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ORIGINAL RESEARCH
ADULT BRAIN

A Combined Radiomics and Machine Learning Approach to
Overcome the Clinicoradiologic Paradox

in Multiple Sclerosis
G. Pontillo, S. Tommasin, R. Cuocolo, M. Petracca, N. Petsas, L. Ugga, A. Carotenuto, C. Pozzilli, R. Iodice,

R. Lanzillo, M. Quarantelli, V. Brescia Morra, E. Tedeschi, P. Pantano, and S. Cocozza

ABSTRACT

BACKGROUND AND PURPOSE: Conventional MR imaging explains only a fraction of the clinical outcome variance in multiple scle-
rosis. We aimed to evaluate machine learning models for disability prediction on the basis of radiomic, volumetric, and connectivity
features derived from routine brain MR images.

MATERIALS AND METHODS: In this retrospective cross-sectional study, 3T brain MR imaging studies of patients with multiple scle-
rosis, including 3D T1-weighted and T2-weighted FLAIR sequences, were selected from 2 institutions. T1-weighted images were proc-
essed to obtain volume, connectivity score (inferred from the T2 lesion location), and texture features for an atlas-based set of
GM regions. The site 1 cohort was randomly split into training (n¼ 400) and test (n¼ 100) sets, while the site 2 cohort (n¼ 104)
constituted the external test set. After feature selection of clinicodemographic and MR imaging–derived variables, different
machine learning algorithms predicting disability as measured with the Expanded Disability Status Scale were trained and cross-
validated on the training cohort and evaluated on the test sets. The effect of different algorithms on model performance was
tested using the 1-way repeated-measures ANOVA.

RESULTS: The selection procedure identified the 9 most informative variables, including age and secondary-progressive course and
a subset of radiomic features extracted from the prefrontal cortex, subcortical GM, and cerebellum. The machine learning models
predicted disability with high accuracy (r approaching 0.80) and excellent intra- and intersite generalizability (r$ 0.73). The machine
learning algorithm had no relevant effect on the performance.

CONCLUSIONS: The multidimensional analysis of brain MR images, including radiomic features and clinicodemographic data, is
highly informative of the clinical status of patients with multiple sclerosis, representing a promising approach to bridge the gap
between conventional imaging and disability.

ABBREVIATIONS: DD ¼ disease duration; EDSS ¼ Expanded Disability Status Scale; IQR ¼ interquartile range; MAE ¼ mean absolute error; ML ¼ machine
learning; MS ¼ multiple sclerosis; WBV ¼ whole-brain volume

MR imaging is firmly established as a fundamental tool for
the diagnosis1 and monitoring2 of multiple sclerosis (MS),

with MR imaging features commonly used as surrogate markers

of disease activity in both clinical trials3 and routine clinical prac-
tice.4 However, conventional MR imaging measures (ie, the num-
ber, volume, and gadolinium enhancement of WM lesions)
explain only a small fraction of the diversity of clinical out-
comes in MS,5 with this mismatch traditionally referred to as
the “clinicoradiologic paradox.”6 The reasons for this apparent
dissociation are manifold, embracing the difficulty to both
define and measure clinical disability and the inability of con-
ventional MR imaging to exhaustively characterize CNS struc-
tural and functional modifications in MS.6 From a clinical
standpoint, the Expanded Disability Status Scale (EDSS) score
remains the most widely used outcome measure to assess MS-
related disability in clinical trials.7 From a neuroimaging per-
spective, however, many research studies have attempted to
address these blind spots, leveraging advanced MR imaging
techniques to identify clinically relevant disease biomarkers
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(eg, brain global and regional atrophy,8 spinal atrophy,9 corti-
cal lesions,10 microstructural damage of normal-appearing
white matter, normal-appearing white matter,11 and GM12

changes of structural and functional brain networks13) that
have the potential to bridge the gap between MR imaging and
disability in MS and are progressively being integrated into
clinical scenarios.

