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BACKGROUND: Differentiating gliomas and primary CNS lymphoma represents a diagnostic challenge with important therapeutic

ramifications. Biopsy is the preferred method of diagnosis, while MR imaging in conjunction with machine learning has shown prom-

ising results in differentiating these tumors.

PURPOSE: Our aim was to evaluate the quality of reporting and risk of bias, assess data bases with which the machine learning clas-

sification algorithms were developed, the algorithms themselves, and their performance.

DATA SOURCES: Ovid EMBASE, Ovid MEDLINE, Cochrane Central Register of Controlled Trials, and the Web of Science Core
Collection were searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

STUDY SELECTION: From 11,727 studies, 23 peer-reviewed studies used machine learning to differentiate primary CNS lymphoma

from gliomas in 2276 patients.

DATA ANALYSIS: Characteristics of data sets and machine learning algorithms were extracted. A meta-analysis on a subset of stud-

ies was performed. Reporting quality and risk of bias were assessed using the Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis (TRIPOD) and Prediction Model Study Risk Of Bias Assessment Tool.

DATA SYNTHESIS: The highest area under the receiver operating characteristic curve (0.961) and accuracy (91.2%) in external valida-

tion were achieved by logistic regression and support vector machines models using conventional radiomic features. Meta-analysis

of machine learning classifiers using these features yielded a mean area under the receiver operating characteristic curve of 0.944
(95% Cl, 0.898-0.99). The median TRIPOD score was 51.7%. The risk of bias was high for 16 studies.

LIMITATIONS: Exclusion of abstracts decreased the sensitivity in evaluating all published studies. Meta-analysis had high heterogeneity.

CONCLUSIONS: Machine learning—based methods of differentiating primary CNS lymphoma from gliomas have shown great poten-

tial, but most studies lack large, balanced data sets and external validation. Assessment of the studies identified multiple deficien-

cies in reporting quality and risk of bias. These factors reduce the generalizability and reproducibility of the findings.

ABBREVIATIONS: Al = artificial intelligence; AUC = area under the receiver operating characteristic curve; CNN = convolutional neural network; ML =
machine learning; PCNSL = primary CNS lymphoma; PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses; PROBAST = Prediction
model study Risk Of Bias Assessment Tool; TRIPOD = Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis

liomas are the most common primary malignancy of the
CNS." An important differential diagnosis for gliomas is
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primary CNS lymphoma (PCNSL), a more uncommon but
highly malignant neoplasia.”> Correct differentiation of these tu-
mor entities is an important challenge for clinicians because
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therapy differs vastly: High-grade gliomas are treated with sur-
gery and adjuvant radiochemotherapy,” while standard PCNSL
treatment consists of high-dose methotrexate chemotherapy.*”
Surgery, in the latter group, is mostly reserved for either biopsy
and decompressive surgery in cases of increased intracranial pres-
sure.® Currently, the standard diagnostic approach for suspected
PCNSL consists of stereotactic biopsy and histopathologic analy-
sis.” Nonetheless, this diagnostic method has morbidity and mor-
tality rates of up to 6% and 3%, respectively.* Furthermore,
while maximum surgical resection is the standard-of-care initial
treatment for gliomas, its effectiveness in treating PCNSL has yet
to be convincingly demonstrated.*'* Therefore, surgical biopsy
poses important risks and yields no benefit besides histopatho-
logic diagnosis. In this context, a noninvasive diagnostic proce-
dure would be beneficial. An important candidate for this is
artificial intelligence (AI)-assisted radiologic diagnosis.

PCNSL typically appears as a homogeneously contrast-
enhancing parenchymal mass without necrosis,'" while glioblas-
toma as an intra-axial tumor with irregular infiltrative margins
and a central heterogeneously enhancing core, reflecting necrosis
and hemorrhage.'>'*> While these qualitative features provide val-
uable clues for differentiation in typical cases, there are atypical
presentations: PCNSL with ring-enhancing lesions and central
necrosis can be observed in up to 13% of non-AIDS- and up to
75% of AIDS-related cases.""

