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ABSTRACT

BACKGROUND AND PURPOSE: MR imaging– based modeling of tumor cell density can substantially improve targeted treatment of
glioblastoma. Unfortunately, interpatient variability limits the predictive ability of many modeling approaches. We present a transfer
learning method that generates individualized patient models, grounded in the wealth of population data, while also detecting and
adjusting for interpatient variabilities based on each patient’s own histologic data.

MATERIALS AND METHODS: We recruited patients with primary glioblastoma undergoing image-guided biopsies and preoperative
imaging, including contrast-enhanced MR imaging, dynamic susceptibility contrast MR imaging, and diffusion tensor imaging. We calcu-
lated relative cerebral blood volume from DSC-MR imaging and mean diffusivity and fractional anisotropy from DTI. Following image
coregistration, we assessed tumor cell density for each biopsy and identified corresponding localized MR imaging measurements. We then
explored a range of univariate and multivariate predictive models of tumor cell density based on MR imaging measurements in a
generalized one-model-fits-all approach. We then implemented both univariate and multivariate individualized transfer learning predic-
tive models, which harness the available population-level data but allow individual variability in their predictions. Finally, we compared
Pearson correlation coefficients and mean absolute error between the individualized transfer learning and generalized one-model-fits-all
models.

RESULTS: Tumor cell density significantly correlated with relative CBV (r � 0.33, P � .001), and T1-weighted postcontrast (r � 0.36, P � .001)
on univariate analysis after correcting for multiple comparisons. With single-variable modeling (using relative CBV), transfer learning
increased predictive performance (r � 0.53, mean absolute error � 15.19%) compared with one-model-fits-all (r � 0.27, mean absolute
error � 17.79%). With multivariate modeling, transfer learning further improved performance (r � 0.88, mean absolute error � 5.66%)
compared with one-model-fits-all (r � 0.39, mean absolute error � 16.55%).

CONCLUSIONS: Transfer learning significantly improves predictive modeling performance for quantifying tumor cell density in
glioblastoma.

ABBREVIATIONS: FA � fractional anisotropy; GBM � glioblastoma; LOOCV � leave-one-out cross-validation; MD � mean diffusivity; OMFA � one-model-fits-all;
rCBV � relative CBV; T1 � C � T1-weighted postcontrast; TCD � tumor cell density; TL � transfer learning; EPI�C � post-contrast T2*WI

Surgical debulking and radiation therapy represent first-line

treatments for glioblastoma (GBM), which rely heavily on im-

age guidance to delineate tumor from adjacent nontumoral brain.

Contrast-enhanced MR imaging currently serves as the clinical

standard for image guidance, but its diagnostic accuracy remains

limited. Specifically, contrast-enhanced MR imaging localizes

contrast-enhancing tumor for surgical resection and/or biopsy

but poorly identifies nonenhancing invasive tumor in the sur-
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rounding T2-weighted/FLAIR abnormality.1-3 This invasive tu-

mor segment can represent a substantial proportion of overall

burden for many GBM tumors and contributes to recurrent dis-

ease and poor survival if left unresected.4-6 In addition to surgical

guidance, contrast-enhanced MR imaging also fails to localize

nonenhancing tumor during dosimetric radiation treatment

planning. To compensate, most radiation oncologists must apply

submaximal doses across the entire nonenhancing T2/FLAIR vol-

ume, which risks toxicity to normal brain and undertreatment of

nondetected bulk tumor.7,8 These issues underscore the need to

improve the image-based detection and targeted treatment of the

nonenhancing tumor segment in GBM.

Advanced MR imaging techniques can help characterize non-

enhancing tumor by measuring an array of biophysical features

that complement contrast-enhanced MR imaging. These include

tissue cell density (TCD) on diffusion-weighted imaging,2,9 white

matter infiltration on diffusion tensor imaging,2,10,11 and mi-

crovessel morphology on dynamic susceptibility contrast perfu-

sion MR imaging.2,12-14 Multiple studies have used image-guided

biopsies to compare these advanced MR imaging features with

TCD in a spatially accurate manner.3,5,9,11,15-22 These studies

have revealed promising trends between MR imaging signal and

tumor abundance but also surprising discrepancies in correlations

among studies. For instance, some groups have reported that higher

TCD correlates negatively with lower fractional anisotropy (FA) on

DTI, presumably from greater white matter tract disruption.5,11 Yet,

opposite (positive) correlations between FA and tumor content have

also been reported.21 Similarly, published studies have differed on

whether TCD correlates negatively or positively with mean diffusiv-

ity (MD) measures on DWI.9,11,16,19 These discrepancies present ob-

vious challenges for developing generalized MR imaging–based

models to prospectively quantify TCD and extent of invasion.

