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REVIEW ARTICLE

Complete Evaluation of Dementia: PET and MRI Correlation
and Diagnosis for the Neuroradiologist

J.D. Oldan, V.L. Jewells, B. Pieper, and T.Z. Wong

ABSTRACT

SUMMARY: This article will familiarize neuroradiologists with the pathophysiology, clinical findings, and standard MR imaging and
PET imaging features of multiple forms of dementia as well as new emerging techniques. Cases were compiled from multiple insti-
tutions with the goal of improved diagnostic accuracy and improved patient care as well as information about biomarkers on the
horizon. Dementia topics addressed include the following: Alzheimer disease, frontotemporal dementia, cerebral amyloid angiopa-
thy, Lewy body dementia, Parkinson disease and Parkinson disease variants, amyotrophic lateral sclerosis, multisystem atrophy,
Huntington disease vascular dementia, and Creutzfeldt-Jakob disease.

ABBREVIATIONS: AD ¼ Alzheimer disease; CAA ¼ cerebral amyloid angiopathy; CBD ¼ corticobasilar degeneration; FTD ¼ frontotemporal dementia;
LBD ¼ Lewy body dementia; MCI ¼ mild cognitive impairment; MH ¼ microhemorrhages; MSA ¼ multisystem atrophy; PD ¼ Parkinson disease; PSP ¼ progres-
sive supranuclear palsy; rsfMRI ¼ resting-state fMRI

In patients who present with cognitive impairment, obtaining
MR imaging is standard practice, but PET strengthens interpre-

tation. Neurodegenerative syndromes are diagnosed by clinical
findings/Lumbar Puncture markers and not pathology, and they
may overlap. This overview of neurodegenerative syndromes and
their MR imaging/PET appearances includes Alzheimer disease
(AD), frontotemporal dementia (FTD), cerebral amyloid angiopa-
thy (CAA), Lewy body dementia (LBD), Parkinson disease (PD),
amyotrophic lateral sclerosis, multisystem atrophy (MSA), progres-
sive supranuclear palsy (PSP), corticobasilar degeneration (CBD),
Huntington disease, vascular dementia, and Creutzfeldt-Jakob dis-
ease. The discussion includes newer MR imaging techniques (rest-
ing-state fMRI [rsfMRI]/task-based MR imaging), DTI, and iron
deposition as well as novel nuclear medicine agents. Our goal was
familiarization of neuroradiologists with nuclear medicine and
molecular imaging diagnoses and novel imaging techniques.

Institutional review board (University of North Carolina) approval
and a waiver of patient consent was obtained (study No. 20–2089).

Alzheimer Disease
AD, the second most common neurodegenerative disorder after
stroke, affects 10% of the population older than 65 years of age,
and it is the sixth leading cause of death with US annual costs of
$236 billion. Clinical symptom similarities hamper diagnosis,
leading to a low 71%–87% sensitivity and 44%–71% specificity.1

Despite no cure, diagnosis is helpful because cholinesterase inhib-
itors delay cognitive decline, and there is the need for institution-
alization and improved end-of-life planning.1