An important tool that has recently emerged to improve the
radiologic diagnosis is machine learning (ML). ML pipelines
learn quantitative image features that are not visible to the human
eye and correlate them to a clinical outcome.'* In the past deca-
des, considerable effort has been put into developing ML-based
classification algorithms for differentiating gliomas and PCNSLs.
This work has led to much data that should be identified, system-
atically evaluated, and synthesized. So far, 1 systematic review on
this topic has been presented by Nguyen et al,' in 2018, but it
was performed only on a single bibliographic data base. Prior
studies have shown that single data base searches are insensitive
and limit the scope of systematic reviews.'® Therefore, we per-
formed a more comprehensive search using 4 established data
bases and wider-reaching keywords.

In this systematic review, we synthesized and evaluated the qual-
ity of reporting, risk of bias, data bases, algorithms, and their per-
formance achieved thus far. We hope to provide an accurate
picture of the current state of development, identifying shortcom-
ings and providing recommendations to increase model perform-
ance, reproducibility, and generalizability to enable implementation
into routine clinical practice.

MATERIALS AND METHODS

Search Strategy and Information Sources

This systematic review was performed in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines.'” The study was registered with
the International Prospective Register of Systematic Reviews
(PROSPERO, CRD42020209938). A data base search of Ovid
EMBASE, Ovid MEDLINE, and the Cochrane Central Register
of Controlled Trials (CENTRAL), and the Web of Science Core
Collection was performed by a clinical librarian from anytime

until February 2021. The search strategy included the following
keywords and controlled vocabulary combining the terms for the

» o«

following: “AL” “machine learning,” “deep learning,” “radio-

» « » «

mics,” “MR imaging,” “glioma” as well as related terms (Online
Supplemental Data). The search strategy was independently
reviewed by a second institutional librarian. All publications were
screened on Covidence (Veritas Health Innovation) software by a
neuroradiology attending physician, a radiology resident, an Al

graduate student, and a senior medical student.

Selection Process and Eligibility Criteria

To select relevant studies, the 4 reviewers undertook the follow-
ing steps independently: Initially, after duplicate removal, all
study abstracts were screened to exclude studies not pertaining to
neuro-oncology or not using ML methods. Next, full-text review
was performed to exclude publications that met the following cri-
teria: 1) were only abstracts; 2) were not original articles; 3) did not
involve artificial intelligence or ML; 4) did not involve gliomas; 5)
were not done on humans; 6) were not performed with either MR
imaging, PET, or MR spectroscopy; and 7) were not in English.
Lastly, only studies evaluating differentiation of gliomas versus
PCNSL were included for data extraction. In an initial search, stud-
ies that used only logistic regression were excluded. These studies
were, however, later included by filtering the excluded studies in
Covidence by the terms “lymphoma” and “pcnsl.” Here, studies
that used logistic regression and differentiated gliomas from
PCNSL were selected after abstract screening and full-text review.
When disagreement between reviewers occurred, the neuroradiol-
ogy attending physician made the final decision.

Data-Collection Process and Data Items

Data was extracted independently by 2 reviewers using a cus-
tom-built data-extraction form (Online Supplemental Data).
Disagreement was resolved by reaching a consensus through dis-
cussion. Data was collected on 1) the report (title, authors, year);
2) the patient characteristics (number of patients included, source
of data, glioma/PCNSL case ratio, immune status of the patients
with lymphoma, percentage of patients in training and testing,
and use of an independent test cohort); 3) the tumor type studied
and the definition of ground-truth (type of glioma, criterion
standard for diagnosis); 4) the ML method used (classic ML or
deep learning, algorithms studied, type and number of features
used); 5) the imaging procedures performed (type of imaging
studies used, magnetic field strength of MR imaging machine,
MR imaging sequence studied); and 6) performance metrics as
described in detail below.

