
of July 24, 2025.
This information is current as

Network
Multiscale Fully Convolutional Neural 
Correction of Motion Artifacts Using a

and J.B. Andre
K. Sommer, A. Saalbach, T. Brosch, C. Hall, N.M. Cross

http://www.ajnr.org/content/41/3/416
https://doi.org/10.3174/ajnr.A6436doi: 

2020, 41 (3) 416-423AJNR Am J Neuroradiol 

http://www.ajnr.org/cgi/adclick/?ad=57967&adclick=true&url=https%3A%2F%2Fmrkt.us-marketing.fresenius-kabi.com%2Fajn1872x240_july2025
https://doi.org/10.3174/ajnr.A6436
http://www.ajnr.org/content/41/3/416


ORIGINAL RESEARCH
ADULT BRAIN

Correction of Motion Artifacts Using a Multiscale Fully
Convolutional Neural Network

K. Sommer, A. Saalbach, T. Brosch, C. Hall, N.M. Cross, and J.B. Andre

ABSTRACT

BACKGROUND AND PURPOSE: Motion artifacts are a frequent source of image degradation in the clinical application of MR imaging
(MRI). Here we implement and validate an MRI motion-artifact correction method using a multiscale fully convolutional neural network.

MATERIALS AND METHODS: The network was trained to identify motion artifacts in axial T2-weighted spin-echo images of the
brain. Using an extensive data augmentation scheme and a motion artifact simulation pipeline, we created a synthetic training data-
set of 93,600 images based on only 16 artifact-free clinical MRI cases. A blinded reader study using a unique test dataset of 28
additional clinical MRI cases with real patient motion was conducted to evaluate the performance of the network.

RESULTS: Application of the network resulted in notably improved image quality without the loss of morphologic information. For
synthetic test data, the average reduction in mean squared error was 41.84%. The blinded reader study on the real-world test data
resulted in significant reduction in mean artifact scores across all cases (P, .03).

CONCLUSIONS: Retrospective correction of motion artifacts using a multiscale fully convolutional network is promising and may
mitigate the substantial motion-related problems in the clinical MRI workflow.

ABBREVIATIONS: FCN ¼ fully convolutional neural network; MSE ¼ mean squared error; SSIM ¼ structural similarity index

Patient motion during MRI examinations results in artifacts
that are a frequent source of image degradation in clinical

practice, reportedly impacting image quality in 10%–42% of
examinations of the brain.1,2 Motion artifacts that substantially
affect the diagnostic value of an MRI examination may be recog-
nized at the time of image acquisition, resulting in repeat sequen-
ces in nearly 20% of all MRI examinations.1,3 These repeat
sequences incur substantial temporal and financial costs to the ra-
diology department.1 Because there is no guarantee that a patient
will be better able to lie motionless during the repeat sequence,
the diagnostic value of the images is often impaired.

The problem of motion has been addressed extensively by the
MRI research community, leading to a large number of proposed
techniques to reduce or eliminate motion artifacts in MRI.4

Among the most widely used methods are prospective5,6 and ret-
rospective7,8 navigator-based approaches, in which position in-
formation is extracted from data acquired using the MRI scanner
itself. Most of these methods, however, are limited to a particular
imaging situation and/or require additional scan time, which is
usually undesirable. One of the most popular techniques for
motion correction is the PROPELLER technique, in which rotat-
ing strips of several parallel k-space lines are acquired, leading to
a strong oversampling of the k-space center.9 Although widely
used in clinics, it involves an increased acquisition time and can
fail to correct for artifacts due to through-plane motion. Finally,
iterative “autocorrection” methods that retrospectively suppress
motion artifacts without additional information have been pre-
sented.10,11 Most of these approaches, however, usually produce
images with residual artifacts after correction.