Of note, technical advances and the implementation of
imaging guidelines2,14 have led to the widespread availability
of good-quality clinical scans, including isotropic sequences
suitable for volumetric quantifications.8 Furthermore, new
promising connectomic approaches have shifted the empha-
sis from the sole quantification of total lesion burden to the
functional consequences of WM damage in terms of brain
network economy,13 which can also be coarsely inferred
from macroscopic T2 lesions.15 Finally, the diffusion of
radiomics has considerably augmented the amount of poten-
tially meaningful information extractable from clinical
images,16 with machine learning (ML) methods providing
the means for more flexible modeling of high-dimensional
neuroimaging data sets compared with traditional statistical
approaches.17

Given this background, we aimed to conceptually address
the “clinicoradiologic paradox” in MS by evaluating machine
learning models for EDSS score prediction on the basis of a sys-
tematic mapping of textural, volumetric, and macrostructural
disconnection features derived from routine brain MR images.
The results were validated by external testing on a separate data
set obtained from a second institution.

MATERIALS AND METHODS
Subjects
In this retrospective cross-sectional
study, brain MR imaging studies of
consecutive patients with an MS diag-
nosis revised according to the 2010
McDonald criteria18 and a relapsing-
remitting or secondary-progressive19

course including 3D T1-weighted and
T2-weighted FLAIR sequences were
selected from the radiologic databases
of 2 institutions: the MS Center of the
University of Naples “Federico II”
(site 1) and the Human Neuroscience
Department of the University of Rome
“Sapienza” (site 2). All studies were
performed between October 2006 and
January 2020. Clinical disability was
estimated using EDSS scores obtained
within 1 month of the MR imaging.
Exclusion criteria were as follows:
younger than 18 years of age or older
than 70 years of age; other pre-existing
major systemic, psychiatric, or neuro-
logic disorders; and the presence of a
relapse and/or steroid treatment in the
30days preceding the MR imaging
(Fig 1).

The study was conducted in compliance with the ethical
standards and approved by the local Ethics Committees, and
written informed consent was obtained from all subjects
according to the Declaration of Helsinki.

MR Imaging Data Acquisition
All MR images were acquired with a 3T scanner and included a
3D T1-weighted sequence (#1-mm isotropic resolution) for vol-
umetric analyses and a T2-weighted FLAIR sequence for quanti-
fying total demyelinating lesion volume. Details about sequence
parameters are provided in the Online Supplemental Data.

MR Imaging Data Processing
A flow chart summarizing the data-processing pipeline is avail-
able in Fig 2, while a complete description of all processing steps
is provided in the Online Supplemental Data.

Volumetric Analysis. Demyelinating lesions were automatically
segmented on FLAIR images using the Lesion Segmentation Tool
(LST), Version 3.0.0 (www.statistical-modelling.de/lst.html) for
SPM (http://www.fil.ion.ucl.ac.uk/spm/software/spm12). Lesion
probability maps were used to fill lesions in T1-weighted images
for subsequent processing steps and binarized to compute total
lesion volume.

Filled T1-weighted volumes underwent the segmentation pipe-
line implemented in the Computational Anatomy Toolbox
(CAT12.6; http://www.neuro.uni-jena.de/cat) in SPM to obtain an
atlas-based parcellation into 114 brain regions defined according
to the CAT12-adapted version of the Automated Anatomical

FIG 1. Flow diagram showing inclusion and exclusion criteria.
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Labeling atlas (https://github.com/muschellij2/aal).20 Furthermore,
whole-brain volume (WBV), GM subregion ROIs (and corre-
sponding volumes), and normal-appearing white matter masks
were also derived from the segmentation procedure.

Finally, total intracranial volume was estimated using CAT12,
and brain volumes (both WBV and GM regions) were trans-
formed into z scores while adjusting for age, sex, and estimated
total intracranial volume.

Connectivity Analysis. Subject-wise, for each of the 116 GM
cortical/subcortical regions defined in the Automated
Anatomical Labeling atlas,20 a change in the connectivity score
was computed using the Network Modification (NeMo) tool,15

representing an estimate of local structural disconnection
caused by WM tract disruption, as inferred from the location
and load of WM lesions.

Radiomics Analysis. First-order and texture features were extracted
from each segmentation-derived ROI (normal-appearing white
matter and 114 GM regions) from the unfilled T1-weighted vol-
umes using PyRadiomics, Version 3.0.21 Before the extraction, the
images underwent standard preprocessing steps. An exhaustive
description of the features obtainable by PyRadiomics is available in
the official documentation (https://pyradiomics.readthedocs.io/en/
latest/features.html).