Reporting Quality and Risk of Bias Assessment

Reporting quality and risk of bias assessment was performed inde-
pendently by 2 reviewers using the Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) checklist '8 and the Prediction model study
Risk Of Bias Assessment Tool (PROBAST), respectively."”
TRIPOD is composed of 77 individual questions that address 30
different scorable domains, 29 of which are applicable to our study
after excluding item 11 as listed in the Online Supplemental Data.
The final TRIPOD score was calculated as described in the
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11,727 screened — 90 duplicates
10,496 studies irrelevant
l 430 studies excluded
1,141 fulltext studies [ | 11:;’ :gfmc;f o
iaibility?!
assessed for eligibility - 61 not an original article

- 22 Not English language
- 15 not Gliomas
- 11 Not MRI/PET/MRS

- 9 not Human
- 5duplicates
| 711 studies eligible’ | —
688 not Glioma
l vs PCNSL

23 studies included in
qualitative synthesis’

FIG 1. PRISMA flow diagram. This chart delineates the selection pro-
cess that yielded the 23 studies included in this systematic review.' The
initial search yielded 1135 studies for full-text review, and 704 were eligi-
ble, and 16 were included. A second literature search yielded 6 addi-
tional studies.

TRIPOD Adherence Assessment Form. For each study, the per-
centage of successfully reported TRIPOD items applicable to the
individual study was reported. Additionally, for every item in the
assessment, we report an adherence index, which we calculated as
the average achieved across all studies. PROBAST is a checklist
composed of 4 domains and 20 signaling questions, useful for
assessing the risk of bias in multivariate diagnostic prediction mod-
els."”” The Cohen’s x was used to calculate the interrater reliability
of the assessment between the 2 independent reviewers, and inter-
preted as delineated by Altman.*

Data Analysis and Synthesis

To assess the performance of the classifiers from each study, we
extracted primarily the reported area under the receiver operating
characteristic curve (AUC) and its corresponding 95% confidence
interval if available. Other threshold-based performance metrics
that were extracted were accuracy, sensitivity, and specificity.
Different studies test the interaction of classifiers with different fea-
ture-selection methods, resulting in many permutations of the same
classifier. Only the results of the best performing version of each
studied classifier were reported because we deemed this information
most relevant. We grouped the performance metrics according to
whether they were calculated during training, internal or external
validation. To plot graphs, we used the performance on validation.
If a study reported both internal and external validation, only exter-
nal validation was plotted. Some studies compared ML models with
the performance of different neuroradiologists. In these cases, we
reported only the results of the highest performing radiologist,
unless stated otherwise.

We performed a meta-analysis on the AUC values of a subset of
studies that used conventional radiomic features and conventional
ML algorithms for model development. Studies were only included
if they reported an AUC with a 95% CI in a validation set and if
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they used conventional radiomic features for model development.
Studies that used a deep learning-based classifier were also excluded
in the meta-analysis. These exclusion criteria were chosen to
decrease the methodic diversity and increase the comparability of
the studies included in the meta-analysis. If both internal and exter-
nal validation were reported, we used the performance on external
validation. The meta-analysis used a random-effects model, as
described by Zhou et al?! and was performed on MedCalc
(MedCalc Software). The calculated heterogeneity among studies is
reported using Higgins I%, which describes the percentage of total
variation attributable to heterogeneity rather than chance alone.”

RESULTS

Study Selection

The study-selection process is presented in Fig 1. The literature
search yielded 11,727 studies. After duplicate removal, 10,496
studies were excluded, 1141 studies underwent full-text review,
and finally 23 articles were included in our systematic review as
per our criteria.”>** Of note, the selection process was performed
in two steps since 6 studies that were finally included, were ini-
tially excluded solely because only a Logisitc Regression model
was developed. Data was extracted from these studies for qualita-
tive synthesis. An outline of the data sets and the developed ML
pipelines of the individual studies can be found in the Online
Supplemental Data.

