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ORIGINAL RESEARCH
INTERVENTIONAL

Identification of Small, Regularly Shaped Cerebral
Aneurysms Prone to Rupture

S.F. Salimi Ashkezari, F. Mut, M. Slawski, C.M. Jimenez, A.M. Robertson, and J.R. Cebral

ABSTRACT

BACKGROUND AND PURPOSE:Many small, regularly shaped cerebral aneurysms rupture; however, they usually receive a low score
based on current risk-assessment methods. Our goal was to identify patient and aneurysm characteristics associated with rupture
of small, regularly shaped aneurysms and to develop and validate predictive models of rupture in this aneurysm subpopulation.

MATERIALS AND METHODS: Cross-sectional data from 1079 aneurysms smaller than 7mm with regular shapes (without blebs) were
used to train predictive models for aneurysm rupture using machine learning methods. These models were based on the patient
population, aneurysm location, and hemodynamic and geometric characteristics derived from image-based computational fluid dy-
namics models. An independent data set with 102 small, regularly shaped aneurysms was used for validation.

RESULTS: Adverse hemodynamic environments characterized by strong, concentrated inflow jets, high speed, complex and unstable
flow patterns, and concentrated, oscillatory, and heterogeneous wall shear stress patterns were associated with rupture in small,
regularly shaped aneurysms. Additionally, ruptured aneurysms were larger and more elongated than unruptured aneurysms in this
subset. A total of 5 hemodynamic and 6 geometric parameters along with aneurysm location, multiplicity, and morphology, were
used as predictive variables. The best machine learning rupture prediction-model achieved a good performance with an area under
the curve of 0.84 on the external validation data set.

CONCLUSIONS: This study demonstrated the potential of using predictive machine learning models based on aneurysm-specific
hemodynamic, geometric, and anatomic characteristics for identifying small, regularly shaped aneurysms prone to rupture.

ABBREVIATIONS: AUC ¼ area under the curve; F1 score ¼ harmonic mean of precision and recall; FPR ¼ false-positive rate; PHASES ¼ Population,
Hypertension, Age, Size, Earlier subarachnoid hemorrhage, and Site; PPV ¼ positive predictive value; ROC ¼ receiver operating characteristic; SVM ¼ support
vector machine; TPR ¼ true-positive rate; WSS ¼ wall shear stress

Cerebral aneurysms are a common vascular disease affecting
about 2%–5% of the general population.1,2 Many studies

have focused on identifying risk factors for the rupture of cerebral
aneurysms.3-5 Aneurysm size and shape irregularity determined
by the presence of blebs have been identified as risk factors for
future aneurysm rupture.6-8 In addition, risk-scoring scales such

as Population, Hypertension, Age, Size, Earlier subarachnoid
hemorrhage, and Site (PHASES)5 assign a higher risk of rupture
to aneurysms larger than 7mm or aneurysms that have blebs.

However, it is well-known that a large number of aneurysms
presenting with rupture are small (,7mm),9,10 and many of them

have regular shapes and do not have any blebs or daughter sacs.

Thus, these aneurysms would, in general, receive a low score for

rupture risk based on the current scales, leading to undertreatment

and unnecessary patient mortality and morbidity. Therefore, it
would be of great importance to identify those small, regularly

shaped aneurysms that are prone to rupture to recommend them

for treatment and prevent devastating consequences, while, at the

same time, minimizing the number of unnecessary interventions.
Thus, the objective of this study was to identify patient and an-

eurysm characteristics associated with the rupture of small, regu-

larly shaped aneurysms, train machine learning models using

those characteristics to identify rupture-prone aneurysms in this
important subpopulation, and evaluate the predictive performance
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of the trained models on an external data set to assess their poten-

tial clinical utility.