We hypothesized that the relationship between MR imaging

signal (for any given contrast) and regional TCD demonstrates

patient-to-patient variability within a given cohort. This may un-

derlie the aforementioned discrepancies among published reports

in the literature. In this study, we set out to quantify interpatient

variability and determine whether it can strengthen the predictive

accuracy of MR imaging– based models for quantifying TCD and

invasion. Specifically, we have developed a transfer learning (TL)

approach that quantifies concordance and variability of MR im-

aging– histologic relationships across patients. TL builds 1 model

for each patient to account for potential interpatient variabilities

in MR imaging– histologic relationships, while coupling the esti-

mation processes of each patient-specific model to allow knowl-

edge transfer between models. As proof of concept, we trained

and cross-validated this TL approach in a cohort of patients with

primary GBM using multiparametric MR imaging and spatially

matched image-guided biopsies. Our overarching goal was to op-

timize predictive models that guide targeted treatment for the

problematic nonenhancing tumor segment of GBM.

MATERIALS AND METHODS
Acquisition and Processing of Clinical MR Imaging and
Histologic Data

Patient Recruitment. We recruited patients with clinically sus-

pected primary GBM undergoing preoperative stereotactic MR

imaging for first-line surgical resection before any treatment, as

per our institutional review board protocol at Barrow Neurolog-

ical Institute. All patients provided written and informed consent

before enrollment. The patient cohort presented here has also

been described in previous studies.3,6

Preoperative MR Imaging Acquisition Protocol. We acquired

preoperative 3T MR imaging (Sigma HDx; GE Healthcare, Mil-

waukee, Wisconsin) within 1 day of stereotactic surgery, includ-

ing T2-weighted, T1-weighted precontrast, and T1-weighted

postcontrast (T1 � C) sequences.3,6,14 T1 � C images were ac-

quired after completion of dynamic susceptibility contrast perfu-

sion MR imaging following a total Gd-DTPA dosage of 0.15

mmol/kg.3,6,14 In brief, for the DSC protocol, we administered an

IV preload dose (0.1 mmol/kg of Gd-DTPA) to minimize T1-

weighted leakage errors, after which we administered a second IV

bolus injection (0.05 mmol/kg of Gd-DTPA) during the 3-minute

DSC acquisition (gradient-echo echo-planar imaging: TR/TE/flip

angle � 1500/20 ms/60°, matrix � 128 � 128, thickness � 5

mm).3,6,14 We derived postcontrast T2*WI (EPI�C) from the

initial-source DSC volume.3,23 DTI acquisition consisted of spin-

echo EPI (TR/TE � 10,000/85.2 ms, matrix � 256 � 256, FOV �

30 cm, thickness � 3 mm, 30 directions, array spatial sensitivity

encoding technique, b�0, 1000).3,6

Surgical Biopsy. Neurosurgeons used T1 � C and T2-weighted

imaging to guide stereotactic biopsies following the smallest pos-

sible diameter craniotomies to minimize brain shift, as previously

described.3,6 On average, we collected 5– 6 tissue specimens from

each tumor, selecting targets �1 cm apart from both T1 � C

enhancing regions and nonenhancing T2-weighted hyperintense

regions (so called brain-around-tumor) in pseudorandom fash-

ion from different poles of the enhancing lesion periphery while

avoiding centrally necrotic regions on the basis of the clinical

feasibility as per clinical protocol. Enhancing and nonenhancing

regions were distinguished on the basis of visual assessment by the

neurosurgeon at the time of surgical biopsy and/or resection, as

per clinical protocol. The target volume of each biopsy sample was

approximately 125 mg. The neurosurgeons recorded biopsy loca-

tions via screen capture to allow subsequent coregistration with

multiparametric MR imaging datasets. The neurosurgeon visually

validated stereotactic imaging locations with corresponding in-

tracranial anatomic landmarks, such as vascular structures and

ventricle margins, before recording specimen locations.