On the other hand, deep neural network techniques have
recently received much attention due to impressive results in
many computer vision tasks.12 In particular, fully convolutional
neural networks (FCNs) have been successfully applied to com-
plex image-to-image translation tasks such as semantic segmenta-
tion13 or denoising.14
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In an early feasibility study, it was demonstrated that FCNs
can also be applied to retrospectively correct motion artifacts in
MRI.15 Recently, this approach was used in a work by Duffy et
al,16 which relied on a large dataset and also explored the applic-
ability of other network architectures to address this problem.
Here we present an alternative artifact-correction method that
relies on a multiscale FCN and includes both translational and
rotational motion as well as a variety of complex patient motion
profiles throughout the scan. The multiscale network architecture
was trained in a residual learning setup, which allowed efficient
capture of both high- and low-level artifact features in the input
images. To validate our hypothesis that the presented method
can significantly reduce the level of motion artifacts in MR brain
images, a blinded reader study was conducted in which 2 experi-
enced neuroradiologists visually assessed the degree of motion
artifacts in a real-world test dataset of clinical MR brain images
before and after correction by the trained network.

MATERIALS AND METHODS
Data Acquisition and Analysis
An institutional review board–approved retrospective Health
Insurance Portability and Accountability Act–compliant study
was performed, and patient consent was waived. Training of the
FCN was accomplished using a dataset with simulated artifacts
introduced into in vivo clinical brain image data. To create a
dataset representative of images obtained in the clinical routine,
we selected 46 scans from consecutive patients undergoing clini-
cally indicated MRI brain examinations from the image archive
of the department. Common indications included known or
suspected intracranial tumor (primary or metastatic, including
follow-up), known or suspected acute ischemic stroke (includ-
ing follow-up), known or suspected demyelinating disease, de-
mentia, suspected transient ischemic attack, and headache.
Findings included acute and subacute ischemic infarcts, meta-
static lesions, and microvascular angiopathy, among others.
Eight scans (17.4%) did not show any detectable pathology.
Patient age ranged from 28 to 89 years (mean age, 58.7 years),
with a male/female ratio of 1:1.05.

All image volumes were manually reviewed on a slice-by-slice
basis by an experienced neuroradiologist. Annotation of rigid
body motion was performed using a previously defined 5-point
Likert scale with a range of S ¼ 0–4, in which the scores corre-
spond to no (S ¼ 0), minimal (S ¼ 1), mild (S ¼ 2), moderate
(S¼ 3), and severe (S¼ 4) artifacts.1 Of note, scans with S � 3 are
considered marginal in diagnostic quality and should be
repeated.1 In this initial review, a single motion-artifact score was
given to each scan/volume (ie, sequence). All scans had been per-
formed at a single institution on 1 of two 3T MRI scanners (both
Ingenia; Philips, Best, the Netherlands) and consisted of T2-
weighted multislice 2D turbo spin-echo whole-brain sequences.
Scan parameters were in the following ranges: TE ¼ 80–100ms,
TR ¼ 3000–5700ms, flip angle ¼ 90°, echo-train length ¼ 12–
21, acquisition matrix size ¼ 400–480 � 280–400, reconstructed
image matrix size¼ 512–560� 512–560, number of slices ¼ 30–
50, slice thickness ¼ 3–5mm, number of signal averages ¼ 1–2,
pixel bandwidth ¼ 142–204Hz/px, phase FOV ¼ 74%–88%.
Only magnitude data were used because the images were

retrieved from the DICOM archive of the imaging department.
All retrieved DICOM data were anonymized.