Data Sets for Model Development
The data sets had a mean size of 99 patients per study (range: 17-
259 patients) (Fig 2A), with a mean ratio of 1.9 glioma cases for
every PCNSL case (range: 7.9-0.4 cases), with only 2 studies hav-
ing a 1:1 ratio (Fig 2B); 56.5% (n=13) of the studies used data
from single-center hospital data bases, and 17.4% (n =4) used pri-
vate multicenter hospital data bases. The source of patients could
not be determined in 26.1% (n=6) of articles (Fig 2C). No study
used public brain tumor data sets such as Brain Tumor
Segmentation (BraTS) or The Cancer Imaging Archive (TCIA).
More than half of the studies did not use external validation,
instead relying on k-fold cross-validation or randomly sampling
subjects into 2 cohorts, training and validation. Five studies did
not report any type of validation (Fig 2D). Among the 6 studies
that externally validated their algorithm, 4 sampled the external
data set from a different institution (geographic valida-
;28303343

tion and 2, on a different timepoint (temporal valida-

tion)*"” than the training set.

Tumor Entities
All studies used PCNSL and gliomas in their data sets. Among the
gliomas, all studies included glioblastomas: 2 included World

Health Organization grade IIT gliomas;*>**!

41

and 1, lower-grade glio-

mas."' 5 also included meningiomas™ and/or metastatic

lesions 33,34,36,45
glioblastomas, defined as glioblastomas without central necro-
sis,”>*>*° while 3 explicitly included atypical PCNSLs.****** We

also investigated whether the immune status of patients with lym-

3 studies specified that they incorporated atypical

phoma was reported. 5 studies included only immunocompetent
patients, 282931384

and immunosuppressed patients.”>*> The remaining studies did

whereas 2 included both immunocompetent
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FIG 2. A, Scatterplot displaying the number of patients included in the data sets. B, Scatterplot of the glioma/PCNSL case ratio in the data sets.
A ratio of >1means more gliomas, a ratio of <1 means more PCNSL, and a ratio = 1 means equal number. C, Source of patients in the data sets.

D, Type of validation performed in the studies.

not specify immunologic status. Importantly, all except 2 studies
solely used images of tumors whose final diagnosis had been histo-
pathologically confirmed. The other 2 combined histopathologic

o . . . . . .o 40,42
and clinicoradiologic criteria for diagnosis.*

Image Features and Classification Algorithms
Nineteen studies used classic ML: 2 solely deep learning meth-

;3341 and 2 a combination of both.*®** Ten studies used com-

ods
binations of shape and conventional radiomic features (first
order, texture matrices, and wavelet-transformed images).
Among these, the mean number of features used for model devel-
opment was 29 (range, 3-80). A combination of diffusion and
perfusion features was used in 8 studies,”**”*>?*?%4%424% yhile
also included SWI-derived features.” Other types of image fea-
tures were used such as scale-invariant feature transform fea-
tures,>>*° luminance histogram range,39 temporal patterns of
time-signal intensity curves from DSC perfusion imaging
extracted with the help of an autoencoder neural network,” and
['®F] PET-derived metrics."**>** After feature selection, the
number of features ranged from 1 to 496.°%*°

For classification, 10 different classic ML and 3 different deep
learning algorithm types were used. The most common classic
ML methods were support vector machines and logistic regres-
sion (each n=11), a multilayer perceptron network (n=3), and a
convolutional neural network (CNN) (n=2) for deep learning.
Other algorithms were random forests (n=4), decision tree
(n=3), Naive Bayes (n=2), linear discriminant analysis (n=2),
generalized linear model (n=2), XGBoost (n=1), AdaBoost
(n=1), and k-nearest neighbor (n=1).

Imaging

All studies except for 1 were performed on MR images. MR
imaging sequences used were contrast-enhanced T1 (100% of
studies performing MR imaging, n =22), noncontrast T1 (50%,
n=11), T2 (59.1%, n=13), FLAIR (50%, n=11), DWI (68.2%,
n=15), intravoxel incoherent motion (4.6%, n=1), and perfu-
sion images (45.5%, n=10). Three studies implemented ['*F]
FDG PET/CT imaging.