Histologic Analysis and TCD Measurements from Image-Local-
ized Biopsies. Tissue specimens (volume � 125 mg) were flash

frozen in liquid nitrogen in the operating suite and stored in a

�80°C freezer until subsequent retrieval for embedding in an

optimal cutting temperature compound and sectioning (thick-

ness � 4 mm) in a �20Co cryostat (Microm-HM-550; Richard-

Allan Scientific Company, Canton, Michigan) using a Microtome

Blade (Thermo Scientific, Waltham, Massachusetts).3,6 Hema-

toxylin-eosin–stained slides were reviewed blinded to diagnosis

by our neuropathologist (J.M.E.) to assess tumor content. Taking

into account all visible cells (neurons, inflammatory cells, reactive

glia, tumor cells, and so forth), we estimated the percentage of

tumor nuclei (ie, tumor cells relative to all visible cells) (0%–

100%), rounded to the nearest fifth percentile, and recorded it for
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each tissue sample as a �5% range of TCD (eg, 30%– 40%, 75%–

85%, and so forth).3,6 This method served as a compromise be-

tween the resolution of TCD measurements and the precision of

the neuropathologist’s estimates.

Image Signal Normalization, DSC and DTI Analysis, Image Coreg-
istration, and ROI analysis. We normalized the signal for T1 � C,

T2-weighted, and EPI�C image datasets using the Simple Insight

Segmentation and Registration Toolkit (SimpleITK, Version

1.0.1; http://www.simpleitk.org/)24 in Python (Version 3.6.2;

https://www.python.org/). The CurvatureFlow ITK algorithm

was applied to remove image noise,25 and the N4ITK algorithm to

correct for image-intensity nonuniformity bias that could be due

to factors such as local magnetic field heterogeneity.26 Following

these corrections, the CSF of the lateral ventricles was used as a

reference tissue to normalize the intensity distributions of each

dataset using a previously described linear scaling process.27 For

DTI, we generated mean diffusivity and fractional anisotropy

maps.5 For DSC, we generated relative cerebral blood volume

(rCBV) maps using IB Neuro (Imaging Biometrics, Elm Grove,

Wisconsin), using leakage correction28,29 and white matter nor-

malization.3,6,14 We coregistered all images using ITK tools

(https://itk.org/) and IB Suite (Imaging Biometrics), using the

DTI B0 anatomic volume as the coregistration target.3,6,14 A

board-certified neuroradiologist (L.S.H.) placed ROIs (8 � 8 vox-

els) for all coregistered multiparametric MR imaging datasets at

the stereotactic biopsy locations.3,6,14 We selected this ROI size

(0.93 � 0.93 cm) to encompass a broader area relative to the

expected biopsy dimensions (125 mg). This selection helped to

offset any potential minor shifts in biopsy localization (at the time

of tissue sampling) that might otherwise result in misregistration.

We measured mean signal values within ROIs for all MR imaging

contrasts to correlate with spatially matched estimates of TCD

from corresponding biopsies.

Statistical Analysis and Predictive Modeling

Univariate Statistical Analysis and Predictive Modeling. To

broadly survey potential associations between MR imaging signal

and TCD, we performed univariate analysis using linear regression

and Pearson correlations for each contrast (eg, T1 � C, rCBV, and so

forth) against spatially matched biopsies across the entire patient co-

hort. We used the false discovery rate to adjust for multiple testing.30

To quantify intersubject variability, we also plotted MR imaging sig-

nal-versus-TCD in each patient separately.

Multivariate Statistical Analysis and Predictive Modeling Using
the Conventional One-Model-Fits-All Approach. To evaluate

the potential complementary function of multiple combined MR

imaging contrasts to characterize TCD, we performed multivari-

able linear regression to correlate MR imaging contrasts with his-

tologic quantification of TCD across all biopsies and patients with

GBM.16,22 This entailed the conventional approach in which a

single static multivariable model was applied uniformly to all bi-

opsy samples within the cohort (ie, one-model-fits-all [OMFA]).