MATERIALS AND METHODS
Overview of Methodology
This was a cross-sectional study that used several data sets gener-
ated from populations from multiple geographic regions. The
analysis was restricted to small (,7mm), regularly shaped aneur-
ysms (ie, without blebs). The study was conducted in 3 steps: 1)
identify the distinguishing characteristics between ruptured and
unruptured small, regularly shaped aneurysms, 2) develop pre-
dictive models of rupture using machine learning techniques, and
3) validate the model performance using a separate independent
data set from different hospitals. To achieve these goals, we used
2 independent cross-sectional data sets. The first data set was
used for identifying differences between ruptured and unrup-
tured small, regularly shaped aneurysms and to train the predic-
tive models. The second data set was used as an external data set
to validate the predictions of these models and determine their
predictive power and generalizability. Protocols for consent, data
handling, and analysis were approved by the institutional review
boards at the University of Pittsburgh and George Mason
University.

Patients and Data
The first data set used for machine learning model development
and internal cross-validation (training set) had a total of 1079
aneurysms in 764 patients. These aneurysms corresponded to
patients referred for diagnostic angiography and imaged with 3D
rotational angiography or CTA. This set included data from dif-
ferent populations, including the United States, South America,
Europe other than Finland, Finland, and Japan. Of these aneur-
ysms, 197 were ruptured (18.3%) and the remaining 882 aneur-
ysms (81.7%) were unruptured. Patients ranged from 12 to
90 years of age, with a mean of 56.4 years. There were 570 (75%)
females and 194 (25%) males, and the mean aneurysm size was
4.1mm (range, 1.1–6.9mm). Multiple aneurysms were present in
344 patients (45%).

The second data set (validation set) contained 102 aneurysms
in 63 patients selected for surgical clipping and imaged with 3D
rotational angiography or CTA before surgery. This set contained
data from the United States and Finland populations. Of these
aneurysms, 14 were ruptured (13.7%) and the remaining 88
aneurysms (86.3%) were unruptured. The average patient age
was 53.3 years (median, 54 years; range, 25–69 years). There were
49 (78%) women and 14 (22%) men, and the mean aneurysm size
was 4.4mm (range, 1.3–6.9mm). Multiple aneurysms were pres-
ent in 23 patients (37%). For this study, de-identified vascular
geometries and patient demographic information were obtained
from our data base. The details about these data sets are summar-
ized in the Online Supplemental Data.

Aneurysm Characterization
Patient-specific 3D vascular models were constructed for all
aneurysms in the training and testing sets from the available 3D
rotational angiography or CTA images as previously described.11

To characterize the hemodynamic environment of the aneurysm,

we performed computational fluid dynamics simulations. Similar
to previous studies,12,13 blood was modeled as a Newtonian incom-
pressible fluid with a density of 1.0 g/cm3 and viscosity of 0.04
Poise, and the unsteady Navier-Stokes equations were numerically
solved using finite elements. Vascular walls were approximated
as rigid, and pulsatile inflow conditions were imposed by scaling
a representative flow waveform with an empiric law relating
flow rate and cross-sectional vessel area in internal carotid and
vertebral arteries. Outflow conditions were imposed by dividing
flows consistent with the Murray law. Simulations were per-
formed for 2 cardiac cycles with a heart-beat rate of 60 beats per
minute using 100 time-steps per cardiac cycle, and data from
the second cycle were used to characterize the flow conditions
in the aneurysm.

To characterize the aneurysm hemodynamics and geometry,
we computed 15 flow variables and 10 geometric parameters
defined on the aneurysm region.14,15 Additionally, the aneurysm
anatomic characteristics (location, morphology, and multiplicity)
and patient demographics (population, sex, and age) were
described by 6 categoric variables (numeric in the case of age).

Postprocessing and Construction of Rupture-Predictive
Models
Patient and aneurysm characteristics associated with rupture of
small, regularly shaped aneurysms were identified in a data set 1 by
performing contingency table analysis and the Pearson x 2 test for
categoric variables. For continuous variables, tests for differences
in the median of the 2 populations defined by the rupture status
were performed via the 2-sample unpaired Wilcoxon (Mann-
Whitney) test. All statistical analyses and machine learning model-
ing were performed in R statistical and computing software (http://
www.r-project.org/). Comparisons between multiple groups were
adjusted using the Benjamini-Hochberg method, and associations
were considered significant with P, .05 after adjustment.