Radiomics feature stability with respect to the MR imaging
processing pipeline was tested on a subset of 30 randomly
selected subjects, and only features with excellent stability (intra-
class correlation coefficient $ 0.90) were retained for subsequent
analyses.

Machine Learning
ML analyses were performed using theWeka data mining platform
(Version 3.8.3; http://old-www.cms.waikato.ac.nz/�ml/weka/)22

and scikit-learn Python package (https://scikit-learn.org/stable/
index.html).23 Given the nature of the EDSS score, regression algo-
rithms were used to develop predictive models, with several algo-

rithms (ie, ridge regression, support-vector machine, random
forest, and Gaussian process) investigated to assess differences in
performance due to model architecture. A description of the ML
algorithms is provided in the Online Supplemental Data.

The site 1 cohort was randomly split into training (80% of sub-
jects) and test (20% of subjects) sets for model tuning and testing,
respectively, while the site 2 cohort was exclusively used as an exter-

nal test set. After data-preprocessing (details in the Online
Supplemental Data), clinicodemographic (age, sex, disease duration
[DD], disease course), textural, and other MR imaging–derived (T2
lesion volume, WBV, and change in connectivity scores for each

GM region) variables underwent multiple feature-selection steps on
the training set. First, low variance (0.01 threshold) and highly coli-
near (.0.8) features were removed. Then, LASSO regression
(https://www.lasso.io/), using the EDSS score as the dependent vari-

able, was used to remove features whose coefficients shrank to zero.
Finally, the Weka correlation–based subset evaluator was used to
identify the best feature subset for EDSS prediction.

The resulting data set was used to train the 4 ML regression
algorithms, whose tuning and initial performance evaluation
were performed using 10-fold cross-validation in the training
cohort (80% of site 1 data). Each final model was then assessed
on the previously unseen cases of both the internal (remaining
20% of site 1 data) and external (site 2 data) test sets.

FIG 2. Workflow summarizing the main MR imaging data-processing and data-mining steps. Image illustrates the data set composition as well as
the major steps performed for feature extraction, feature selection, and regression modeling. LL indicates lesion load; NAWM, normal-appearing
white matter; ChaCo, change in connectivity; T1w, T1-weighted imaging.
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As an ancillary analysis, the models were retrained using clini-
codemographic features exclusively, to indirectly assess the incre-
mental benefit provided by imaging-derived measures.

Statistical Analysis
Statistical analyses were performed using the Statistical Package
for the Social Sciences (SPSS, Version 25.0; IBM) with a signifi-
cance level a ¼ .05. Between-site differences in terms of clinico-
demographic variables were tested using the Student t test (age
and disease duration), Fisher exact test (sex and disease course),
and median test (EDSS), respectively. The effect of different ML
algorithms on model performance was tested using 1-way
repeated measures ANOVA with absolute errors as the depend-
ent variable, including post hoc tests to compare each pair of pre-
dictive models, Bonferroni-corrected for controlling the family-
wise error rate.

RESULTS
Subjects
A total of 500 patients with MS were selected from site 1 (428
relapsing-remitting, 72 secondary-progressive; mean age, 37.5
[SD, 10.9] years; male/female ratio¼ 151:349; mean disease
duration¼ 9.3 [SD, 8.1] years). After the data set split, 400 sub-
jects from site 1 constituted the training set, and 100 subjects, the
internal test set. From site 2, one hundred four demographically
and clinically comparable patients (84 relapsing-remitting, 20
secondary-progressive; mean age, 38.3 [SD, 9.8] years; male/
female ratio¼ 24:80; mean disease duration¼ 9.2 [SD, 8.5] years)
were included in the external test set.

The median EDSS score was 2.5 (interquartile range [IQR] ¼
2.0–4.0) and 2.0 (IQR ¼ 1.5–4.0) for patients from sites 1 and 2,
respectively (P¼ .03). In the overall study population, patients
with secondary-progressive MS showed a higher EDSS score (me-
dian, 5.5; IQR¼ 4.5–6.0) than those with relapsing-remitting MS
(median, 2.5; IQR ¼ 2.0–3.5) (P, .001, accounting for age, sex,
and disease duration). Demographic and clinical variables of all
subjects included in the study are reported in Table 1.