We evaluated a range of combined MR imaging contrasts to create

various linear regression OMFA models. For instance, a model

using signal intensities on rCBV, MD, and FA would be defined by

the following: F(x) � ax1 � bx2 � cx3 � d, where the predicted

TCD, F(x), was a linear function of signal intensity on rCBV, MD,

and FA maps (x1, x2, and x3, respectively).

Transfer Learning Predictive Modeling. Interpatient variability is

a known limiting factor for many types of predictive models. For

instance, a single model applied uniformly across all patients

within a cohort (ie, one-model-fits-all) is unable to adjust for

likely interpatient variabilities in MR imaging– histologic rela-

tionships. In contrast, individual models developed for each pa-

tient using only that patient’s data (ie, one-model-each-patient)

are unable to benefit from general population patterns and thus

inherently have small sample sizes.

TL represents a compromise between the 2 aforementioned

approaches. TL is a subfield of Machine Learning (ML), with var-

ious algorithms having been developed to allow knowledge trans-

fer in jointly building different-but-inherently related mod-

els.31,32 We have previously published a TL algorithm under the

Bayesian framework.33 With our TL algorithm, 1 model is built

for each patient, but a Bayesian framework is used to bias the

model parameter-estimation process toward the population pat-

tern in the case in which the individual data are not sufficient to

precisely determine the individual’s variation. In essence, the

population pattern represents a generalized model, and TL uses

each patient’s own MR imaging and biopsy data to modify that

generalized model to more appropriately fit that particular indi-

vidual patient. Thus, TL models can account for potential vari-

abilities in MR imaging– histologic relationships across different

patients, while also coupling the estimation processes of each pa-

tient-specific model to allow knowledge transfer between models.

We detailed TL theory and methodology in the On-line Appendix

and in our previous publication.33

Leave One-Out Cross-Validation. To reduce overfitting, we used

leave-one-out cross-validation (LOOCV) for all OMFA and TL

model training. Briefly, all samples except 1 (randomly selected in

each patient) were used to train the predictive model, while the

excluded sample served as the test case to generate predicted TCD.

We repeated this iteratively so that all 82 samples served as the test

case.3,34 We then plotted model-predicted TCD against actual

TCD for all biopsies to determine cross-validated Pearson corre-

lation coefficients and mean absolute error rates (the difference

between predicted versus actual TCD) for each model.

RESULTS
Patients and Biopsy Samples
We collected 82 image-recorded biopsy samples (median � 4/pa-

tient, range � 2–14) from 18 patients with primary GBM (9:9 �

female/male, median age � 60 years, range � 18 – 81 years). We

collected �3 biopsies from 14/18 patients. In total, 33 biopsy sam-

ples originated from regions of nonenhancement (ie, brain-

around-tumor), with 14 of 18 patients contributing at least 1 bi-

opsy from nonenhancing regions. The remaining 49 biopsy

samples originated from enhancing tumor regions.

OMFA Univariate and Multivariate Correlations between
TCD and MR Imaging
We performed univariate analysis (Table 1) across all 82 samples

comparing TCD with the 6 MR imaging features individually. We
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found significant correlations for T1 � C (r � 0.36, P � .001),

rCBV (r � 0.33, P � .001), and FA (r � �0.24, P � .03), though

only T1 � C and rCBV remained significant after correcting for

multiple comparisons (P � .01). Our observed T1 � C correla-

tion with TCD supports the long-held assumption that regions of

MR imaging enhancement (and higher T1 � C signal) generally

correspond with higher tumor content compared with peripher-

ally nonenhancing regions (with lower T1 � C signal).35 This

assumption underlies the clinical rationale for guiding surgical

cytoreduction based on MR imaging enhancement. However, be-

cause nonenhancing regions, by definition, lack MR imaging en-

hancement, then T1 � C would presumably have much lower

correlation with TCD within nonenhancing regions containing

invasive tumor content. In fact, separate subgroup analysis

(On-line Table) showed much lower correlation values between T1

� C and TCD when restricted to only nonenhancing biopsy sam-

ples. Meanwhile, the same subgroup analysis showed more con-

sistent rCBV correlations across enhancing and nonenhancing

biopsy subgroups, suggesting the potential utility of rCBV as a

biomarker for both tumor segments. We also address any poten-

tial risks of overfitting by performing LOOCV to estimate the

predictive performance of rCBV for quantifying TCD. Using the

generalized one-model-fits-all approach, we generated a single

variable linear regression model, with rCBV as the sole predictor

input, and plotted predicted-versus-actual TCD (n � 82 sam-

ples). This generalized OMFA approach (based on rCBV alone)

demonstrated poor performance, with a low correlation coeffi-

cient (r � 0.27) and high error (mean absolute error � 17.79%)

(Table 2). We then evaluated other MR imaging features (com-

bined with rCBV) using multivariable linear regression analysis.