Dataset Generation
All volumes that were deemed artifact-free by the radiologist (18
of 46) were then used to generate the synthetic training and test
dataset (16 and 2 volumes, respectively). In each volume, the
lower 8 and top 5 slices were discarded to restrict the analysis to
clinically relevant parts of the scan, resulting in 312 and 39 slices
that were used for generation of the synthetic training and the
test dataset, respectively. Artifacts simulating rigid translational
and rotational in-plane motion were then introduced into the
Fourier-transformed data, in which the parameter ranges were
selected to generate a large range of realistic artifact appearances.
For each input image, the assumed echo-train length of the turbo
spin-echo readout was chosen randomly in the range of 8–32.
Similarly, the assumed extent of zero-padding in k-space was
chosen randomly in the range of 0–100. Motion trajectories, (ie,
translation/rotation vectors as a function of scan time) were gen-
erated randomly to simulate the artifacts. The different types of
motion trajectories that were used in this study are shown exem-
plarily in Fig 1. In the “sudden motion” trajectory (top and mid-
dle profiles in Fig 1), the subject is assumed to lie still for a large
part of the examination, until a swift translation or rotation of the
head occurs. The time point of the sudden motion was taken ran-
domly as a fraction of the total scan time in the range of one-third
to seven-eighths. In addition, a large range of randommotion tra-
jectories was simulated (bottom profile in Fig 1) using a random
colored noise generator.17 The exponent of the power spectral
density of the generator was randomly chosen in the range of 1–
100 to create both high- and low-frequency motion profiles. To
account for possible motion during the “waiting time” in a multi-
slice acquisition sequence (ie, the time that is spent to acquire
data from other slices), we added small random shifts to the
motion profiles after each assumed acquisition of an interleaf
(defined by the echo-train length) in the k-space, as shown in the
bottom profile in Fig 1. The maximum magnitude of the motion
was chosen randomly in the range of 1–4 px and 0.5°–4.0° for
translation and rotation artifacts, respectively. For artifacts due to
rotation, the center of rotation was also varied randomly in the
range of 0–100 px in each direction.

The synthetic training dataset was generated using 16 of the
18 volumes. For each input image, data augmentation was real-
ized using random translation (0–10 px), random rotation
(0°–10°), and random deformation of each input image before
insertion of the artifacts. For the latter, 2 random second-order
2D polynomials were used as pixel-shift maps for x- and y-defor-
mation. An artifact-only image was calculated by subtracting the
artifact-free reference image from the artifact-corrupted image.
For the synthetic training dataset, 300 image pairs (artifact-cor-
rupted and artifact-only images) were created for each input
image, resulting in 93,600 image pairs in total. The synthetic test
dataset was derived from the 2 remaining volumes and consisted
of 11,700 image pairs.

To evaluate the performance of the network on data with arti-
facts due to actual patient motion, we used the 28 clinical
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volumes that were initially rated with the score S ¼ 1–4 (ie, con-
taining motion artifacts) as a real-world test dataset.

Network Structure, Training, and Evaluation
The network structure used in this study, depicted in Fig 2, was
based on a recently proposed architecture called Foveal FCN.18

In contrast to standard FCN architectures, it involved the proc-
essing of the input image at 3 different scales, thereby realizing an
efficient extraction of both high- and low-level features with min-
imal memory requirement. Even for the relatively large input
images used in this study (512–560 � 512–560 pixels), a mini-
batch size of 32 could be used. The FCN allowed a patch-based
processing of the image, which did not affect the overall out-
come of the correction. Therefore, the image was divided into

nonoverlapping patches, which were processed in conjunction
with larger, but down-sampled patches at the same position
(depicted by the different colored boxes in Fig 2). Feature extrac-
tion for each patch was performed using 2 layers, each consisting
of a convolutional layer, followed by batch normalization, and a
rectified linear unit. Larger kernel sizes were used for the convo-
lutional layers in the higher scales to allow larger effective recep-
tive fields. Feature integration was realized using average
unpooling and convolutional layers. This patch-based processing
allowed processing of input images with variable size.

The network was trained for 50 epochs using stochastic gradi-
ent descent, in which the Adam algorithm19 was used to update
the learning rate for each parameter. The mean squared error
(MSE) between the artifact estimate of the network and the

FIG 1. Examples of motion-artifact generation. Examples of different motion trajectories that were used are shown in the central column: sud-
den translation (upper), sudden rotation (middle), and random translation (lower). The right column shows the corresponding artifact-corrupted
output images.
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ground truth was used as a cost function. Training was real-
ized using the Microsoft Cognitive Toolkit (https://github.
com/Microsoft/CNTK) with a computation time of approxi-
mately 6 days on a single Nvidia GTX 1080ti GPU. With the
same hardware, inference time for a single slice was about
200 ms.