MR Imaging Data Analyses and ML Predictive Models
For each participant, MR imaging–derived global (T2 lesion vol-
ume and WBV, also reported in Table 1) and regional (114 GM
regions) brain volumes were computed, along with the change in

connectivity scores corresponding to
the 116 GM parcels of the Automated
Anatomical Labeling atlas.

Furthermore, a total of 125,580
radiomics features were extracted
from the 115 segmentation-derived
ROIs (normal-appearing white mat-
ter and 144 GM regions), of which 43
were excluded as having nonexcellent
reproducibility.

The feature-selection procedure,
performed on the training cohort, iden-
tified 4907 low-variance and 99,312
highly colinear features. At LASSO

regression, 21 features were selected, further reduced to 9 by the
subset evaluator. These consisted of age and secondary-progressive
course in addition to a subset of radiomic features (details in Table
2), which were then used to train the ML algorithms for EDSS score
prediction. The trained model hyperparameters and ridge regres-
sion feature weights are available in the Online Supplemental Data.

Correlation coefficients (r) of the final models predicting
EDSS scores in the 10-fold cross-validation in the training cohort
ranged from 0.79 (R2 ¼ 0.62, mean absolute error [MAE]¼ 0.66)
for the random forest model to 0.80 (R ¼ 0.64, MAE¼ 0.65) for
ridge regression. On the internal test set, performances ranged
from r¼ 0.73 (R ¼ 0.54, MAE¼ 0.87) for Gaussian process
regression to r¼ 0.74 (R2 ¼ 0.55, MAE¼ 0.72) for ridge regres-
sion, while in the external test set, they ranged from r¼ 0.755
(R ¼ 0.570, MAE¼ 1.155) for ridge regression to r¼ 0.799 (R2 ¼
0.638, MAE¼ 1.247) for Gaussian process regression (Table 3).

There was a significant effect of the ML algorithm on the model
performance in both the internal [F(1.82, 180.39)¼ 7.94] (P¼ .001)
and external [F(1.70, 175.52)¼ 5.25] (P¼ .009) test sets. In particu-
lar, on the internal test set, Gaussian process regression performed
significantly worse than all other algorithms (Bonferroni-corrected
P# .01), while support-vector machine regression performed signif-
icantly better than Gaussian process regression on the external test
set (Bonferroni-corrected P, .001). Details of the pair-wise com-
parisons between different model performances are reported in the
Online Supplemental Data.

As for the ancillary analysis, while it was clear that clinical fea-
tures substantially contribute to EDSS prediction, with ridge
regression and support-vector machine regression yielding the
best overall results on the external test set (r¼ 813, MAE¼ 1.005
and r¼ 0.814, MAE¼ 0.945, respectively), models using these
alone were much less consistent across the 3 data sets, with per-
formance varying greatly on the basis of algorithm architecture
(Online Supplemental Data).

DISCUSSION
In this study, we proved that predictive models based on textural
features extracted from routine brain MR images, along with ba-
sic clinicodemographic data, correlate with clinical disability in
patients with MS with high accuracy and intra- and intersite
generalizability.

Since its earliest days, MR imaging research in MS has had the
objective of unraveling the relationship between neuroradiologic

Table 1: Clinicodemographic characteristics of the studied population, along with MR
imaging–derived global brain volumesa

Site 1 (n= 500) Site 2 (n= 104)
P Value

(Site 1 vs Site 2)
Age (mean) (yr) 37.5 (SD, 10.9) 38.3 (SD, 9.8) .49
Female sex (No.) (%) 349 (69.8) 80 (76.9) .16
Secondary-progressive course (No.) (%) 72 (14.4) 20 (19.2) .23
DD (mean) (yr) 9.3 (SD, 8.1) 9.2 (SD, 8.5) .83
EDSS (median) (IQR) 2.5 (2.0–4.0) 2.0 (1.5–4.0) .03
TLV (mean) (mL) 10.6 (SD, 13.4) 7.2 (SD, 8.6) .05
WBV (mean) (mL) 1026.1 (SD, 116.3) 1042.6 (SD, 117.4) .48