Regardless of the combination of MR imaging features (with

rCBV), the generalized multivariate OMFA models failed to sig-

nificantly improve performance (Table 2).

Individualized Patient Plots and Interpatient Variability
To investigate interpatient variability, we separately plotted MR

imaging signal versus TCD for each of the 14 (of 18) patients who

contributed �3 separate biopsies (which allowed for LOOCV, as

described in the Materials and Methods section above). The other

4 contributed �3 biopsies, which was insufficient for LOOCV

analysis. Patient-by-patient plots are also shown in On-line Figs

1– 6. Of the MR imaging correlations with TCD, rCBV demon-

strated the greatest consistency across patients, with 13/14 pa-

tients (92.5%) having a positive correlation (r � 0.00), though

these varied in strength from patient to patient (range of r � 0.07

to 0.95) (On-line Fig 1). Conversely, FA correlations showed

greater variability (r � �0.75 to �0.78), with only 57.1% (8/14)

of patients having negative correlations with TCD (versus 42.9%

with positive correlations) (On-line Fig 2). MD correlations were

also highly variable (range, r � �0.96 to �0.78), with 50% of

patients split between negative and positive correlations (On-line

Fig 3). These data suggest that while certain MR imaging features

may be highly correlated with tumor content in a particular pa-

tient (or subset of patients), other patients may exhibit weaker or

even opposite correlations that mask the overall effect in group

analysis. We recognize that some of these individual plots may

have small sample sizes that limit the statistical confidence of the

correlation coefficients. Therefore, the individual plot coefficient

values themselves should be viewed with this limitation in mind.

At the same time, the directionality of the individual correlation

plots (ie, positive-versus-negative) appears to show distinct pop-

ulation trends, and we intend to use the results here to illustrate

some of the interpatient variabilities that may exist between TCD

and imaging measurements. These interpatient variabilities mo-

tivate the use of the transfer learning approach detailed in the next

section.

Transfer Learning
On the basis of the results from univariate analysis and individual

scatterplots, we prioritized rCBV for training of TL and con-

strained knowledge transfer from patients with an arbitrary

threshold for correlation between rCBV and TCD (r � 0.10). By

means of LOOCV, the TL model with rCBV as the sole model

predictor improved the correlation between predicted-versus-ac-

tual TCD (r � 0.53, P � .001, n � 82), compared with the gener-

alized OMFA model, which also used rCBV as the sole predictor

(r � 0.27 using LOOCV) (Table 2). We then quantified incremen-

tal gains from adding other MR imaging contrasts to the rCBV-

based TL model. As shown in Table 2, individualized transfer

Table 1: Univariate correlations for spatially matched MRI
features vs TCD (n � 82 biopsies, 18 patients)

MRI Feature

Pearson
Correlation

Coefficient (r)
P

Value
FDR-Corrected

P Value
T1 � Ca �0.36 �.001 .01
T2WI �0.13 .25 .38
rCBVa �0.33 �.001 .01
EPI � C �0.02 .85 .85
FA �0.24 .03 .06
MD �0.03 .78 .85

Note:—FDR indicates false discovery rate; EPI � C, post-contrast T2*WI.
a Statistical significance after correcting for multiple comparisons.

