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Neonatal Developmental Venous Anomalies:
Clinicoradiologic Characterization and Follow-Up

A.F. Geraldo, S.S. Messina, D. Tortora, A. Parodi, M. Malova, G. Morana, C. Gandolfo, A. D’Amico,
E. Herkert, P. Govaert, L.A. Ramenghi, A. Rossi, and M. Severino

ABSTRACT

BACKGROUND AND PURPOSE: Although developmental venous anomalies have been frequently studied in adults and occasionally
in children, data regarding these entities are scarce in neonates. We aimed to characterize clinical and neuroimaging features of
neonatal developmental venous anomalies and to evaluate any association between MR imaging abnormalities in their drainage ter-
ritory and corresponding angioarchitectural features.

MATERIALS AND METHODS:We reviewed parenchymal abnormalities and angioarchitectural features of 41 neonates with developmen-
tal venous anomalies (20 males; mean corrected age, 39.9weeks) selected through a radiology report text search from 2135 neonates
who underwent brain MR imaging between 2008 and 2019. Fetal and longitudinal MR images were also reviewed. Neurologic outcomes
were collected. Statistics were performed using x 2, Fisher exact, Mann-Whitney U, or t tests corrected for multiple comparisons.

RESULTS: Developmental venous anomalies were detected in 1.9% of neonatal scans. These were complicated by parenchymal/ven-
tricular abnormalities in 15/41 cases (36.6%), improving at last follow-up in 8/10 (80%), with normal neurologic outcome in 9/14
(64.2%). Multiple collectors (P¼ .008) and larger collector caliber (P, .001) were significantly more frequent in complicated develop-
mental venous anomalies. At a patient level, multiplicity (P¼ .002) was significantly associated with the presence of $1 complicated
developmental venous anomaly. Retrospective fetal detection was possible in 3/11 subjects (27.2%).

CONCLUSIONS: One-third of neonatal developmental venous anomalies may be complicated by parenchymal abnormalities, especially
with multiple and larger collectors. Neuroimaging and neurologic outcomes were favorable in most cases, suggesting a benign, self-lim-
ited nature of these vascular anomalies. A congenital origin could be confirmed in one-quarter of cases with available fetal MR imaging.

ABBREVIATIONS: CCM ¼ cerebral cavernous malformation; c-DVA ¼ complicated developmental venous anomaly; cUS ¼ cerebral ultrasound; CVMS ¼
cerebrofacial venous metameric syndrome; DVA ¼ developmental venous anomaly; u-DVA ¼ uncomplicated developmental venous anomaly

Developmental venous anomalies (DVAs) are the most fre-
quently diagnosed intracranial vascular malformations, of-

ten encountered as incidental neuroimaging findings.1,2 On MR
imaging, DVAs are recognized on postcontrast T1WI as radially
oriented veins with a “caput medusae” pattern converging into 1
(or rarely more) dilated venous collector.3,4 These features may
be also detected on precontrast MR images,3-5 especially if T2*-
weighted sequences such as high-resolution SWI are included in

the protocol.5 In addition, DVAs may be occasionally recognized
in utero using fetal MR imaging.6

DVAs are usually considered benign anatomic variants.7

However, they represent areas of venous fragility that can become
symptomatic through diverse pathomechanisms.8,9 Indeed, DVA-
associated brain abnormalities are frequently depicted, including-
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but-not limited-to sporadic cerebral cavernous malformations
(CCMs).8-16 Moreover, a higher prevalence of DVAs has been
described in patients with different pathologies and/or genetic con-
ditions.17-21

Although DVAs are widely described and characterized in
adults, they remain under-reported in the pediatric population.
Indeed, there are noticeably fewer studies focusing exclusively on
DVAs in this age group, especially in the neonatal period.17,18,21-24

In particular, the largest case series of neonatal DVAs described so
far included 14 neonates, mostly detected using ultrasound during
routine scanning for other reasons,22 with limited information on
the prevalence and perinatal characteristics of these vascular
abnormalities, including complications and longitudinal evolution.
Moreover, additional data on neonatal and fetal DVAs would be of
great interest because there is an ongoing debate regarding their
congenital or postnatal etiology.25

In this study, we aimed to describe the pre- and postnatal appear-
ance of DVAs and associated brain anomalies in a relatively large sin-
gle-center group of neonates, providing information on their imaging
and clinical follow-up. In addition, we tested a possible association
between parenchymal and ventricular abnormalities in the drainage
territory of neonatal DVAs and their angioarchitectural features.