Note:—TLV indicates total lesion volume.
a Between-group differences regarding MR imaging measures are adjusted for age, sex, and estimated total intra-
cranial volume.
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imaging and clinical status.24 Indeed, several studies investigated
the association between conventional MR imaging markers of
MS pathology and EDSS, reporting correlation coefficients rang-
ing from 0.15 to 0.6024 and nurturing the concept of a “clinicora-
diologic paradox.”6 Through the years, many of the confounders
sustaining this apparent contradiction have been addressed, with
emphasis on a more specific characterization of CNS structural
and functional modifications through advanced MR imaging
techniques and a finer assessment of MS-related disability,
including the evaluation of cognitive performance.5

Most interesting, a more recent study has dealt with this classic
issue using a multivariate statistical analysis of local intensity pat-
terns on conventional MR images of a small homogeneous sample
of patients with MS, leading to promising results.25 The potential
of ML in the analysis of MR imaging data in MS is also highlighted
by another recent study using models based on FLAIR images and

demographic information for the prediction of 2-year clinical dis-
ability and achieving a mean squared error of 3 (corresponding to
a mean EDSS score error of 1.7).26 Furthermore, studies with a
large number of subjects demonstrated the clinical relevance of
automatic volumetric quantifications, systematically mapping
brain anatomy at both global and regional levels on clinical MR
images of patients with MS.27,28

In our work, we revisited the conventional MR imaging/clinical
disability dissociation problem in the light of recent developments
in the fields of radiomics and ML modeling, exploring the inform-
ative value of volumetric, macrostructural disconnection and tex-
tural features derived from routine MR images of a large multisite
cohort of patients with MS. We found that ML models based on
radiomics features extracted from specific brain regions, along
with basic clinicodemographic data, are highly predictive of the
EDSS score (r approaching 0.80, about 64% of shared variance),

Table 2: Selected radiomics featuresa

Anatomic Label Feature Class Class Characteristics Feature Feature Characteristics
Right frontal superior
orbital cortex

First order Describes the
distribution of voxel
intensities

Median The median gray level
intensity

Left amygdala Gray level co-
occurrence matrix

Quantifies how often
pairs of pixels with
specific values occur in
a specified spatial
range

Correlation Measures the linear
dependency of gray
level values to their
respective voxels in
the matrix

Left caudate nucleus Gray level co-
occurrence matrix

Quantifies how often
pairs of pixels with
specific values occur in
a specified spatial
range

Informational measure of
correlation 1

Quantifies the
complexity of the
texture

Right thalamus First order Describes the
distribution of voxel
intensities

Energy Measures the magnitude
of voxel values

Left cerebellar lobule
VIII

Gray level
dependence matrix

Quantifies gray level
dependencies (ie, the
number of connected
voxels within a set
distance that are
dependent on the
center voxel)

Small dependence low gray
level emphasis

Measures the joint
distribution of small
dependence with
higher gray-level
values

Cerebellar vermis
(lobules IV–V)

Gray level size-zone
matrix

Quantifies gray level
zones (ie, the number
of connected voxels
sharing the same
intensity value)

Size-zone non-uniformity Measures the variability
of size-zone volumes

Left cerebellar crus First order Describes the
distribution of voxel
intensities

Median Median gray level
intensity

a Characteristics of each selected feature and relative class according to PyRadiomics official documentation (https://pyradiomics.readthedocs.io/en/latest/features.
html) are presented, along with the anatomic location (according to Tzourio-Mazoyer et al20) of the corresponding ROI.