Various machine learning methods for supervised classifica-
tion were used to identify the best predictive power. These
included logistic regression, support vector machine (SVM), K-
nearest neighbor, random forest, and bagging or bootstrap aggre-
gating. Data from all 1079 aneurysms (no missing data) of the
first data set were used for model training.

The columns of the feature matrix of the continuous predictor
variables were standardized so that the attributes would have a
mean value of zero and an SD of 1. Categoric variables were
encoded as dummy variables. One hundred repetitions of nested
10-fold (internal) cross-validation, yielding 100 random partitions
of the original training sample, were used to train the models, esti-
mate the tuning parameters, and identify the important predictor
variables. In this step, data set 1 was split into training and testing
subsets for each of the 10 folds, and the optimal value of each tun-
ing parameter related to the training process was determined via a
grid search to achieve the largest area under the curve (AUC) of
the receiver operating characteristic (ROC). The 100 results were
combined (averaged) to produce a single estimation.

Feature Selection
To identify features to be used to predict rupture in aneurysms,
we performed the recursive feature elimination16 technique.

548 Salimi Ashkezari Apr 2022 www.ajnr.org

http://www.r-project.org/
http://www.r-project.org/


Briefly, an initial model was built on the basis of the entire set of
predictors, and an importance score was computed for each pre-
dictor. Then, the least important predictors were recursively
removed while maintaining the overall model accuracy. The opti-
mal subset of features was then used to train the final model.

Because only about 20% of small, regularly shaped cerebral
aneurysms rupture, the data sets are unbalanced, negatively
impacting the model fitting and performance. To deal with this
problem during the internal cross-validation of the model train-
ing process, we used a down-sampling approach, in which data
from most classes (unruptured aneurysms) were randomly
removed to achieve a balanced class distribution and conse-
quently mitigate this issue.

Model Performance and Validation
First, the performance of the different machine learning models of
aneurysm rupture was evaluated internally (ie, on the same train-
ing data set) and compared. For this purpose, the AUC of the
ROC, the true-positive rate (TPR), the false-positive rate (FPR),
and the misclassification error were calculated. Pair-wise compari-
sons of these performance metrics between machine learning mod-
els were performed using the built-in summary function of the
caret package available in R (based on a 1-sample t test) to find dif-
ferences in the performance of various models and to determine
whether these differences were statistically significant.

Second, the predictive models were externally validated on the
independent validation data set 2 containing data from 102
aneurysms that were not used during training, parameter tuning,
and model selection. In addition to the AUC, the accuracy of the
model was assessed in terms of the true-positive rate (TPR or
recall), FPR, positive predictive value (PPV or precision), negative
predictive value, harmonic mean of precision and recall (F1
score), and balanced accuracy.

RESULTS
Patient and Aneurysm Characteristics Associated with
Rupture
Statistical comparisons between patient and aneurysm character-
istics among ruptured and unruptured small, regularly shaped
aneurysms are presented in the Online Supplemental Data.
Aneurysm rupture was significantly associated with patient sex
(the ratio of males to females was higher in the ruptured group
compared with the unruptured group, P= .01), age (patients with
ruptured aneurysms were, in general, younger, P= .003), and
population (the Finnish population had a higher proportion of
ruptured aneurysms compared with the US and European popu-
lations, P, .001). In addition, aneurysm rupture was significantly
associated with aneurysm multiplicity (most ruptured aneurysms

were single aneurysms, P, .001), morphology (ratio of bifurca-
tion to lateral aneurysm was higher in the ruptured group,
P, .001), and location (the anterior communicating artery was
the location with the higher proportion of ruptured aneurysms,
P, .01).

Hemodynamic and geometric differences between ruptured
and unruptured small, regularly shaped aneurysms are presented
in the Online Supplemental Data. As shown in these data, most
of the hemodynamic and geometric variables were significantly
different between the 2 groups of aneurysms, even after adjust-
ment for multiple testing.