MATERIALS AND METHODS
Population
After institutional review board approval, 1 pediatric neuroradiolo-
gist (M.S.) searched in the radiology information system of a terti-
ary pediatric institution (IRCCS Istituto Giannina Gaslini, Genoa,
Italy) for reports of brain MR imaging studies performed in sub-
jects up to 28days of corrected age containing the term “develop-
mental venous anomaly,” during a 12-year period (January 2008 to
December 2019). During this period, 2135 neonates underwent
brain MR imaging. All procedures performed in the studies involv-
ing human participants were in accordance with the ethical stand-
ards of 1964 Helsinki Declaration and its later amendments or
comparable ethical standards. Informed consent was waived by the
institutional research committee.

MR Imaging Technique and Image Analysis
Neonates were scanned on 1.5T or 3T MR imaging units with dif-
ferent imaging protocols, all including at least T1WI, T2WI, DWI,
and T2*WI (either gradient recalled-echo or SWI) sequences.
Gadolinium-based contrast agents were injected only if clinically
indicated. Neonates were fed before the MR imaging examination
to achieve spontaneous sleep, with mild oral midazolam sedation
(0.1mg/kg) in case of head movements, and were breathing spon-
taneously during the examination.

Brain MR imaging studies were reviewed by 2 pediatric neuro-
radiologists (M.S. and A.F.G. with 10 and 5years of experience,
respectively), who confirmed the diagnosis and evaluated the pres-
ence of DVA-related mechanical compression of adjacent struc-
tures, draining vein thrombosis, and/or parenchymal abnormalities
within the drainage territory. The latter included any of the follow-
ing: increased T2 signal of surroundingWM, foci of restricted diffu-
sion, hemorrhage, CCM,26 malformations of cortical development,
or calcifications (defined as focal areas of hyperintensity on SWI
phase images in right-handed MR imaging systems or hyperdensity

on head CT scans). Microhemorrhages were distinguished from
type IV CCMs on the basis of their evolution on imaging. Indeed,
vessels of CCMs have a tendency to leak and bleed, thus frequently
increasing or stabilizing in size with time, while microhemorrhages
typically present a regular evolution of hemoglobin degradation
with a faster reduction in size and/or complete regression.

Subjects with $1 associated abnormality were considered to
have complicated DVAs (c-DVA group), and the remainder,
uncomplicated DVAs (u-DVA group).

Additionally, we registered the number of DVAs per patient as
well as the corresponding angioarchitecture features:3,11 direction of
drainage, number of collector veins, and mean collector caliber
(defined as the caliber of the collector vein in case of a single collector
or the mean of all collector calibers in case of multiple collectors,
measured on axial T2*WI). Multiple collectors were defined as$2
draining veins. Fetal MR imaging, neonatal cerebral ultrasound (cUS),
DSA, and follow-upMR imaging were reviewed when available.

Imaging findings at last MR imaging follow-up were classified
as interval improvement, progression, stability, or mixed evolution.

Discrepancies were resolved by a third pediatric neuroradiolo-
gist (A.R. with 25 years of experience).

Clinical Data
Data on sex, pregnancy history, gestational age at birth, cause of
prematurity, type of delivery, Apgar scores, corrected age at first
MR imaging, and imaging indications were obtained from the elec-
tronic clinical records. For neonates with c-DVAs, additional data
including treatment, age at last clinical assessment, and neurologic
outcome (graded as normal, mild, moderate, or severe impairment)
were also registered.