Molecular imaging modalities demonstrate elevated amyloid-
b and t proteins. Amyloid-b impacts synaptic function, while
age-accumulating t neurofibrillary tangles cause neuroinflamma-
tion and neurodegeneration and finally dementia.2,3 Additional
causations include inflammatory microglial (M2) and poor amy-
loid-b clearance by astrocytes.3 Drugs targeting amyloid fail
because of a long prodromal and asymptomatic inflammatory
phase and other processes of AD, suggesting an urgent need for
earlier diagnosis and better surrogate markers.2-5 Preventative
measures include exercise and appropriate sleep (impact glym-
phatic system amyloid and t removal)3,6 and diabetes and stress
control (preventing inflammation and BBB disruption).3-7 Tau
formation and neuronal damage cascade also occur in Parkinson,
amyotrophic lateral sclerosis, multiple sclerosis, and Huntington
disease (Online Supplemental Data).8
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Two AD forms exist, early
(younger than 65 years of age, which
is less common and associated with
autosomal dominant Presenilin genes
1 and 2) and late-onset (older than 65
years of age). Predisposing factors for
late-onset are female sex (related to
metabolic differences and medium
fatty acid chains), the APOE4 variant
(a fat metabolism protein associated
with increased amyloid deposition 1
decade before diagnosis; heterozygotes
[3� risk]; homozygotes [15� risk]),
and FDG-PET uptake reductions
when asymptomatic.4,8 Trauma is also
associated with in-creased t and amy-
loid deposition and microhemorrhages
(MHs).3,4,9 Tau formation spreads con-
fluently via neurons and glia and neural
networks in a prionlike manner, corre-
lating with atrophy.4,6,7,10,11

MR imaging demonstrates precu-
neus, parietal, hippocampal, entorhinal
cortex, and temporal atrophy, with
frontal lobe involvement in advanced
cases. FDG-PET demonstrates de-
creased temporoparietal uptake (sensi-
tivity ¼ 80%–93% and specificity ¼
60%–76%),3,11with possible decreased
inferior parietal, frontal, lateral tempo-
ral, and precuneus uptake mirroring at-
rophy on MR imaging.12,13 Particularly
specific PET findings include posterior
cingulate involvement with occipital
sparing (Fig 1).13 However, similar
hypometabolism is seen in PD, bilateral
parietal subdural hematomas, radia-
tion, or vascular disease.8 Opinions
vary with regard to FDG-PET use for
conversion of mild cognitive impair-
ment (MCI) to AD (sensitivity ¼ 97%
and specificity ¼ 50%–76%),3,13-15

while scans with negative findings indi-
cating progression to AD are unlikely
for 3 years.3

Amyloid deposition is associated
with FDG-PET decline and precedes t
changes, which, in turn, precede abnor-
mal glucose metabolism, all of which
precede clinical symptomatology.3,4

Several tracers help visualize amyloid.
Pittsburgh compound B (11C-P, 20-mi-
nute half-life) is logistically difficult
and, hence, never reached commercial
use.16 Longer half-life commercially
available 18F tracers are the follow-
ing: florbetapir (Amyvid), florbetaben

FIG 2. Upper row: Abnormal florbetapir PET (arrows) shows diffuse cortical uptake
with loss of GM-WM differentiation, indicating a high amyloid plaque burden. Lower
row: A 65-year-old woman with MCI. Florbetapir scan demonstrates normal WM
uptake without accumulation in the cortical gray matter, indicating no amyloid pla-
que. This finding effectively rules out AD (lower images courtesy of Dr Olga James,
Duke University).

FIG 1. FDG-PET in a patient with AD demonstrates decreased bilateral parietal and temporal
uptake (arrows). FDG uptake in the occipital lobe is preserved (not shown). The degree of abnor-
malities correlates with symptoms.
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(Vizamyl), and flutemetamol (Neuraceq). Recently, flortaucipir
(Tavid) received FDA approval. A meta-analysis of florbetapir and
florbetaben (89%–90% sensitivity and 87%–88% specificity) dem-
onstrated no difference between agents.17 Data distinguishing AD
and MCI, however, are mixed,17 with rates of PET positive for

MCI intermediate between patients
with AD and controls.14 Pooled (sensi-
tivity and specificity) values of multiple
methods of AD diagnosis versus con-
trols are the following: MR imaging
(visual inspection, 83/89), SPECT (80/
85), FDG-PET (90–94/73–89), CSF
amyloid-b (80/82), CSF T-t (82/90)
and p-t (80/83), and 18F amylo-
id-b (90–92/84–100).3,17 This finding
explains the poor diagnostic capability
with 1 test and the need for improved
methods of AD diagnosis.