Table 3: Machine learning predictive modelsa

Cohort
Ridge Regression Gaussian Process Support-Vector Machine Random Forest

P Valuer R2 MAE r R2 MAE r R2 MAE r R2 MAE
Training 0.797 0.636 0.651 0.795 0.632 0.814 0.797 0.635 0.710 0.790 0.624 0.656 –

Internal test 0.741 0.549 0.725 0.733 0.537 0.874 0.734 0.538 0.754 0.734 0.539 0.740 .001a

External test 0.755 0.570 1.155 0.799 0.638 1.247 0.794 0.631 1.112 0.775 0.600 1.162 .009b

Note:—– indicates not available.
aF(1.82, 180.39)¼ 7.94. Partial h 2 ¼ 0.07. df corrected using Greenhouse-Geisser estimates of sphericity (« ¼ 0.61).
bF(1.70, 175.52)¼ 5.25. Partial h 2 ¼ 0.05. df corrected using Greenhouse-Geisser estimates of sphericity (« ¼ 0.57).
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demonstrating excellent intra- and intersite generalizability
(r$ 0.73, about 53% of shared variance). Of note, the ML algo-
rithm had little effect on the predictive performance, with similar
prediction errors across models, indicating substantial model-
independence of our findings. Also, as per our ancillary analysis,
while clinicodemographic variables alone were highly informative
of patients’ clinical status, the inclusion of radiomics features in the
models substantially increased the generalizability and stability
across different ML algorithms, supporting the additional value of
a holistic approach including a variety of data types/sources.

Although a meaningful comparison of effect sizes among
studies is hindered by the variability of study design, sample size,
and statistical methods, our study seemingly provides a sensible
improvement compared with earlier works,6 with sample width
and external validation across different sites further strengthen-
ing our results.

Most interesting, our findings confirm that signal intensity
patterns as assessed by the quantitative texture analysis of con-
ventional brain MR images encode clinically relevant informa-
tion,25 apparently outperforming measures like volume or
macrostructural disconnection in terms of shared variance with
clinical disability. Indeed, textural features may capture subtle
modifications of brain tissue microstructure, which are known to
correlate with clinical status in patients with MS.12 Furthermore,
the systematic mapping of different brain regions through atlas-
based automatic segmentation of T1-weighted volumes may
enhance radiomics analysis by adding anatomic specificity, with
most informative features in our models extracted from areas
whose pathologic modifications are known to impact the clinico-
cognitive performance (ie, prefrontal cortex,29 deep gray mat-
ter,27 and cerebellum30). Conversely, a simpler shape feature like
volume, as well as the coarse estimation of GM structural discon-
nection as inferred by T2 lesion location, may represent less
pathologically specific disease markers, therefore providing a
minor contribution to explaining MS-related disability.

To date, few studies have explored the potential of radiomics in
MS, mainly focusing on the analysis of WM lesions for diagnostic
classification purposes,31,32 with alterations of brain tissue micro-
structure mostly characterized through advanced MR imaging
techniques,33,34 which provide more neurobiologically interpreta-
ble results but require dedicated acquisitions that are difficult to
implement in large-scale population studies. Nevertheless, the sys-
tematic radiomics analysis of conventional brain MR images may
hide a huge unused potential, promising to exploit the maximum
clinically meaningful information contained in neuroradiologic
images, taking full advantage of a massive amount of clinical MR
imaging data collected through the years.

Some limitations of the current study should be acknowl-
edged. First, using EDSS as a measure of clinical severity has sev-
eral shortcomings, including incomplete coverage of CNS
domains, nonlinearity, low sensitivity, and inter- and intraob-
server variability.35 However, despite these limitations and the
availability of alternative rating scales, the EDSS is still considered
the reference method to assess MS-related disability in both clini-
cal trials and routine, therefore being more scalable to real-world
scenarios.35 Furthermore, it is known that radiomics features
may have instability due to variations in scanner and image-

acquisition parameters.36 Nevertheless, this issue may be miti-
gated by the combined evaluation of basic clinicodemographic
variables and other MR imaging–derived metrics with proved
robustness (eg, automatic volumetric quantifications8) as sug-
gested by the excellent generalizability of our models across dif-
ferent sequences and scanners. Finally, our work paves the way
for future studies exploiting the proposed methodologic frame-
work to predict longitudinal clinical outcomes, possibly provid-
ing a tool for effective prognostic stratification of patients with
MS in clinical practice.

CONCLUSIONS
We demonstrated that the multidimensional analysis of routine
brain MR images, including the systematic investigation of tex-
tural features in conjunction with basic clinicodemographic data,
is highly informative of the clinical status of patients with MS. In
the era of big data, this approach may represent a way of filling
the gap between conventional imaging and clinical disability in
MS.
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