Hemodynamically, ruptured aneurysms had stronger (Q,
P= .02) and more concentrated inflow jets (ICI, P= .002) and
more complex (corelen, P, .001) and unstable (podent,
P, .001) flow patterns than unruptured aneurysms. They also
had larger maximum wall shear stress (WSSmax) (P, .001;
MaxWSSnorm, P= .003), more concentrated (SCI, P, .001) and
oscillatory (OSImax, P, .001; OSImean, P, .001) WSS distribu-
tion, and a larger number of critical points of the WSS field (nr.
critical, P, .001).

Geometrically, ruptured aneurysms were larger (Asize,
P, .001; SR, P, .001; GAA, P, .001), more elongated (AR,
P, .001; VOR, P, .001; BF, P, .001), and had larger shape dis-
tortion (CR, P, .001; NSI, P, .001; UI, P, .001) than unrup-
tured aneurysms in this subpopulation.

Variables Retained in the Model
Thirty-one variables were used to build the models and select the
optimal set of predictive features. The final model retained the
following 14 predictive variables from the 3 different domains: 1)
hemodynamic: corelen, WSS, OSImax, OSImean, nr.critical; 2)
geometric: Asize, SR, AR, VOR, BF, NSI; and 3) aneurysm: loca-
tion, multiplicity, and morphology. As illustrated in the Online
Supplemental Data, accuracy reached the maximum level when
14 variables were retained in the model, with a noticeable
decrease in accuracy beyond 14 variables. See the Online
Supplemental Data for the complete list of the variables consid-
ered and retained.

Performance of Different Predictive Models
The best predictive model for internal cross-validation was the
SVM, with a mean AUC= 0.85, TPR= 0.82, FPR= 0.26, and mis-
classification error = 0.23 (see Table 1 for performance metrics
for all machine learning models considered, and the Online
Supplemental Data to visualize the spread of their AUC, sensitiv-
ity, and specificity). Pair-wise comparisons of different perform-
ance metrics among machine learning models are presented in
the Online Supplemental Data.

Table 1: Summary of evaluation metrics for machine learning predictive models during repeated internal 10-fold cross-validation
Model AUC (mean) (maximum) TPR (mean) (maximum) FPR (mean) (minimum) Misclassification Error (mean) (minimum)
BG 0.84 (0.91) 0.75 (0.84) 0.23 (0.18) 0.23 (0.14)
RF 0.84 (0.92) 0.78 (0.89) 0.25 (0.17) 0.25 (0.16)
SVM 0.85 (0.90) 0.82 (0.95) 0.26 (0.16) 0.23 (0.17)
KNN 0.82 (0.90) 0.74 (0.90) 0.23 (0.14) 0.23 (0.15)
LR 0.83 (0.92) 0.73 (0.95) 0.23 (0.15) 0.24 (0.16)

Note:—AUC indicates area under the curve; BG, bagging or bootstrap aggregating; FPR, false-positive rate; KNN, K-nearest neighbor; LR, logistic regression; RF, random
forest; SVM, support vector machine; TPR, true-positive rate.

AJNR Am J Neuroradiol 43:547–53 Apr 2022 www.ajnr.org 549



External Validation
Table 2 presents the performance of different machine learning
classifiers when applied to the independent external testing data
set. It can be seen that the best performance was achieved by the
SVM model, with consistently the largest AUC= 0.84 (95% CI,
0.80–0.89), TPR= 0.93, PPV= 0.30, NPV = 0.98, F1 score = 0.45,
and balanced accuracy = 0.79, and the smallest misclassification
error = 0.31. However, the random forest model had the smallest
FPR= 0.32, slightly smaller compared with FPR= 0.35 of the
SVM model. The performance of different machine learning
models on the external data set is graphically presented in Fig 1,
which shows the ROC and the precision/recall curves.