After training, the network was applied to the synthetic test
dataset (with simulated artifacts), which allowed direct visual

comparison with the artifact-free reference image. In addition,
quantitative analysis was performed using the MSE and the struc-
tural similarity index20 between artifact-corrected and reference
images as metrics. Two-sample t tests were performed to test
whether the network application yielded a significant alteration
of these metrics. To evaluate the impact on artifact-free images,
the network was also applied to all slices of the 2 test volumes
without simulated artifacts.

FIG 3. Examples of the performance of the network on the synthetic test dataset containing simulated motion artifacts. Blue arrows indicate
residual artifacts. Red arrowsmark regions where slight blurring can be observed in the corrected images compared with the ground truth. The
blurred structures cannot be identified in the artifact-estimate image (ie, the network output), indicating that this effect was not introduced by
the network.

FIG 2. Architecture of the used Foveal fully convolutional neural network. The input image was split into different patches (indicated by red
box), and each patch was processed in conjunction with larger, down-sampled patches at the same location (blue and green boxes). The size of
the patches was chosen to account for the loss of border pixels in every convolutional layer. Each feature-extraction path consisted of 2 layers,
each comprising a convolutional layer (C), batch normalization (B), and a rectified linear unit (R) activation. Feature integration was realized using
average unpooling (U) and convolutional layers. Kernel sizes and the number of channels are denoted as k and n, respectively. The output was
the estimate of the motion artifacts by the network for the selected image patch.
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In addition, the trained network was also evaluated on the
real-world test dataset. For each section, the artifact estimate
of the network was subtracted from the original input image.
Because artifact-free reference images were not available for
these 28 clinical motion cases, all artifact-corrupted input and
artifact-corrected output images (962 in total) were rated on a
section-by-section level in a blinded reader study using the 0–
4 qualitative scale described previously. The images were
shown to 2 board-certified neuroradiologists in random order
and did not contain any information regarding origin (ie,
before/after correction). A 1-sample t test was performed for
each artifact score class using a significance level of .05, corre-
sponding to critical values in the range of 1.65–1.75 for the dif-
ferent score classes.

RESULTS
For the synthetic test data, the network-based correction resulted
in a reduction of motion artifacts and yielded image data with
improved image quality. Figure 3 shows the performance of the
network for 2 sample slices from the synthetic test dataset. Only
minor residual artifacts can be identified in the corrected images
(marked by blue arrows). In some parts of the corrected images, a
mild blurring can be observed compared with the ground truth
images (marked by red arrows). This is confirmed by inspection
of the difference between corrected and ground truth images
(rightmost column in Fig 3), where the contours of certain ana-
tomic structures can be discerned. Most important, these struc-
tures cannot be identified in the artifact-estimate image (ie, the
network output).

The results of the quantitative analysis on the synthetic test
dataset are visualized in Fig 4, which reveals a substantial reduc-
tion of the MSE due to application of the network. On average,
the network-based artifact correction resulted in a reduction of
the MSE of 41.84%. Similarly, an average increase of the struc-
tural similarity index from 0.863 to 0.924 was observed (ie, the
network increased similarity to the ground truth). Both the
reduction of MSE and increase of the structural similarity index
were confirmed to be statistically significant (P, :001 in both
cases). For the images without motion artifacts, the structural
similarity index was only slightly reduced from 1.0 to 0.99,

suggesting that the modifications by the network were negligible
in these cases. The network performance on 2 sample cases that
were rated as artifact-free by the radiologists is shown in the On-
line Figure.

Similar results were obtained for the test dataset with real
motion cases, as shown exemplarily in Fig 5. Substantial improve-
ment of image quality was observed for nearly all cases, often
with no, or only minor, residual artifacts (marked by blue
arrows). Similar to the synthetic test data, minor blurring was

FIG 5. Examples of the performance of the network on real-world
test data. Residual artifacts and regions of residual blurring are indi-
cated by blue and red arrows, respectively. White arrows indicate
lesions where the network removed the motion artifacts despite the
lack of such structures in the training dataset. The numbers in the top
left of the images are the scores given by the neuroradiologist.