Statistical Analysis
Quantitative data were presented as median and interquartile range,
and categoric data, as frequencies and percentages. Fisher exact, x2,
and independent samples Student t tests were used to compare clin-
ical characteristics between patient groups with c-DVAs and u-
DVAs. Fisher exact, x 2, and Mann-Whitney U tests were used to
compare angioarchitectural characteristics and associated parenchy-
mal/ventricular abnormalities between individual complicated and
uncomplicated DVAs. All results were corrected for multiple-com-
parison testing using the Bonferroni correction method. Statistical
significance was reached if the P value was,0.05/k, where k indi-
cates the number of tests, resulting in thresholds for statistical sig-
nificance of P, .0045 and .0083 for patient and DVA levels of
comparison, respectively. Statistical analyses were performed using
SPSS Statistics software, Version 24.0 (IBM).

RESULTS
Neonatal Imaging Features
Forty-one neonates with DVAs were retrieved by a report search
and confirmed by image review (20 males; mean corrected age at
first MR imaging, 39.9weeks; range, 33–44 weeks), correspond-
ing to a real-world MR imaging DVA detection of 1.9% (41/
2135) in a tertiary pediatric center. Neonates were preterm in
46.3% of cases (n¼ 19). Brain MR imaging was obtained on a 3T
scanner in 22 cases (53.7%). SWI and postcontrast T1WI were
acquired in 38 (92.7%) and 7 cases (17.1%), respectively.
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Fifteen patients (36.6%) had at least 1 DVA (range, 1–6) asso-
ciated with parenchymal abnormalities and/or CSF obstruction
(c-DVA group) (Table 1 and Figs 1–3). Two of these neonates

were affected by cerebrofacial venous
metameric syndrome (CVMS). The
On-line Table summarizes clinicoradio-
logic associations. In particular, at-term
birth (P ¼ .02), higher gestational age
(P ¼ .05), and imaging indications
other than “preterm screening” (P ¼
.005) were significantly more frequent
in the c-DVA group but did not reach
statistical significance after adjusting for
multiple comparisons. Moreover, mul-
tiple DVAs as well as additional cranio-
facial vascular lesions were also more
common in patients with c-DVAs (P¼
.002 and P ¼ .02, respectively), but
only multiplicity remained significant
after multiple-comparison correction.
Neonatal seizures likely attributable to
a symptomatic DVA were detected in
2/15 patients with c-DVAs. One addi-
tional patient with a c-DVA developed
probable DVA-related seizures at
11months. A direct causal relationship

between the DVA and neonatal seizures was not identified in 2
patients with u-DVA presenting with this symptom.

Overall, 58 DVAs were identified, comprising multiple DVAs
in 9 cases. DVA location and angioarchitecture features are pre-
sented in Table 1. Multiple collectors and larger collector calibers
were significantly more frequent in complicated DVAs (P= .008
and P, .001, respectively), even after adjusting for multiple
comparisons.

DSA was performed in 4 patients with c-DVAs. No signs of
arteriovenous shunting through the DVA with or without an
associated classic nidus were identified, while a subject with
CVMS had an intraorbital AVF.

Fetal MR Imaging and Postnatal cUS
Fetal MR imaging was performed in 11 patients (26.8%), of
whom 6 belonged to the c-DVA group (21 examinations in
total, 1–4 studies per patient, acquired between 20 and 38 gesta-
tional weeks). Retrospective analysis of single-shot FSE, b = 0,
and/or T2*WI identified a DVA and/or an abnormally enlarged
draining pathway in 3 fetuses (27.3%). In another case, a DVA-
associated cerebellar hemorrhage was detected but precluded
the identification of the subjacent DVA. Of the remaining 7
fetuses in whom the DVA was not visible, 3 presented with cra-
niofacial vascular lesions.

Postnatal cUS was available in 36 neonates: In 3 cases, the
DVA was suspected before the MR imaging examination due to
the presence of a parenchymal linear hyperechogenic focus.