These results suggest that the SVM model was able to cor-
rectly identify 93% of small, regularly shaped aneurysms that rup-
tured. On the other hand, 35% of unruptured aneurysms were
identified as at risk of rupture, which may result in overtreatment
for these lower-risk aneurysms. Of all the aneurysms classified as
unruptured, 98% were correctly classified. This finding indicates
that the model is generalizable to independent data sets from dif-
ferent centers.

The most important variables (n=14) for discriminating
between small, regularly shaped aneurysms prone to rupture and
aneurysms less likely to rupture were determined using an algo-
rithm that excludes variables from the model, one at a time, and

ranks the importance of the excluded variable on the basis of the
decrement in the AUC of the ROC (as the measure of variable
importance), in which a larger decrement indicates a more im-
portant feature. The most important variables (Fig 2) comprised
geometric shape and size factors, flow complexity, and WSS pa-
rameters, as well as aneurysmmultiplicity.

Examples of aneurysms from the external validation data set
that were correctly classified by the SVM model are illustrated in
the Online Supplemental Data. The upper panel of the Online
Supplemental Data shows a small (,7mm) and regularly, shaped
ruptured aneurysm at the anterior communicating artery.
Visualizations illustrate the hemodynamic environment charac-
terized by a strong inflow jet, elevated WSS, and a complex flow
structure. The SVM model assigned a probability of 92% to this
aneurysm being ruptured. The lower panel shows an unruptured,
small, regularly shaped aneurysm at the anterior communicating
artery and its hemodynamics characterized by a slow, smooth,
and simple flow pattern with uniformly low WSS. This aneurysm
was assigned a probability of 90% of not being ruptured. The
upper panel of the Online Supplemental Data shows a small, reg-
ularly shaped ruptured aneurysm at the MCA and its hemody-
namics environment characterized by a strong inflow jet, elevated
and heterogeneous WSS, and a complex flow structure. The SVM
model assigned a probability of 88% of this aneurysm being

FIG 1. Performance of different machine learning models on an independent, external validation data set: A, ROC curves. B, Precision/recall
curves. The best performance is achieved by the SVM model (red curves). BG indicates bagging or bootstrap aggregating; RF, random forest;
SVM, support vector machine; KNN, K-nearest neighbor; LR, logistic regression.

Table 2: Performance measures for each machine learning model applied to the external testing data seta

Model AUC TPR FPR PPV NPV F1 Score
Balanced
Accuracy

Misclassification
Error

BG 0.74 0.71 0.35 0.24 0.93 0.36 0.68 0.34
RF 0.76 0.71 0.32 0.26 0.94 0.38 0.70 0.32
SVM 0.84 0.93 0.35 0.30 0.98 0.45 0.79 0.31
KNN 0.76 0.79 0.36 0.26 0.95 0.39 0.71 0.34
LR 0.77 0.86 0.37 0.27 0.96 0.41 0.74 0.34

Note:—NPV indicates negative predictive value, the number of true-negatives divided by the number of true- and false-negatives; AUC, area under curve; FPR, false-posi-
tive rate (1-specificity = number of false-positives divided by all negatives); PPV, positive predictive value (precision = number of true-positives divided by number of
true- and false-positives); TPR, true-positive rate (sensitivity or recall = number of true-positives divided by all positives).
a F1 = 2 � PPV � TPR / (PPV 1 TPR) is the harmonic mean of precision and recall. Balanced accuracy is accuracy accounting for class imbalance [(sensitivity 1 specificity)/ 2].
Misclassification error is the number of incorrect classifications divided by sample size.
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ruptured. The lower panel shows an unruptured small, regularly
shaped aneurysm at the MCA and its hemodynamics, character-
ized by a simple flow pattern with fairly uniformWSS. This aneu-
rysm was assigned a probability of 86% of not being ruptured.
These examples highlight the generalizability of the predictive
model.