Table 2: OMFA vs transfer learning for various MRI model
predictorsa

Predictors for Model

OMFA,
LOOCV (r),
and MAE

TL, LOOCV
(r), and

MAE
rCBV 0.27 17.79 0.53 15.19
rCBV, EPI � C 0.25 18.03 0.63 11.65
rCBV, FA 0.34 17.24 0.58 11.31
rCBV, MD 0.28 17.74 0.60 11.93
rCBV, T1 � C 0.33 16.69 0.69 11.15
rCBV, T2WI 0.26 17.96 0.59 12.30
rCBV, FA, MD 0.32 17.47 0.66 11.93
rCBV, T1 � C, T2WI 0.35 16.61 0.75 9.03
rCBV, T1 � C, FA 0.39 16.55 0.73 9.07
rCBV, T1 � C, MD 0.35 16.77 0.74 9.41
rCBV, T2WI, FA 0.32 17.47 0.64 10.94
rCBV, T2WI, MD 0.26 18.02 0.64 11.15
rCBV, T1 � C, FA, MD 0.37 16.78 0.85 6.73
rCBV, T2WI, FA, MD 0.30 17.68 0.69 10.95
rCBV, T1 � C, T2WI, FA 0.37 16.79 0.73 9.41
rCBV, T1 � C, T2WI, MD 0.34 16.88 0.78 7.01
rCBV, T1 � C, T2WI, FA, MD 0.35 17.05 0.88 5.66
rCBV, T1 � C, T2WI, FA, MD, EPI � C 0.34 17.17 0.86 6.09

Note:—MAE indicates mean absolute error.
a OMFA models were generated on the basis of linear regression analysis. Both (r) and
MAE were determined using LOOCV to plot model-predicted TCD against actual
TCD from spatially matched biopsies (n � 82).
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learning models consistently improved correlation coefficients

and mean error rates compared with corresponding generalized

OMFA models. Figure 1 shows the scatterplots for actual-versus-

predicted TCD using the highest performing TL model, which

incorporated rCBV, T1 � C, FA, and MD as model predictors.

After LOOCV, this model achieved a Pearson correlation of r �

0.88 (P � .001) across all samples (n � 82), which further in-

creased among nonenhancing T2/FLAIR samples alone (r � 0.94,

P � .001, n � 33). By comparison, the generalized OMFA ap-

proach, using the same model predictors, achieved much lower

correlation coefficients for all samples (r � 0.39, n � 82) and

nonenhancing samples alone (r � 0.09, n � 33). As shown in Fig

2, the TL model can be used to generate color overlay maps of

predicted TCD that correspond with actual TCD from spatially

matched biopsies throughout different nonenhancing regions in

the same GBM tumor.

DISCUSSION
In this study, we correlated a panel of MR imaging features with

regional tumor cell density using image-guided biopsies and spa-

tially matched MR imaging measurements. In particular, the ad-

vanced MR imaging features (ie, rCBV, MD, FA) have been widely

published for their potential to characterize TCD within the non-

enhancing tumor segment of GBM. On univariate analysis, we

found that rCBV was the only advanced MR imaging feature to

significantly correlate with TCD after correcting for multiple

comparisons (P � .01) (besides the conventional MR imaging

feature T1 � C). This low-moderate positive correlation (r �

0.33, P � .001) remains concordant with other published studies

on rCBV,18-20 which have all consistently reported positive cor-

relations with TCD. In contrast, our analysis showed no signifi-

cant correlation for MD. The correlation for FA (r � �0.24)

showed a P value of .06 after correcting for multiple comparisons,

which trends toward significance. These results are not entirely

discordant with the literature because past studies have lacked

general consensus on how MD and FA correlate with TCD. For

instance, Stadlbauer et al11 and Price et al5 reported negative cor-

relations between FA and TCD, while Beppu et al21 reported pos-

itive correlations. Similarly, Ellingson et al9 and Chang et al16

reported negative correlations between MD and TCD, while

Stadlbauer et al11 reported positive correlations.

We hypothesized that the correlations observed in our study (as

well as in the literature) may be impacted by interpatient variability in

how MR imaging signal relates to TCD. To gain insight to this vari-

ability, we analyzed individualized plots of MR imaging signal versus

tumor content within our cohort. In keeping with trends in the liter-

ature, rCBV correlations were highly consistent with regard to direc-

tion, with 92.5% of patients showing positive correlations. We did,

however, observe a wide range of correlation strengths (range, r �

�0.07 to �0.95), which explains the low-moderate group correla-

tion. In contrast to rCBV, we observed highly variable correlations

for both FA (range, r � �0.75 to �0.78) and MD (range, r � �0.96

to �0.78), with conflicting directions across patients. These discrep-

ancies echo the discordance among studies in the literature and un-

derscore the challenge of using a one-model-fits-all approach to gen-

eralize heterogeneity across patients.