FIG 4. Boxplot of the MSE relative to the reference data before and
after the correction. w.r.t. indicates with respect to.
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observed in some parts of the images (marked by red arrows),
typically in regions with severe artifacts in the input images. Most
interesting, the algorithm showed robust performance even for
radiologically detectable brain pathologies that were not present
in the training dataset, such as the lesions in the third and sixth
rows of Fig 5 (marked by white arrows), suggesting that the FCN
appropriately targeted the motion artifacts only and left the
underlying image data relatively unaltered.

These qualitative findings were confirmed by the results of the
blinded reader study. The mean artifact scores for the real-world
test dataset before and after the network-based correction are
listed in the Table for both readers. Application of the correction
resulted in a reduction of the mean artifact score for all artifact
levels and both readers. As can be seen from the Table, the total
reduction of the mean artifact score was substantially larger for
the higher artifact score classes. This reduction was statistically
significant for all score classes, as confirmed by the 1-sample t
tests for the different artifact score classes: P, :03 and t. 3:0 in
all cases. The detailed results of the reader study are shown in Fig
6 in matrix form, where each cell indicates the number of images
for a particular score pair (before/after correction). Both matrices
are dominated by values on or below the diagonal, again confirm-
ing the overall positive impact of the network-based artifact cor-
rection. Agreement between both readers was high: Both readers
agreed in 74.4% of all images and disagreed by 1/2/3/4 scores in
24.2%/1.2%/0.1%/0.0% of all images. The weighted Cohen k was
k ¼ 0:82.

DISCUSSION
The presented network-based motion artifact correction repre-
sents a purely retrospective correction technique, requiring only

standard-magnitude images from a
traditional DICOM repository (PACS
for example), which can be performed
at any time after image acquisition. Its
artifact-detection and removal capa-
bilities rely on the prior knowledge
that has been encoded in the network
parameters during training. As a con-
sequence, it does not require addi-
tional scan time or data input apart
from the magnitude-only MRI. It
may, hence, be applied retrospec-
tively to all suitable datasets in an
image archive, potentially mitigating
artifact-related clinical problems such
as difficult radiologic interpretations,
reduced workflow efficiency, and
increased institutional costs. A funda-
mental requirement for such applica-
tions is the ability of the network to
generalize to unseen anatomic and
pathologic structures. The successful
identification of artifacts in clinical
motion cases, even in the presence of
pathologies that were not seen during

training (Fig 5), is very promising in this regard.
The real-world applicability of this technique was preliminar-

ily assessed in the clinical reader portion of this study, which sug-
gested that optimal FCN performance (resulting in the highest
final image quality) was generally obtained for cases with motion
artifacts that were scored as “mild” before correction (scores S ¼
1 or S ¼ 2). In many of these cases, the resulting images were
considered artifact-free by the blinded radiologists. The small
number of cases in which an increased artifact score was given af-
ter the correction—8 and 3 of 481 images for readers 1 and 2,
respectively—may be attributed to intrareader variability. Direct
visual comparison of these images before and after the correction
did not reveal an increased artifact level due to the application of
the network.

On the other hand, reduction of the mean artifact score was
most pronounced for the severe-artifact cases (initial motion
scores of 3 and 4), which almost always yielded lower motion
scores than those assigned before correction. Of note, the com-
plete removal of all artifacts was not achieved in all of these cases,
however, as confirmed by visual inspection (Fig 5). It is currently
not clear whether these residual artifacts constitute a fundamental
limitation of the presented method or whether further improve-
ments are possible. Given that performance on classic computer
vision tasks such as image classification has recently been consid-
erably improved by increasing network depth,21,22 more compre-
hensive training datasets, as well as various other technical
developments,23,24 it is conceivable that the application of such
techniques to the examined problem may yield even lower resid-
ual artifact levels. Such developments may be further supported
by applying the network to complex input data. Because motion
artifacts are typically very prominent in the phase images, separa-
tion of artifacts and anatomy may be facilitated. Alternatively,