Management and Clinicoradiologic Outcome of Neonates
with c-DVAs
Of 15 neonates with c-DVAs, 13 were conservatively managed,
with a wait-and-see approach in 10 cases, anticoagulation treat-
ment in 2, and antiepileptic drugs in 1. Endoscopic third ventricu-
lostomy was performed in 1 neonate with DVA-related obstructive

Table 1: Location and angioarchitecture characteristics of developmental venous
anomalies

Total
(n= 58)

Complicated DVA
(n= 21) (36.2%)

Uncomplicated DVA
(n= 37) (63.2%)

P
Valuea

Location (%) .44
Frontal 24 (41.4) 9 (42.9) 15 (40.5)
Parieto-occipital 16 (27.7) 6 (28.6) 10 (27)
Temporal 8 (13.8) 3 (14.3) 5 (13.5)
Basal ganglia/thalami 5 (8.6) 0 (0) 5 (13.5)
Brain stem 2 (3.4) 1 (4.8) 1 (2.7)
Cerebellum 3 (5.2) 2 (9.5) 1 (2.7)

Infratentorial (%) 5 (8.6) 3 (14.3) 2 (5.4) .34
Right side (%) 33 (56.9) 13 (61.9) 20 (54.1) .59
Multiple collectors (%) 9 (15.5) 7 (33.3) 2 (5.4) .008b

Main collector caliber
(median) (IQR) (mm)

1.6 (1.18–2.10) 2.1 (1.95–2.30) 1.2 (1–1.6) ,.001b

Drainage (%) .70
Deep 31 (53.4) 11 (52.4) 20 (54.1)
Superficial 19 (32.8) 6 (28.6) 13 (35.1)
Both 8 (13.8) 4 (19) 4 (10.8)

Note:—IQR indicates interquartile range.
a P values for group comparisons were determined by x 2 or Fisher exact tests for categoric variables or by Mann-
Whitney U tests for continuous variables, as appropriate.
b Value statistically significant (statistical significance was set at P, .0083 after Bonferroni correction for multiple
comparisons).

FIG 1. Neonatal developmental venous anomaly complicated by
focal areas of venous ischemia. A, Axial SWI shows a left parietal de-
velopmental venous anomaly with superficial drainage. B, Axial T2WI
reveals small linear hypointense lesions in the surrounding WM
(arrow), with corresponding hyperintensity on b ¼ 1000 image
(C, arrow) and low ADC values on the ADC map (D, arrow).
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hydrocephalus. Multiple interventional procedures were per-
formed in the child with CVMS and an AVF.

Table 2 reports the clinicoradiologic outcome of subjects with
c-DVAs. Longitudinal MR imaging was available in 10/15 patients
(median follow-up, 39.1months; range, 2–97 months; age at last
follow-up, 2.5months–8.2 years). Eight patients (80%) showed
imaging signs of improvement, while stability (n¼ 1) or mixed
evolution (n¼ 1) was detected in the remaining cases.

Follow-up neurologic evaluation was available in 14 neonates
with c-DVAs (median follow-up, 27.5months; range, 11–97
months), and findings were judged normal in 9 cases (64.2%),
while minor or moderate psychomotor impairment was detected
in 4 (28.5%) and 1 (7.1%) patient, respectively.

A brief description of a few illustrative cases of neonatal c-
DVA is presented in the On-line Appendix.

DISCUSSION
In this study, we identified 41 neonates with DVAs, for a total of
58 DVAs, from a population of 2135 neonates undergoing brain
MR imaging for diverse clinical reasons and with different imag-
ing techniques, corresponding to a real-world detection in a terti-
ary pediatric center of 1.9%. These findings are similar to a recent
retrospective study by Brinjikji et al,25 describing a prevalence of

1.5% in the 0- to 12-month age group.
Most interesting, both percentages are
lower than those reported in studies
including older children, adults, or
mixed populations (5%–10%).4,23,25

