subject designated
for IHC analysis, along with tissue maps indicating the MIB-1
index, positive CD31 staining, and actual cellularity. The CPM
identifies a region of hypercellularity toward the perimeter of the

FIG 2. Single-image results depicting the relationship between image intensity and cellularity for each contrast. b values for the left-handed
plots indicate the change in cellularity per SD increase in image intensity and indicate positive associations for T1, T1C, and FLAIR, with the
expected negative association between ADC and cellularity present. b values for the right-handed plots indicate the difference in slope among
patients with GBM and NGG and Other patients, indicating that patients with GBM show less pronounced cellularity associations than patients
with NGG across all image types, with the exception of T1 intensity.

FIG 3. A, Subject-level RMSE values for the training and test data sets. Despite some degree of
overfitting, the test set RMSE indicates that the radio-pathomic model is able to accurately pre-
dict cellularity across most subjects. B, Sample predictions for test set imaging values presented
in terms of their T1SUB, FLAIR, and ADC intensity values. Patterns suggest the presence of tradi-
tional imaging signatures but also indicate the lack of specificity for these signatures with regard
to hypercellularity. TISUB indicates T1C–T1.
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posterior FLAIR hyperintense region of the left hemisphere, out-
side the T1 contrast enhancement. The tissue-derived cellularity
map confirms the presence of hypercellularity in this region, with
MIB-1 staining indicating high mitotic activity in the left-handed
portion of the hotspot and positive CD31 staining indicating

increased angiogenesis throughout the
hotspot, confirming likely tumor
presence.

DISCUSSION
By means of tissue samples taken at
postmortem examination aligned to
the patients’ clinical imaging, this study
assessed relationships between imaging
and pathology in the posttreatment
state, as well as beyond the contrast-
enhancing region. Linear mixed-effects
model–based analyses of image inten-
sity values found that single-image sig-
natures explain a relatively small
proportion of cellularity variance.
Additional analyses found an effect of
tumor type on the cellularity-intensity
relationship, with reduced cellularity
associations seen in patients with GBM
compared with those with NGG across
all image types. We developed a radio-
pathomic model using a bagging en-
semble architecture, which predicted
cellularity accurately on withheld sub-

jects, despite performing less reliably in a small subset of cases. The
model accurately predicted regions of hypercellularity beyond con-
trast enhancement and other traditional imaging signatures, and
IHC staining confirmed the presence of tumor within nonenhanc-
ing hypercellularity.

FIG 4. Sample predictions for 3 representative subjects, including a 43-year-old man diagnosed with a grade III anaplastic astrocytoma (A), a 48-
year-old man diagnosed with a GBM (B), and a 31-year-old woman diagnosed with a grade III anaplastic astrocytoma (C). These predictions indi-
cate that the radio-pathomic model is able to predict regions of hypercellularity beyond the contrast-enhancing region as well as in the absence
of restricted diffusion on the ADC image.

FIG 5. IHC staining for a nonenhancing region of predicted hypercellularity outside of contrast
enhancement (a 64-year-old man diagnosed with GBM). The ROI corresponds to an actual region
of hypercellularity seen on H&E staining as well as portions of high MIB-1 index and CD31 positiv-
ity. These molecular features indicate that this CPM-identified region contains active, proliferat-
ing tumor beyond the contrast-enhancing region. CPM indicates cellularity prediction map.
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The general trends for increased cellularity associated with
increased contrast enhancement and FLAIR intensity support the
notion that these features relate to the pathologic effects of the tu-
mor. However, these features failed to account for most cellularity
variance and, in some cases, failed to identify regions of hypercellu-
lar tumor. Past studies have particularly highlighted ADC values as
a correlate for cellularity. This study finds evidence of this negative
association, though the strength of this relationship is more subtle
in comparison with previous studies. Previous studies have sug-
gested that radiation therapy and other treatments may influence
these signatures because induced necrosis may confound tradi-
tional interpretations of these features.29,30 Diagnostic factors may
play a role here as well because the results of this study show that
GBM cases, which present with a wide range of pathologic charac-
teristics, have less pronounced relationships between cellularity
and imaging values than their lower-grade, more pathologically
homogeneous counterparts.31-33 Further studies probing the effects
of different treatments and tumors on imaging characteristics may
be able to further delineate these discrepancies between hypercellu-
lar and visually identifiable tumor. Particularly, studies comparing
radio-pathomic signatures between patients who have and have
not received treatment postsurgery could indicate how the rela-
tionship between MR imaging and pathology deviates in the
treated state from that of the natural progression of glial tumors.
Future studies modeling treatment duration and timing are
warranted.