Amyloid-b demonstrates higher
negative-than-positive predictive val-
ues because 25% of postmortem
examinations of cognitively healthy
individuals and 21% of cognitively
healthy patients have deposition; how-
ever, lack of accumulation usually
excludes AD and 50% of patients with
AD can have other pathologies.8,17,18

Therefore, amyloid is a good exclu-
sionary test but limited for severity

stratification or progression depiction. Amyloid tracers in AD
accumulate in the gray matter, while controls have primarily
white matter uptake,19 producing GM-WM differentiation loss,
particularly in the precuneus, posterior cingulate gyrus, and lat-
eral-frontal and temporal lobes (Fig 2).20,21

Unlike amyloid, which does not correlate with severity,3,22 t

uptake correlates strongly with cognitive impairment and demen-
tia severity.3,22 Tau, particularly outside the medial temporal lobe
is suspicious for AD, even in cases negative for amyloid (Fig 3).23

However, FTD, PD, PSP, CBD, traumatic encephalopathy, and
Down syndrome also accumulate t .3,22 Tau, unfortunately, has
concentrations 5–20 times lower than amyloid, with amygdala and
striatum off-target binding.22

AD MR imaging structural assessment reveals hippocampal
(26%–27%), entorhinal (38%–40%), and thalamic and caudate vol-
ume loss (due to multinetwork connections), which is asymptom-
atic and precedes hippocampal loss and cortical atrophy.3,20,24 This
feature is accompanied by increased DTI diffusivity.3,20,24 Volume
loss of hippocampal regions with both NeuroQuant (https://www.
cortechs.ai/products/neuroquant) and Neuroreader (https://
brainreader.net/) is the single best prediction of AD fromMCI at 3-
year follow-up compared with other regions (Fig 4).24 T2 WM
hyperintensity burden and the Fazekas score (particularly perivascu-
lar) show promise, correlating with Montreal Cognitive Assessment
scores and amyloid burden, while negatively correlating with FDG-
PET uptake.25-27 T2 abnormalities occur 20years before disease
expression, particularly in late-myelinating regions secondary to
neurodegeneration and poor oligodendrocyte repair.28 Additionally,
iron SWI measurement, rsfMRI/task-based fMRI, arterial spin-
labeling, MR spectroscopy (lower NAA and higher mIns), and DTI
(reduced hippocampal, thalamic, and caudate anisotropy) are under
investigation.4,20,25,27 In summary, WM burden predicts AD and
cognitive decline and correlates with amyloid and t CSF levels and

FIG 3. Increased amyloid plaque burden in the posterior parietal and frontal lobes on florbetapir
PET (left) with corresponding tracer uptake in the parietal lobes on tau PET images (right, arrows).
Note that the t tracer more clearly localizes to sites of neuronal damage. The pattern is most
consistent with AD (images courtesy of Dr James Burke, Duke University).

FIG 4. Commercial volumetric assessment shows lobar and deep, su-
perficial GM differentiation by color for comparative analysis. For
instance, the right frontal lobe GM is green, while the underlying WM
is blue. This image was previously published in the American Journal
of Neuroradiology. (Tanpitukpongse et al24).
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decreased perfusion and abnormal DTI networks before atrophy or
abnormal findings on FDG-PET.28

A new possible surrogate marker is iron (Fe), because amy-
loid-b causes oliogodendrocyte toxicity, preventing myelin
repair.28,29 Subsequently, Fe released during myelin breakdown
creates phosphorylated-t /t .29,30 Additionally, rsfMRI and task-

based MR imaging show potential, demonstrating impaired default
mode network connectivity correlating with amyloid-b deposi-
tion,4,27,31,32 and frontoparietal and visual network hypoactivation
in MCI relative to controls as well as visual, default, limbic, and
dorsal and ventral attention network hypoactivation in AD relative
to controls.32 Dynamic susceptibility contrast-enhanced and arte-
rial spin-labeling MR imaging assessment is another focus of MR
imaging research.3,27 New nuclear medicine tracers targeting dopa-
mine and serotonin/cholinergic/GABAergic systems and micro-
glial neuroinflammation (translocator protein agents correlate with
amyloid) and astrocyte agents are under investigation.3,8,27,33