Model Performance and Meta-analysis

The reported metrics varied among different studies. AUC, accu-
racy, sensitivity, and specificity were reported in 91.3%, 65.2%,
73.9%, and 69.6% of the studies, respectively. The highest valida-
tion AUC of every study and respective 95% CI, if reported, are
shown in the Online Supplemental Data. For a summary of the
performance of every classifier by study, please refer to the
Online Supplemental Data.

The classifiers that reached the highest AUC and accuracy in
external validation were logistic regression®® (AUC = 0.961) and
a support vector machine’ and logistic regression model®” (both
accuracy = 91.2%), respectively. All were trained on conventional
radiomic features extracted from routine and DWI sequences.
An XGBoost classifier’ and a support vector machine classifier
trained on scale-invariant feature transform features*® were the
only models that reached an AUC of >0.98 in internal validation
but were not explored further in external validation.

Some studies compared the classification performance of ML
models with that of radiologists tasked with comparing the same

23,28,32,35,43

set of images, and 2 studies examined the effect of
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Adherence index

FIG 3. TRIPOD adherence index. The adherence index for a particular item was calculated as the average points achieved across all studies.

integrating the results of an ML algorithm in the radiologists’ deci-
sion process (Online Supplemental Data).””*' Two publications
32,35

found the ML algorithm superior,””” while one found it signifi-
cantly noninferior.”> Both Yamashita et al*' and Xia et al’’ found
that incorporating ML models into the classification of novice radi-
ologists significantly improved the AUC to levels comparable with
their more experienced counterparts. Among experienced neuro-
radiologists, the effect was smaller-but-significant in 1 study.
Because conventional radiomics was the most used type of fea-
ture, we decided to conduct a random-effects AUC meta-analysis
on a subset of studies that used these features in classic ML classi-
fiers. We identified 6 studies that reported AUCs with confidence

23,28,31,33,3543 We excluded one because

intervals in a validation test.
the radiomic features it used were not conventional®® and one
because its best classifier was a deep learning model.*® In total, 4
studies were included in the meta-analysis.*****"*> The pooled
AUC was calculated as 0.944 (95% CI, 0.918-0.980; I* = 74.3%). A
forest plot of the meta-analysis can be seen in the Online

Supplemental Data.

Adherence to Reporting Standards and Risk of Bias
Assessment

We performed a reporting quality assessment according to the
TRIPOD checklist. Thirteen studies had an adherence index of
<50%. Overall, the median TRIPOD score among all studies was

530 Cassinelli Petersen  Apr 2022 www.ajnr.org

51.7% (interquartile range, 41.4%—-62.1%). The individual adher-
ence index for every item is shown in Fig 3 and the Online
Supplemental Data. We performed a risk of bias assessment using
the PROBAST tool. The overall risk of bias was deemed high in
69.6% (n=16) of studies and unclear in the rest. The risk of bias
per PROBAST domain is further specified in the Online
Supplemental Data. The interrater reliability between the 2 inde-
pendent reviewers was very good in both the reporting quality
(k =0.965; 95% CI, 0.945-0.985) and risk of bias assessment (k =
0.851; 95% CI, 0.809-0.892).

DISCUSSION

Our systematic review identified and analyzed 23 articles that
published ML-based classification algorithms for noninvasive dif-
ferentiation of gliomas and PCNSL.>*"**

Analysis of study data sets revealed them to be predominantly
small and unbalanced because glioma cases were overrepresented
compared with PCNSL. This finding likely reflects the difficulty in
sampling lymphoma cases due to their low prevalence. Moreover,
a minority of studies validated their algorithm exter-
nally.?%3%213337% These factors decreased the generalizability of
the findings and increased the risk of overlooking overfitted classi-
fiers. Thus, we encourage multicenter collaborations to create
larger, more balanced data sets. Additionally, cross-center



collaborations would facilitate the construction of geographically
distinct external validation data sets on which to test these models.