Because the pathogenesis of DVAs
remains controversial, including their
cause and timing of development,
some authors have attributed these
age-related prevalence differences to a
postnatal origin.25 However, caution is
advised due to methodologic discrep-
ancies among studies in terms of selec-
tion criteria and imaging protocols. In
addition, DVAs may potentially be
more difficult to detect in neonates
due to small head size, incomplete
myelination, short imaging protocols,
and motion artifacts. On the other
hand, statistically significant associa-
tions between DVAs and both primary
brain tumors and multiple sclerosis
have been previously described.18,20

Because these disorders are frequent
MR imaging indications in adults but
very uncommon in the neonatal setting
and infancy, the clinical indication itself
may act as a confounder in the
relationship between age and DVAs.
Prospective neuroimaging studies in
the healthy population at different ages
using standardized imaging protocols
are needed to better understand the

relationship between age and DVAs. Of note, we retrospectively
identified DVAs and/or related enlarged drainage pathways in
27.2% of cases with available fetal MR imaging, confirming a con-
genital origin of these vascular abnormalities in those patients.6,27

Conversely, we did not identify new DVAs in follow-up studies,
but we considered this a limited population; thus, we cannot
exclude some DVAs actually developing de novo postnatally.

In our cohort, greater than one-third of neonates presented
with at least 1 type of vascular complication directly linked to
DVAs. Similarly, Horsch et al22 found a high percentage (42.9%)
of abnormalities surrounding neonatal DVAs, while variable fre-
quencies have been described in studies including adults and/or
older children.10-13,15 Of note, initial differences regarding the cor-
rected age at first MR imaging, prematurity, and imaging indica-
tions between neonates with cDVAs and u-DVAs likely represent
a detection bias related to the neuroimaging screening program of
preterm neonates with birth weights of,1500 g performed in our
institution or even by chance, because these values did not reach
statistical significance after multiple-comparison correction.

In detail, associated WM signal abnormalities were present in
17.1% of our neonates and were even more frequent in the series
published by Horsch et al22 (21.4%). Previous studies have sug-
gested that DVA-related WM changes present a bimodal distribu-
tion, peaking in younger children and older adults.11,12 However,

FIG 2. Neonatal developmental venous anomaly complicated by focal hemorrhage and diffuse
WM signal abnormalities likely related to venous congestion. A, Unenhanced head CT scan dem-
onstrates a focal area of spontaneous hyperdensity (white arrow) in the right frontal region, sug-
gestive of recent hemorrhage. Corresponding axial gradient-echo T2*-weighted image (B) and
T2WI (C) show a blooming artifact (black arrow) in the region corresponding to the hemorrhage,
which subsequently regressed (not shown), and diffuse hyperintensity of the surrounding WM
(arrowheads), in keeping with venous congestion. D, Sagittal contrast-enhanced T1WI reveals a
large developmental venous anomaly characterized by several radially-oriented dilated veins
with a caput medusae morphology and deep venous drainage (arrowheads).
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the underlying mechanisms of these signal changes remain poorly
understood. In younger children, delayed myelination in the drain-
ing territory of the DVA has been proposed as a potential explana-
tion.12 Alternatively, these signal alterations may represent venous
congestion edema in the DVA territory due to an imbalance of the

in- and outflow of blood in the DVA system, raising the pressure in
the DVA.8 Of note, the latter mechanisms can also explain the rela-
tively high frequency of associated hemorrhages and/or ischemic
changes identified in our sample (19.5% and 9.8% of cases, respec-
tively). In the general population, the risk of DVA-related hemor-
rhage is considered to be low (,1%/year) and is usually attributed
to adjacent CCM bleeding.2 However, we detected CCMs in only a
small percentage of cases (4.9%), in keeping with the theory that
nonfamilial CCMs are acquired lesions related to DVAs through
the process of hemorrhagic angiogenic proliferation.28,29

