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COMMENTARY

Early Neuroimaging Markers in b Propeller
Protein-Associated Neurodegeneration

Neurodegeneration with brain iron accumulation (NBIA)
encompasses a heterogeneous group of rare diseases charac-

terized by abnormal progressive iron accumulation in the basal
ganglia (BG), movement disorders, and cognitive disability.1 b

propeller protein-associated neurodegeneration (BPAN) is, to
date, the most common NBIA disorder.2 It is caused by mutations
in an X-linked gene, WDR45, which has an important role in
autophagy.3-5 The disease is more common in females and typi-
cally presents with global developmental delay, speech impairment,
abnormal gate, sleep disturbances, and epilepsy in childhood fol-
lowed by severe dystonia, parkinsonism, and progressive dementia
in young adulthood, though the phenotypic spectrum is broader
and includes Rett syndrome, developmental and epileptic ence-
phalopathy, and intellectual disability.6-8 The distinctive BPAN
neuroradiologic findings are well-known in adolescence and adult-
hood and include the following: T2, T2*, and SWI hypointensity
in the substantia nigra (SN) and GP; the “halo sign” on T1WI (ie,
a symmetric hyperintense signal surrounding a thin, dark, central
band in the SN and cerebral peduncles), which is pathognomonic
for BPAN; a normal or thinned corpus callosum; and mild-to-
moderate global cerebellar and cerebral atrophy.5,6,9,10 Findings of
neuroimaging performed during early childhood are nearly all
normal. In some cases, delayed myelination, nonspecific cerebellar
and cerebral atrophy, and a thin corpus callosum have been
described.2,11 Because the clinical features are not specific and
imaging may not demonstrate the classic findings at a young age,
the diagnosis is often made with gene panel or exome sequencing,
which reveals a mutation inWDR45.7

The article by Papandreou et al,12 published in the current
issue of the American Journal of Neuroradiology, represents an
important retrospective cohort study of 15 pediatric patients with
a confirmed pathogenetic WDR45 variant, focusing on early MR
imaging features. The authors took into account a vast amount of
neuroimaging findings and reported that early neuroradiologic
features, in most cases, included dentate nuclei hyperintensity,
GP and SN swelling and hyperintensity, as well as a thin corpus
callosum and cerebral and cerebellar atrophy of various degrees.
They also observed optic nerve thinning and an unusually small
midbrain. Iron deposition was uncommon in patients younger

than 4 years of age and was never present in children younger
than 3 years of age but was evident in almost all patients scanned
at 5 years of age or older.

A minor criticism of the present work12 was that the assess-
ment of cerebral volume reduction, detected in most of the cases,
was subjective and is actually unreliable due to lack of age-matched
controls. Indeed, in children, subjective assessment of brain atro-
phy can be difficult because of craniocerebral disproportion.
Furthermore, the authors report midbrain atrophy in all cases,
whereas no obvious midbrain atrophy is observed in Fig 1 and, in
general, in any of the other cases reported.13-16 Another critical
issue concerns the assessment of optic nerve atrophy in axial sec-
tions, which we do not consider correct because in general, errors
occur when measuring optic nerve diameter on axial images.

If one focuses on the GP and SN and on the iron-sensitive
sequences (T2WI, T2*WI, and SWI), the most relevant evidence
is that iron deposition is not present early in the course of the dis-
ease but accumulates with time. In particular, there is some sort
of evolution of signal abnormalities in these structures from early
childhood to early adulthood that could be considered highly spe-
cific for BPAN and that is represented by an early, enlarged GP
and SN appearance, with slight T2 hyperintenisty and subsequent
progressive iron accumulation. SWI sequences can detect very
early iron deposition. Iron accumulates in the SN, emerging as
the most affected nucleus and, to a lesser extent, in the GP. On
T2WI or SWI, the SN results are usually more hypointense com-
pared with the GP, a feature that may help distinguish BPAN
from other forms of NBIA.9 Sometimes, on the T1WI the halo
sign is evident in the SN.2,5 This is a late sign, and its absence in
the article by Papandreou et al12 could be related to the young
age of their patients (0–18 years of life).

Most interesting, it is not entirely clear why GP and SN
enlargement and T2 hyperintensity predominate early. In four of
our cases,15 we interpreted the swelling as a very early inflamma-
tion caused by dysfunction in the autophagy-lysosome complex.
The authors12 also noted that similar neuroimaging findings have
been reported in cases with biallelic WIPI2 mutations,17 which,
similar to WDR45 (also known as WIP14), belong to the family
of WD-repeat proteins, which have an essential role in the early
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stages of autophagy. We agree that it would be interesting to ascer-
tain whether a similar neuroimaging pattern is present in other
congenital autophagy disorders. It is certain, however, that neuro-
inflammation evolves rapidly in neurodegeneration and progres-
sive iron deposition,18,19 highlighting how the first abnormality is
due to cellular damage, while the accumulation of iron is probably
only a late epiphenomenon of the degenerative process.20,21

Concerning other characteristic imaging signs, in all the cases
reported by Papandreou et al12 and, in general in most of the cases
reported in the literature,13-16 transient or persistently observed
T2-hyperintense signal in the dentate nuclei is a typical finding
that helps suggest the diagnosis. This is a finding not seen in other
NBIA disorders and, from a pathophysiologic point of view, also
probably related to chronic inflammatory changes.12 Delayed mye-
lination is a transient, frequent finding that normalizes during the
follow-up MR imaging;11,14 thin corpus callosum and cerebellar
atrophy (present in other NBIA disorders) are prominent features
frequently seen in early childhood11 but are nonspecific signs.

We believe one of the major merits of the present study is stress-
ing the important role of early MR imaging findings to reach an
accurate and early BPAN diagnosis for the best multidisciplinary
management of these patients. Even though normal brain MR
imaging findings do not exclude BPAN in a young child, early neu-
roimaging markers highlighted by Papandreou et al,12 such as GP
and SN swelling, dentate nuclei T2 hyperintensity, corpus callosum
thinning, and cerebral and cerebellar atrophy in the appropriate
clinical context, may strongly suggest the diagnosis. In agreement
with the authors, we believe that it is important to not discard a var-
iant of WDR45 in the absence of iron accumulation in the basal
ganglia in the early stages of the disease.
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