We were also interested in the specific tumor entities that
researchers used for model development. Strikingly, only a few
articles specified the inclusion of atypical glioblastomas and lym-
phomas.**3%*>3% Considering that it is the atypical variants of
the tumors that appear most similar, only including typical-
appearing tumors might make classification easier without
reflecting the everyday challenges faced by diagnosticians.
Similarly, only 7 studies reported the immune status of the
included patients with lymphoma.*>*%2%31384445 Qyerall, we rec-
ommend inclusion of atypical cases in future data sets and clear
reporting of their fraction and patients’ immune status.

Classic ML classifiers trained on conventional radiomic fea-
tures of routine sequences and DWI reached AUCs of >0.95 and
the highest accuracies in external validation.”™” These findings,
along with the high mean AUC in the meta-analysis, suggest that
radiomic features extracted from conventional sequences are
powerful in differentiating gliomas from PCNSL. This finding
should make clinical implementation faster, considering that
open-source packages for conventional radiomic feature extrac-
tion, like PyRadiomics,A‘7 are readily available. XGBoost, a deci-
sion tree-based algorithm popular among data scientists,
performed very well in internal validation but was not tested on
external validation.”> Considering that random forest models
(also decision-tree based) performed well in external validation, it
would be reasonable to also expect good performance with
XGBoost and hence encourage further research using this algo-
rithm. These results are in line with other systematic reviews on
ML in neuro-oncology. Our research group has also performed
systematic reviews on the role of ML in predicting glioma grade
and differentiating gliomas from brain metastases.*>*® Both stud-
ies found, similar to our findings, a high mean accuracy despite
small data sets. Overall, these findings are encouraging because
they show that even though PCNSL is a rarer disease than other
brain neoplasms, the development of ML applications for its di-
agnosis is on a par with that for other tumor entities.

Deep learning classifiers were explored by only 4 different stud-
ies.”>**** yun et al*® developed a CNN-based model that
showed good performance in internal validation (AUC= 0.879),
but performance decreased drastically when externally validated
(AUC= 0.486). CNNs, if not regularized properly, are prone to
overfitting and benefit from large multisite data sets.”® Using mul-
tiple sites facilitates larger data sets and incorporates valuable het-
erogeneity for training. Park et al*> also developed a CNN-based
model which achieved a higher AUC (0.89) in external validation.
Opverall, further evaluation of applications of CNN in the classifica-
tion of gliomas from lymphomas in larger data sets is needed.

In recent years, the utility of ML algorithms as computer-
aided diagnosis systems in oncologic practice has been repeatedly
postulated.”"** By showing that ML can achieve a performance
similar to that of radiologists (and sometimes even surpass
them), the studies included in this systematic review support this
notion.””*! Furthermore, Xia et al>’ and Yamashita et al*! high-
light the special utility of ML algorithms in helping radiologists in
training achieve diagnostic performance comparable with that of
their more experienced colleagues.

We performed a reporting quality assessment using the
TRIPOD checklist."® TRIPOD addresses topics similar to those
on the ChecKklist for Artificial Intelligence in Medical Imaging but
is structured in 77 clearly defined questions and is, to our knowl-
edge, the most comprehensive checklist for reporting quality
assessment.”> Adherence to reporting standards was generally
low. Important shortcomings were found in reporting the full
model to enable individual predictions, methods for measuring
performance, the performance measures themselves, and incom-
plete disclosure of funding. Moreover, no study provided the pro-
gramming code that was used to create the model, severely
hindering reproducibility. Furthermore, no study reported cali-
bration measurements, and only <50% reported confidence
intervals of performance metrics, limiting the reader’s ability to
assess the achieved performance. These results are in line with a
previously published systematic review that showed similar
TRIPOD adherence indices in studies regarding radiomics in
oncologic studies.”* TRIPOD assessments were also performed in
the above-mentioned systematic reviews from our group. Both
studies found very similar TRIPOD adherence indices (44% and
48%) as well as similar deficiencies in the individual items.”>>®
Our results suggest that deficiencies in transparent reporting are
a broader issue in the field of neuro-oncologic imaging.