The performance statistics for our radio-pathomic model sug-
gest that our model can accurately assess tumor cellularity in
patients with brain cancer. Most subjects in the test set had a RMSE
within an SD of each subject’s cellularity, indicating that the model
has the capacity to generalize to unseen data. These results thus
demonstrate the feasibility of developing radio-pathomic models for
pathologic features using postmortem tissue data, which have the
added benefits of larger sampleable tissue areas and the presence of
treatment-related effects. Sample whole-brain CPMs indicate that
the radio-pathomic model can highlight regions of hypercellularity
beyond contrast enhancement, suggesting that radio-pathomic
modeling may provide improved localization of hypercellular tumor
areas in the posttreatment setting. Posttreatment modeling is critical
for tracking longitudinal tumor development in a clinical setting
because models that can account for the effects of various treat-
ments on imaging signature will provide more reliable estimates of
tumor presence than those developed in the absence of treatment.
Studies mapping genetic signatures associated with treatment resist-
ance, immune response, and treatment receptivity using these tech-
niques may even be able to noninvasively distinguish among areas
of tissue that would benefit from different treatment types.
Additionally, future studies with larger samples might use these
maps to track differences in more specific brain cancer subtypes,
such as monitoring nonenhancing behavior and the hypercellular
growth rate between glioblastoma and other high-grade gliomas.

The CPMs generated from this radio-pathomic model pro-
vide early insight into clinical uses for noninvasive imaging
models for pathologic information collected at postmortem ex-
amination. By using commonly acquired clinical scans (T1, T1C,
FLAIR, ADC), this model can provide predictions on retrospec-
tive data as well as predict cellularity in future subjects without

adding additional scan time to a patient’s clinical MR imaging
acquisition. However, less common add-on acquisitions meas-
uring perfusion, spectroscopy, and chemical exchange saturation
transfer properties have shown great promise in identifying
pathologic signatures of tumors, and it is likely that including
these images in future studies may improve our models further.

Limitations
While the results of this study are promising, there are several limi-
tations that warrant noting. This study developed voxelwise predic-
tions across hundreds of thousands of observations, though the
subject-level sample size is still small by machine learning stand-
ards. Additionally, cellularity was used as the ground truth mea-
surement for this study due to its quantitative, calculatable nature.
However, hypercellularity is a nonexclusive and indirect marker of
tumor pathology, and future studies focused on predicting actual
tumor presence may be better suited to distinguishing tumor hyper-
cellularity from features like immune response. Likely, the largest
contributing factor to the limits of this study is the time between
MR imaging acquisition and tissue collection. While we statistically
controlled for this factor, it is possible that confounding effects such
as tumor growth within this period may influence the results
beyond statistical covariance. While it is feasible to perform MR
imaging on the postmortem brain to circumvent this time delay,
changes in tissue perfusion and properties resulting from brain
extraction and fixation would make the radio-pathomic model dif-
ficult to generalize to in vivo imaging. These specific weaknesses are
avenues for future research, in which the delay between the time of
death and final MR imaging are modeled extensively.

CONCLUSIONS
This study evaluated multiparametric MR imaging signatures of
brain tumor pathology and developed a radio-pathomic model
for brain cancer using machine learning. Our predictive maps of
tumor cellularity highlighted tumor beyond conventional boun-
daries and plausibly tracked tumor growth using longitudinal
imaging. We hope that these algorithms may be useful in the
future for treatment planning and tumor monitoring.
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