Unfortunately, translocator protein agents exhibit 3 genetic-related
nucleotide polymorphisms affecting uptake, poor resolution, and
more activity later rather than earlier in the disease process.3,8,27,33

[11C]-deuterium-L-deprenyl [11C]-DED and [11C]-deprenyl-D2
are less well-studied.3,8,25,27,33 Hopefully, the ongoing Alzheimer's
Disease Neuroimaging Initiative 3 trial will yield answers with
regard to these new methods.

Posterior Cortical Atrophy. Posterior cortical atrophy (an AD
variant) presents with declining visual association skills affecting
the lateral occipital lobes (unlike classic AD), while preserving the
frontal lobes and caudate (unlike LBD), often with subtle MR
imaging findings (Fig 5).34

Frontotemporal Dementia
FTD demonstrates 3 variants: behavioral, semantic, and nonfluent
agrammatic aphasia. Related syndromes include FTDmotor neuron
disease, PSP, and CBD, discussed separately. FTD neuropathology
is variable, with t , TARDNA-binding protein 43/FET proteins, and
sometimes amyloid (Online Supplemental Data).8,31,35

Behavioral variant FTD (the most common variant) shows pro-
gressive behavior and cognition deterioration; perseverative,

FIG 5. Posterior cortical atrophy (AD variant) demonstrates preserved frontal and caudate but decreased lateral occipital and parietotemporal
uptake (left, 2 color images), while an axial FLAIR (black and white), right MRI image demonstrates focal posterior parietal (arrows) and parieto-
occipital atrophy (arrows). This patient demonstrated temporal sparing (not shown).

FIG 6. FTD. Frontal and behavioral variant demonstrates reduced
bifrontal FDG-PET uptake (arrows). Also note the enlargement of the
frontal horns of the lateral ventricles, a common finding.
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stereotyped, compulsive and ritualistic
behavior; and hyperorality and dietary
changes, but it spares memory and
visuospatial functions. MR imaging
demonstrates frontal and anterior-tem-
poral atrophy, while FDG-PET reveals
decreased cortical medial-frontal, or-
bital-frontal, anterior cingulate, and
frontoinsular uptake,35 with expected
differences between frontal, behavioral
(Fig 6), temporal, and semantic (Fig 7)
variants.36 Anterior cingulate, tempo-
ral, caudate, and thalamic involvement
is a key difference from AD and corre-
lates with disease progression.33,37,38

FTD typically does not show amyloid
uptake, but t uptake has been seen.33

Patients with the semantic variant
demonstrate impaired confrontation
naming, single-word comprehension,
object knowledge, and surface dyslexia
and dysgraphia, sparing speech produc-
tion. MR imaging reveals anterior-tem-
poral atrophy, correlating with FDG-
PET and SPECT hypoperfusion and
hypometabolism.35 Finally, patients with
the nonfluent and agrammatic vari-
ant lack grammar and speech apraxia
but have impaired complex-sentence
comprehension, sparing single-word
comprehension/object knowledge. MR
imaging demonstrates left posterior,
frontoinsular atrophy, while FDG-PET
and SPECT depict hypoperfusion and
hypometabolism in the same region.35

Newer MR imaging techniques
demonstrate thalamic atrophy39 and
DTI tract differences between the behav-
ioral variant (uncinate fasciculus, genu,
and cingulum) and Primary Progressive
Aphasia, while AD shows increased frac-
tional isotropy and mean diffusivity.40

Behavioral variant subtypes demonstrate
regional prefrontal-cortical, anterior-tem-
poral, insular, anterior cingulate, and
striatum volume loss.40 Meanwhile,
rsfMRI reveals re-duced salience network
connectivity in the behavioral variant,
abnormal executive dorsal attention-con-
trol and auditory networks, and increased
default mode network connectivity, posi-
tively correlating with symptom se-
verity.31 Additionally, Fe deposition
assessment differentiates those with the
behavioral variant from controls and
those with the Primary Progressive
Aphasia variant from those with the be-
havioral variant.41

FIG 7. FTD. Semantic and temporal variant demonstrates significant reduced bitemporal uptake
(arrows) without reduced frontal FDG-PET uptake as seen in Fig 6.