DISCUSSION
The focus of this study was to identify patient and aneurysm
characteristics associated with rupture of small and regularly
shaped aneurysms; because this is a cross-sectional study, it is not
the authors’ intention to establish causal associations. Several
patient and aneurysm characteristics were different between rup-
tured and unruptured aneurysms of this subset. In particular, our
results indicate that when restricting the analysis to small aneur-
ysms (,7mm) without blebs, ruptured aneurysms have higher
flow conditions characterized by high, concentrated inflow jets;
complex, unstable flow patterns; and concentrated, complex, and
oscillatory WSS distribution compared with unruptured aneur-
ysms. Additionally, ruptured aneurysms were larger and more
elongated and had larger shape distortion than unruptured
aneurysms in this subpopulation. Furthermore, aneurysm rup-
ture was significantly associated with patient sex, age, population,
as well as aneurysm multiplicity, morphology, and location.

Machine learning models based on patient and aneurysm
characteristics are capable of identifying rupture-prone small,
regularly shaped aneurysms with an accuracy of approximately
79%, a sensitivity of 93%, and a specificity of 65%. This feature is
important to improve the management of patients presenting

with small, regularly shaped aneurysms. To interpret the meaning
of these numbers, one should consider, for example, that in a
sample of 100 small, regularly shaped aneurysms, approximately
18 would rupture (based on a rupture rate of 17.6% from our
data base, which, of course, is higher than the annual rupture
rates reported from highly selected series of longitudinally fol-
lowed aneurysms17). On one extreme, one could decide to treat
all aneurysms. In this case, all hemorrhages would presumably be
avoided, but the expected number of complications would be
approximately 10, assuming a 10% risk of complications.18,19 On
the other extreme, if one decided not to treat any of these small,
regularly shaped aneurysms, there would be no treatment com-
plications, but a total of 18 hemorrhages. Even recognizing the
inaccuracies of the predictive model presented here, which would
correctly identify 17 of the 18 aneurysms prone to rupture and
thus avoid their bleeding and misidentify as potentially risky
another 29 that would probably not need intervention, this
method could be useful for clinicians. For instance, with the use
of the machine learning model, the number of expected treatment
complications would be around 5 and the expected number of rup-
tures would be around 1, with a reduction in the total number of
treatments to about 46 compared with the 100 treatments if one
decided to treat everybody. Considering the high complication rate
of unruptured cerebral aneurysm intervention, around 10% by any
method, added to the low rupture rate of small, regularly shaped
aneurysms, it is very important to identify those patients with
aneurysms that rarely rupture for whom the intervention is prob-
ably unnecessary and thus the number of avoidable complications
that lead to brain damage. These complications also have an
impact on the health system because it is well-known that one of
the most expensive items in attending cerebral aneurysms, both
socially and economically, is the treatment of perioperative compli-
cations, which would be minimized.

Machine learning algorithms have recently gained attention
for assessing rupture risk of cerebral aneurysms. One study20

used 12 morphologic features in addition to clinical and anatomic
characteristics to predict aneurysm stability in a sample of 420
aneurysms of ,8mm (without excluding aneurysms with blebs)
from a single institution and found an aneurysm irregularity met-
ric to be the most important predictor. Although our models
incorporate hemodynamic features and did not include some of
their clinical parameters (eg, hyperlipidemia), the results are con-
sistent and the predictive power in internal cross-validation is
similar (AUC= 0.85 for both). Furthermore, our external valida-
tion indicates that our models are generalizable to other popula-
tions. Another study21 used cross-sectional data of 374
aneurysms ,8mm (18% of which were ruptured) from a single
center to build machine learning models of rupture based on
patient demographics, life behaviors, clinical histories, lipid pro-
files, and aneurysm morphology. Their predictive power in inter-
nal 10-fold cross-validation was slightly higher than ours (AUC=
0.88) and significantly higher than the PHASES score (as
expected). While our findings are consistent with this study in
that aneurysm irregularity, location, multiplicity, and size ratio
are important predictors, 1 important difference is that our study
considered only aneurysms without blebs, while in this other
study, most ruptured aneurysms had blebs.