Taken together, our findings suggest that in the neonatal pe-
riod, there is a higher risk of flow-related complications in DVAs,
potentially leading to venous hypertension and associated venous
congestion, hemorrhage, and/or infarction. Putative neonatal risk
factors of hemodynamic decompensation include mechanical dis-
tortion during vaginal birth and immaturity of the venous,
immune, and hemostatic systems as well as hypercoagulability,
which may be potentiated by maternal factors or inflamma-
tion.30-32 Finally, angioarchitectural factors yet unexplored in the
neonatal setting, including angulation and stenosis of draining
veins or tortuosity of medullary veins, could contribute to the de-
velopment of ischemic or hemorrhagic complications.10,33

Most interesting, the presence of multiple DVAs (ie, multiplic-
ity) was significantly more common in neonates with c-DVAs,
even after multiple-comparisons correction, suggesting that more
severe and widespread venous pathology may correspond to a
more fragile venous outflow system and/or a higher propensity for
thrombotic DVA events. Of note, 2 of these neonates presented
with clinical-neuroradiologic features consistent with CVMS, a
rare craniofacial vascular malformation disorder characterized by a
wide spectrum of slow-flow vascular lesions distributed along $1
of the 3 craniofacial metameres, further supporting this theory.19

Remarkably, 1 neonate also presented with a superior orbital fis-
sure AVF, suggesting that this complex disorder may actually be a
continuum potentially affecting.1 vessel type.

Our study also revealed focal polymicrogyria in the draining
region of a DVA in 2 neonates (4.9%). DVAs or other venous
drainage abnormalities or both have already been described adja-

cent to dysplastic cortical areas using
conventional and ultra-high-field MR
imaging.34-37 Because polymicrogyria
is frequently associated with in utero
disruptive events, coexistence of these
2 lesions suggests a causative effect of
the DVA in the formation of this cort-
ical malformation or, more probably,
a shared pathomechanism related to
early failure, abnormal development,
or intrauterine occlusion of normal
cerebral vessels.34,35,38 Finally, in 1
neonate, we observed obstructive hy-
drocephalus related to another type of
DVA complication, ie, mechanical
compression of the cerebral aque-
duct.8 As in our patient, CSF diversion
techniques usually lead to a good out-
come in these rare cases.39

FIG 3. Neonatal developmental venous anomalies associated with
focal polymicrogyria (A and B) and supratentorial hydrocephalus (C and
D) in 2 different patients. Axial SWI (A) and T2WI (B) depict a develop-
mental venous anomaly with deep venous drainage (arrowhead) and
an adjacent area of cortical abnormality consistent with focal polymi-
crogyria (arrow). Axial SWI (C) and sagittal postgadolinium T1WI (D)
demonstrate a mesencephalic developmental venous anomaly with
the venous collector (arrows) causing focal compression of the inferior
third of the cerebral aqueduct and consequent dilation of the anterior
recesses of the third ventricle (asterisk), in keeping with supratentorial
obstructive hydrocephalus (see also On-line Fig 8).

Table 2: Neuroimaging abnormalities associated with developmental venous anomalies

MRI Abnormalities
Neonatal Perioda

(n= 15) Last Follow-Upa (n= 10)
WM T2 signal
abnormalities

7 Reduced 2/5
Stable 1/5
Complete regression, 2/5

Restricted diffusion foci 4 Total regression, 2/2
Hemorrhagic foci 8 Gliosis with or without hemosiderin

deposits, 3/3
Multiple CCM 2b Stable, 1/2

Growth, 1/2
PMG 2 Stable, 2/2
Calcifications 2 Stable, 2/2
Triventricular
hydrocephalus

1 Resolution, 1/1c

Draining venous varix
thrombosis

1 Recanalization, 1/1

Note:—PMG indicates polymicrogyria.
a Some patients presented with $1 DVA-related complication.
b Includes 1 neonate with cerebrofacial venous metameric syndrome.
c Postendoscopic third ventriculostomy.
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As previously described, in our neonatal cohort, DVAs were
more commonly located supratentorially and in the frontal lobe
(41.4%).10,32 Other common locations included the parieto-occi-
pital (27.7%) and temporal (13.8%) lobes, while the basal ganglia
and thalamus were involved in only 8.6% of cases. Of note, differ-
ent from a previous neonatal case series, in our series, we identi-
fied infratentorial DVAs in 8.4% of cases, thus confirming a
potential selection bias related to the use of cUS to depict poste-
rior fossa DVAs.22