FIG 8. CAA presents as multiple forms. In the classic CAA form (top left, axial T2), subarachnoid hem-
orrhage is common as seen at the arrow, on susceptibility weighted imaging with clustered right
fronto-parietal MHs in the adjacent brain parenchyma. Large frontal parenchymal hemorrhages can
also be seen in classic CAA (top right image, axial T1). The inflammatory cerebral amyloidosis type will
demonstrate edema as seen in this case with left parietal edema/mass effect (bottom left, axial1C T1
at arrow). While the Amyloid-b related angitis variant commonly demonstrates dural/ leptomeningeal
enhancement seen posteriorly (arrows), (bottom left image, axial 1C T1 at arrow). Note the lack of
mass effect in the Amyloid- b angitis variant.
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Cerebral Amyloid Angiopathy
CAA dementia occurs in elderly normotensive individuals.
Pathophysiologically, amyloid deposits in cortical and meningeal
arterioles and capillary walls.42 Patients present with basal ganglia–
sparing subcortical lobar MHs. There are 3 forms: classic, inflam-
matory, and amyloid-related angiitis.42,43 Patients with classic
amyloid can demonstrate superficial siderosis, subarachnoid hem-
orrhage, and multiple MHs with posterior-predisposition T2
FLAIR changes (Fig 8) due to higher lipoprotein concentration.44

Inflammatory amyloid (poorest prognosis) exhibits clustered MHs,
minimal enhancement, and significant mass effect (Fig 8).
Amyloid-b -related angiitis, however, lacks mass effect but often
has meningeal enhancement (Fig 8). Cerebral MHs correlate with
neurologic deficits.45,46

Given the presence of amyloid,
amyloid PET findings are often posi-
tive, but being negative excludes
CAA42,45 (sensitivity ¼ 77%–92% and
specificity ¼ 66%–88% versus con-
trols);46 however, the more common
AD may coexist.42 Hence, some
authors propose an occipital-to-global
amyloid ratio to differentiate CAA
with regard to AD (AD spares the
occipital lobes).46 Definitive FDG-PET
CAA diagnosis awaits future research.

Parkinson Disease and Related
Syndromes
PD presents with resting tremor and
cognitive decline secondary to decre-
ased pigmented, substantia nigra/pars
compacta dopaminergic neurons, and
a-synuclein protein intraneuronal Lewy
body inclusions.47 T2MR imaging shows
an absent substantia nigra swallowtail
sign, indistinctness, and Fe deposition.48

FDG-PET differentiates Parkinson
disease from related dementias via
decreased basal ganglia uptake,49 while
18F fluorodopa demonstrates de-
creased striatal uptake.50 Parkinson dis-
ease appears similar to AD on FDG-
PET, but with greater visual cortex
involvement and relative medial-tem-
poral cortex preservation.50 Amyloid
and (less frequently) t imaging is posi-
tive.51 The principal nuclear medi-
cine study used to evaluate PD is 123I-
ioflupane/DaTSCAN (GE Healthcare)
SPECT (Fig 9) showing decreased
putamen and caudate uptake.51