FIG 2. Variable importance for the SVM model applied to the valida-
tion data set. Variables are ordered from top to bottom according to
their importance determined by the AUC of the ROC as the measure
of variable importance. See the Online Supplemental Data for an ex-
planation of the terms.
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Another recent study22 proposed the use of fluid-structure
interaction for aneurysm risk assessment, by first estimating
regions of thin walls from computational fluid dynamics analysis
and then using fluid-structure interaction to estimate wall
strain for varying wall stiffness. Although this work made sev-
eral important assumptions and was based on a small (but lon-
gitudinal) sample from a single institution, it proposes an
intriguing approach. Our models included several hemody-
namic features that were used in this study for estimating local
wall thinning, which subsequently affects wall strain and rup-
ture risk, and thus are expected to be important predictors as
shown in our study. Additionally, more advanced machine
learning and artificial intelligence algorithms have also been
used to predict treatment outcomes after aneurysm clipping23

and for the detection and measurement of aneurysms on MR
images,24,25 showing that these methods are quite effective for
multivariate prediction in a wide variety of applications but
need careful interpretation.

We believe that ultimately, the aneurysm risk assessment
should be conducted in stages. For example, in the first stage,
aneurysm size, shape irregularity, and patient characteristics (as
in PHASES5 or unruptured intracranial aneurysm treatment
score [UIATS]4) could be used to pick up the most dangerous
aneurysms. In the second stage, additional anatomic, geometric,
and hemodynamic parameters derived from precise diagnostic
angiography images (3D DSA or CTA) could be used to identify
rupture-prone aneurysms within the small, regularly shaped
subset as in the current study. Perhaps in a third stage, further
characteristics related to the status of the aneurysm wall (for
example derived from MR vessel wall imaging and/or aneurysm
wall-enhancement images) could be used to further identify
unstable aneurysms that should be recommended for immedi-
ate treatment and those that could be safely monitored without
treatment. Thus, aneurysm evaluation would be performed by
first applying the existing scales based on demographics and ba-
sic imaging; second, performing a more in-depth aneurysm-
specific analysis of shape and flow; and finally, studying the an-
eurysm wall with additional specialized imaging.

The current study has several limitations. In addition to the
usual limitations of the computational fluid dynamics modeling
approach (Newtonian flow, rigid walls, estimated flow rates, and so
forth), in this study, the sample size was limited and there were
only 14 ruptured, small, regularly shaped aneurysms in the external
validation data set. Also, to deal with the inherent imbalance in the
training data set, we performed down-sampling in the cross-valida-
tion process. Moreover, the internal and external validations were
performed using retrospective cross-sectional data sets. A recent
study26 showed that geometric and hemodynamic characteristics
were not significantly different between unstable (growing or
symptomatic) and already ruptured aneurysms but were signifi-
cantly different from unruptured aneurysms, thus providing
support to the assumption that predictive models based on cross-
sectional data are useful to identify aneurysms at risk of destabiliza-
tion and rupture. Nevertheless, further evaluation and validation
with longitudinal data sets are required and will be the focus of
future studies. Finally, in the construction of the predictive models
of this study, important clinical variables that have been previously

recognized as rupture risk factors such as hypertension, smoking,
hyperlipidemia, and family background were omitted, possibly
inducing some biases in the present work.

CONCLUSIONS
Hemodynamic conditions characterized by strong, concentrated
inflow jets; complex, unstable flow patterns; and concentrated
and oscillatory WSS patterns are associated with aneurysm rup-
ture in small, regularly shaped cerebral aneurysms. Additionally,
ruptured aneurysms are larger, more elongated, and have larger
shape distortion than unruptured aneurysms in this subset.
Predictive models based on aneurysm characteristics are capable
of identifying small, regularly shaped aneurysms prone to rup-
ture. This is an important finding because we could potentially
understand which parameters predispose cerebral aneurysms in
the subpopulation of small, regularly shaped aneurysms to rup-
ture, and the findings could lead to improved patient selection
for treatment or monitoring.

Disclosure forms provided by the authors are available with the full text and
PDF of this article at www.ajnr.org.
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