We also performed a risk of bias assessment using the
PROBAST tool."” PROBAST uses 20 signaling questions organ-
ized in 4 domains to assess the risk of bias related to the selection
of participants, definition and measurement of predictors, defini-
tion and determination of outcomes, and quality of analysis
methods in studies developing predictive diagnostic models.'
While all studies included in this systematic review had a low risk
of bias in the domains concerned with defining and measuring
predictors and outcomes, a high proportion of high or unclear
risk of bias was determined for most studies in participant selec-
tion and analysis. Regarding PROBAST Domain 1, the main con-
cern rose from a selection of patients that did not represent the
intended target population: Three studies excluded immunosup-

13844 and 1, hemorrhagic tumors,** likely skew-

pressed patients;
ing the participant population in the direction of typical patients
and making discrimination easier for classifiers. The main con-
cerns raised in Domain 4 were the low patient-to-feature ratio
and the exclusion of participants with missing data in several
studies. These factors have the potential of introducing bias
because the former can lead to overfitting and thus to overestima-
tion of performance metrics, while the latter is risky in small data
sets because it can skew the patient population and render it not
representative.'” The risk of bias of several studies remained,
nonetheless, unclear because of the several reporting deficiencies
discussed above.

This systematic review had several limitations. First, by
excluding studies that were presented only as abstracts, we
reduced the sensitivity of our systematic review. We, nonetheless,
accepted this loss of information because the inherent brevity of
abstracts impedes a comprehensive appraisal of the study design,
methods, and results.”””® Moreover, the developed pipelines and
data sets are different and hence not always comparable. Using
public brain tumor data sets, such as BraTS, could make compari-
sons between classifiers easier, though images in these data sets
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are highly curated and might not reflect variable quality of
images encountered in clinical practice. The meta-analysis was
performed on a small subset of studies because most publications
did not report sufficient data for statistical synthesis. Interestingly,
the studies included in the meta-analysis showed high heterogene-
ity, reflecting the diversity of the ML model pipelines used. This
level of heterogeneity is lower but comparable to one calculated in
another published meta-analysis on ML in neuroradiological diag-
nosis.”® The TRIPOD and PROBAST checklists are applicable to
ML-based prediction models but were developed with conven-
tional multivariate regression-based models in mind."*'**® Due to
the use of slightly different terminology and the lack of ML-based
examples in both PROBAST’s and TRIPOD’s Elaboration and
Examples document, the reporting quality assessment was burden-
some at times. The TRIPOD and PROBAST creators have, how-
ever, acknowledged these shortcomings in a communication
released in 2019 and announced the development of TRIPOD-AI
and of PROBAST-AL® We welcome and encourage this develop-
ment to help improve transparent reporting and risk of bias assess-
ment of ML-based prediction models.

CONCLUSIONS

ML models for the differentiation of gliomas from PCNSL have
great potential and have demonstrated high-level performance,
sometimes even comparable with that of senior subspecialty-
trained radiologists. ML models have also been shown to be
powerful computer-aided diagnosis tools that can improve diag-
nostic performance, especially among junior radiologists.
However, to be able to implement these into clinical practice, it is
still necessary to perform further model development in larger,
more balanced, and heterogeneous data sets that include other
disease entities as well as test the robustness of models in external
data sets. This more extensive development should increase the
generalizability and reliability of the developed model. In addi-
tion, transparent reporting of model development should always
be a priority, and we recommend adherence to the TRIPOD
statement in future publications. This reporting will increase
reproducibility, potentially enabling incorporation of these tech-
niques into routine clinical practice.
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