There are 3 PD variants: PSP, amyo-
trophic lateral sclerosis, and MSA. PSP
(possibly an FTD variant) demonstrates
anterior-midbrain convexity loss on sag-
ittal views (hummingbird sign) with
interpeduncular cistern widening, and

patients demonstrate upward gaze paralysis.52 Amyotrophic lateral
sclerosis demonstrates motor strip and corticospinal tract hyperin-
tense T2 FLAIR signal secondary to Fe deposition (Fig 10). MSA
presents with autonomic failure and a T2 brain stem “hot cross
buns” configuration (Fig 11).52

Parkinsonian syndromes reveal decreased FDG-PET uptake;
PSP in the medial frontal, premotor, prefrontal, brain stem, and tha-
lamic regions; and MSA in the putamen, cerebellum, and brain
stem regions (Fig 12).33,47,49 Finally, CBD demonstrates asymmetric
decreased parietal and primary sensorimotor cortex, medial and lat-
eral premotor, striatum, and thalamic uptake contralateral to clinical
findings.33 PD may show cortical and striatal amyloid uptake.33 Tau
tracers may accumulate in the inferior-temporal cortex in PD, while
they are in the frontal-temporal, posterior-cingulate, subthalamic,

FIG 9. PD decreased putaminal. caudate head uptake results in the classic change from a “comma”
(right image arrows) to a “period” (left image arrows) appearance. Note abnormal (left) and normal
(right) findings on DaTSCANs.

FIG 10. Amyotrophic lateral sclerosis demonstrates significant bilateral precentral sulcus
increased corticospinal tract FLAIR signal (arrows, axial image, left) and decreased axial T2 precen-
tral sulcus signal, “motor band sign” (right, arrows) on MR imaging.
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midbrain, and cerebellar WM in PSP. In CBD, Tau uptake is seen
in the frontal, and parietal cortex (not seen inMSA).33,52

With MR imaging, increased substantia nigra quantitative SWI
suggests biomarker potential, as does prefrontal cortex and puta-
men Fe, which correlates with lower cognitive function.30,52,53

Likewise, rsfMRI default mode network assessment reveals altered
striatum, motor, cerebellar, and basal ganglia connectivity, though
disease heterogeneity inhibits biomarker progress.31,32

Lewy Body Dementia (DLB)
DLB a-synuclein pathology represents 15% of neurodegenerative
disease, and like Parkinson disease, it sometimes exhibits amyloid
and t pathology.54 Indicative criteria (diagnostic if present)
include radiologic biomarkers for DLB-reduced dopamine
transport on DaTSCAN SPECT or fluorodopa PET, or low

Metaiodobenzylguanidine (MIBG) cardiac uptake. Supportive
criteria are relative CT/MR imaging medial temporal lobe preser-
vation and low uptake on SPECT/PET perfusion and metabolism
(FDG) imaging, with reduced generalized uptake, reduced occipi-
tal uptake, and cingulate preservation.55

Regardless, FDG-PET demonstrates temporoparietal involve-
ment. Unlike AD, the occipital lobes are not spared.56 The most
sensitive PET finding is lateral-occipital cortex involvement (88%),
while the most specific finding is posterior cingulate preservation
(Fig 13).33 DaTSCAN SPECT (80% accurate for AD differe-
tiation) shows decreased putamen . caudate uptake.54 123I
Metaiodobenzylguanidine (MIBG) (catecholamine-receptor tracer)
assessment shows decreased cardiac activity secondary to postgan-
glionic-sympathetic cardiac innervation degeneration.54 Tau tracers
show posterior-temporoparietal, occipital-cortical, and precuneus

uptake.29 On MR imaging, medial-tem-
poral preservation (regarding AD) is
supportive but nonspecific, as is occipital
hypometabolism and preserved poste-
rior and midcingulate metabolism on
FDG-PET (decreased posterior cingulate
uptake is AD-specific).