Results of the blinded reader studya

Artifact Score S before Correction
(1=Minimal, 4= Severe)

Mean Artifact
Score S after
Correction

Fraction of Images for
Which the Score was

Improved by the Correction
S ¼ 1 (minimal; 186/54 images) 0.269/0.221 74.73%/78.57%
S ¼ 2 (mild; 82/110 images) 0.683/0.646 95.12%/98.18%
S ¼ 3 (moderate; 34/40 images) 0.971/1.225 100.00%/97.50%
S ¼ 4 (severe; 17/6 images) 1.588/2.167 100.00%/83.33%

a In all columns, the pair of numbers refers to the annotations given by readers 1 and 2, respectively.

FIG 6. Matrices showing the detailed results of the blinded reader study. Each cell in the matrix
indicates the number of images for a particular score pair (before/after correction).
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other loss functions such as L125 or perceptual loss26 may be
explored in this regard. Recently, several works also suggested an
adversarial loss to improve the visual appearance of the corrected
images.16,27 While further research is needed on this topic, we
avoided adversarial loss terms in this study due to the potential
threat of generating visually pleasing but synthetic structures,
which, in the worst case, may be misinterpreted as pathologies.

Compared with the results of the clinical reader study, quanti-
tative analysis of the network performance on synthetic data
revealed a somewhat limited reduction of the MSE, in particular
in view of the striking visual improvements of image quality as
shown in Figs 3 and 5. This discrepancy between visual assess-
ment and MSE may be partially explained by the fact that the cor-
rection capability of the network relies mainly on a removal of
ghosting artifacts, whereas the corresponding minor reduction in
signal intensity of the original anatomic structures is relatively
unaffected. While the latter effect has a negligible impact on vis-
ual perception, it significantly affects the MSE. This interpretation
confirms previous reports of the inadequacy of the MSE for
measuring image similarity.20,28

Another potential limitation may be the residual image blur-
ring that could be identified in select cases following filtering,
particularly in images that were initially scored as having severe
motion artifacts. Arguably correction of this blurring may repre-
sent a more difficult image translation task than removal of the
typical ghosting artifacts due to motion. Recent works,29,30 how-
ever, suggest that neural networks may also enable such image
deblurring.

Future works should address these current limitations, as well
as extend the presented clinical validation to more diverse data-
sets. In particular, cases with small lesions (eg, intracranial metas-
tases) or anatomic structures that may have an appearance
similar to motion artifacts (eg, small vessels) may prove critical.
In addition, the performance of the network in case of other MRI
contrasts, other anatomies, or additional artifacts, such as signal
voids, wrap-around artifacts, or N/2 ghosting,31 should be exam-
ined in detail.

The presented Foveal FCN offers the potential for retrospec-
tive improvement in image quality in examinations with motion
during acquisition. Our study suggests that a network-based cor-
rection technique is capable of significantly improving image
quality in clinical, motion-degraded images. Admittedly, this
technique may not yet be capable of completely removing all
motion-related artifacts, though implementation of such an FCN
may prove a useful asset in the clinical workflow. Radiologists of-
ten claim a capacity to “see through” certain types of mild arti-
facts so that a modest reduction in the degree of artifacts may
suffice to enable a reliable interpretation of the images. In addi-
tion, the presented method is largely orthogonal to other techni-
ques for motion-artifact reduction such as those based on MRI
navigators or external tracking devices. It may be used to correct
for residual motion artifacts that often remain even when such
techniques are applied.

CONCLUSIONS
This work demonstrates the feasibility of retrospective motion-
artifact correction in MRI using a multiscale FCN. The presented

method does not require additional input data apart from magni-
tude-only MRI and appears to effectively correct for motion arti-
facts, even in case of unseen pathologies.
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