Regarding angioarchitecture features, we noticed a higher
prevalence of multiple DVA collectors, which, together with
larger caliber collectors, were significantly associated with DVA-
related parenchymal abnormalities. These features may be related
to the DVA size and, ultimately, to the volume of parenchyma
under hemodynamic stress, ie, with reduced venous drainage
capacity. Larger collectors may also be theoretically more prone
to abnormal venous flow, with increased stasis and thrombosis.
However, other studies performed in adults did not show statisti-
cally significant differences between parenchymal abnormalities
and collecting vein diameters;11 therefore, the relationship
between these neuroimaging features requires more detailed
study. Similarly, in the present study, posterior fossa location was
not a risk factor for complicated DVAs. Methodologic issues in
terms of populations of interest and types of complication may
justify this variability,16,23,32 and further studies are needed to
also address this topic.

Serial imaging of a subgroup of neonates with c-DVAs
revealed that DVAs and adjacent MR imaging abnormalities fre-
quently present a dynamic evolution during the early years of life.
These findings are in line with previous studies and probably
reflect progressive brain and vascular maturation during early
infancy.22,40 Indeed, neuroimaging follow-up demonstrated over-
all improvement in most cases of c-DVAs. More specifically,
WM abnormalities were reduced in size or even completely
resolved. Furthermore, ischemic and hemorrhagic foci also
tended to subside without signs of intracranial re-hemorrhage.
Of note, clinical outcomes of patients with c-DVAs was concord-
ant with their favorable MR imaging evolution, with normal neu-
rologic examination findings in most cases. Good clinical and
neurologic outcomes were also reported by Horsch et al22 and are
probably related to intrinsic brain plasticity as well as normaliza-
tion of potential risk factors present in the neonatal phase.

Limitations
This study has some limitations. First, case selection was based
on a retrospective single-center search of radiology reports.
Therefore, although DVAs are routinely described in our institu-
tion by all staff members, the true DVA prevalence might be
underestimated. Similarly, a relevant number of neonates was
scanned on a 1.5T system, and gadolinium-based contrast media
were only occasionally used, potentially leading to lower DVA
detection.34 However, SWI was performed in almost all neonates
(92.7%) and has a high diagnostic sensitivity for DVAs in chil-
dren, especially when sedation is achieved without propofol and
sevoflurane.4 Second, this study was performed in a tertiary pedi-
atric institution, leading to potential selection bias toward inclu-
sion of more severe DVA cases and limiting generalizability

toward a different setting. Moreover, DVA collectors were meas-
ured on axial T2*WI, and this sequence can be influenced by the
level of blood oxygenation and the magnetic field strength.
However, none of the neonates were examined under general an-
esthesia, and complicated DVAs were actually less frequent in the
group of subjects scanned using a 3T magnet. Therefore, if there
were any bias related to the examination technique in terms of
DVA collector size and MR imaging complications, it would
actually exert its influence toward the null hypothesis. Finally,
longitudinal data were missing in some patients, and clinical eval-
uation at follow-up was obtained from clinical records, though
formal neurologic evaluation was performed in all assessed cases.

CONCLUSIONS
Real-world DVA detection in this population of neonates with
clinically-indicated brain MR imaging reached 1.9%, which is
lower than percentages of studies including older children and
adults and might be an underestimation of the true prevalence. Of
all neonates with detected DVAs, around one-third presented with
DVA-related complications. The latter group had a significant
tendency toward multiplicity and additional vascular malforma-
tions but usually had favorable neuroimaging findings and neuro-
logic evolution at follow-up. DVAs could be retrospectively
diagnosed in utero in one-quarter of neonates with fetal MR imag-
ing, confirming, at least in these cases, a congenital origin.
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