Novel rsfMRI demonstrates wide-
spread connectivity alterations without
a current extent and disease localiza-
tion consensus.31 Recently, the swallow
tail sign was described in DLB.48

Huntington Disease
Huntington disease is a rare autoso-
mal dominant disease demonstrating
increased chromosome 4pCAG-trinu-
cleotide repeats, increased gamma-ami-
nobutyric acid, and neuronal loss. The
more common adult form presents

FIG 11. MSA demonstrates a pontine hot cross bun sign (left, axial T2 hyperintensity) with putami-
nal atrophy (right, arrows, axial T2).

FIG 12. MSA- Cerebellar FDG-PET reveals decreased medial frontal (left), thalamic (middle), and cerebellar (right) uptake (arrows).
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with chorea and dystonia, swallowing difficulty, abnormal and slow
eye movements, and impaired gait and posture and balance. By the
fourth-to-fifth decades, cognitive decline and word-finding difficulty
and emotional lability are seen. Patients presenting at younger than
20 years of age have the rarer juvenile form.57

MR imaging demonstrates frontal horn box-shaped dilation
and caudate atrophy. There are no nuclear medicine diagnostic
findings, though FDG-PET demonstrates striatal and cortical
hypometabolism with increased thalamus and occipital and cere-
bellar uptake.57-60 rsfMRI exhibits visual, motor, and basal gan-
glia network abnormalities.32,40

Vascular Dementia
While strokes are more common than
any other neurodegenerative disease,
they rarely present in FDG-PET. MR
imaging and PET reveal a sharp de-
marcation of involved arterial territo-
ries. If the frontal or internal capsule is
affected, there may be loss of uptake
and atrophy in the contralateral cere-
bellum (crossed-cerebellar diaschisis).34

Creutzfeldt-Jakob Disease
Creutzfeldt-Jakob disease causes rapid
cognitive decline from altered prion
protein accumulation, producing neu-
rotoxicity and cortical/subcortical spon-
giform necrosis. On MR imaging,
striatum and neocortex increased T2
FLAIR (medial-thalamic hockey-stick
configuration) is noted, often also
affecting the cortex (Fig 14). SPECT
reveals widely inconsistent perfusion
variations, and FDG-PET shows corti-
cal and basal ganglia involvement in
later stages.61

CONCLUSIONS
This article addresses clinical, pathol-
ogic, MR imaging, and PET findings,
including new techniques, to educate the
readership. Major differentiating MR
imaging and PET and pathologic facts
are summarized (Online Supplemental
Data) to assist with greater understand-
ing. Complicating imaging diagnosis are
concomitant pathologies with similar
abnormal metabolites.3,5 Hence, MR
imaging techniques like atrophy analysis;
MR spectroscopy; DTI;4,20,24 quantita-
tive SWI Fe analysis in AD, FTD,
PD, and LBD;2,9,30,41,48,53,54 and task-
based/rsfMRI in AD, LBD, FTD, and
PD4,24,27,31,32,37,40 are under investiga-
tion. Currently, direct comparisons of
SWI and fMRI techniques with molecu-

lar imaging and clinical markers are lacking, possibly slowing diagno-
sis and understanding of disease progression. Also lacking are
multitracer comparative studies, possibly cost-related and due to
poor reimbursement by payors. However, newer techniques and
radiotracers (t [PI-2620], a cholinergic, dopaminergic, translocator
protein) show needed great promise. Additionally, quantitative atro-
phy and WM burden analysis as a standard part of examinations
with multifactorial analysis of molecular imaging (PET and MR
imaging)3,24 and Lumbar Puncture findings like the “DuBois criteria”
promise better accuracy and treatment development, both urgently
needed in our aging society.4

FIG 13. DLB. FDG-PET reveals reduced posterior parietal and occipital activity (arrows), but preserved
posterior cingulate uptake (images courtesy Dr. Daniel Silverman, University of California, Los Angeles).

FIG 14. Creutzfeldt-Jakob disease demonstrates hockey stick configuration (black arrows),
medial thalamic increased FLAIR (left axial image) as well as medial frontal, left parietal and occipi-
tal cortical increased signal (white arrows) (cortical ribbon sign, right axial image).
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