TL addresses this challenge by estimating models for each pa-

tient by iteratively identifying patient similarity and leveraging it

for robust model building using a Bayesian framework.33 Our

results strongly suggest that TL should prioritize rCBV, given its

high interpatient consistency and statistically significant correla-

tions in univariate analysis. This assertion is supported further by

the consistency of reported rCBV correlations in the litera-

FIG 1. Transfer learning improves predictive performance for quantifying TCD. Scatterplots show the correlations between actual (y-axis)
versus-model-predicted (x-axis) tumor cell densities using multivariable modeling (rCBV, T1 � C, MD, and FA) and the generalized (A) OMFA
versus the individualized (B) TL approaches. Blue and red dots denote biopsy samples from enhancing (n � 49) and nonenhancing (n � 33)
regions, respectively. Regression lines and Pearson correlations (r) are shown for all 82 samples (black lines and text) versus only the 33
nonenhancing samples (red lines and text). Correlations using TL are significantly higher compared with the generalized OMFA approach.
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ture.18-20 The application of TL to an rCBV-based model predic-

tor significantly improved correlation (r � 0.53) compared with

the one-model-fits-all approach (r � 0.27). TL further improved

performance when combining rCBV with other MR imaging fea-

tures in a multivariate fashion (r � 0.88), particularly for the

nonenhancing T2/FLAIR samples (r � 0.94). This represents a

substantial increase in performance compared with the conven-

tional one-model-fits-all approach in our study (r � 0.30) (Table

2) and those previously published.16,22

Of note, the TL method presented here requires MR imag-

ing and histologic input from at least 2 image-localized biop-

sies (per patient) to make predictive inferences for the remain-

ing “unknown” (ie, unbiopsied) regions throughout each

patient’s tumor. Our analysis shows that these patient-specific

inputs dramatically increase predictive performance for quan-

tifying regional TCD on an individualized basis. While retro-

spective in nature, these results offer proof of concept that TL

can help prospectively guide surgical biopsy and/or resection

in a patient-specific manner. As part of our intraoperative

workflow, we are currently integrating real-time neuropa-

thologists’ estimates of TCD (adding 	2–3 minutes of analysis

per sample) from frozen surgical specimens to support pro-

spective TL-based neurosurgical guidance. These real-time es-

timates allow active updating of the TL model intraoperatively,

accomplished in �5 minutes given standard computing hard-

ware, to guide surgical targeting for the remaining unresected

tumor regions. Future prospective studies in a larger cohort of

patients will also allow us to evaluate how the tissue-sampling

methodology (eg, number and distribution of biopsy loca-

tions) in individual patients might be optimized to improve

predictive accuracy and model uncertainty. Additionally, indi-

vidualized TL-based models can also guide dosimetric radia-

tion planning in the postoperative setting. By delineating re-

gional populations of residual nonenhancing tumor in the

otherwise nonspecific T2/FLAIR segment, individualized TL-

based maps will facilitate more nuanced radiation-planning

FIG 2. TL maps and multiple biopsies in a 71-year-old patient with primary GBM. TL-based color map overlay on a T2-weighted image (A) shows
predicted regional TCD ranging from 0% to 100% (blue to red) throughout the segmented tumor region (based on the T2-weighted signal
abnormality). Histologic analysis of the top biopsy (purple boxes B and C) yielded 90% TCD, corresponding to red regions of high TL-predicted
TCD (purple box, A). TL-based color map (D) from a more caudal T2-weighted slice shows blue regions of low TL-predicted TCD (blue/green,
purple box), corresponding to 25% TCD on histologic analysis of the bottom biopsy (purple boxes, E and F).
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strategies to prescribe higher doses with increasing TCD while

sparing the dose to normal nontumoral brain.

We recognize several limitations to this study. First, like all

other previously published reports, our study lacks a dedicated

validation set. In fact, the conventional approach in the literature

has been to report correlation coefficients from training data

alone, which are prone to overfitting.3,5,9,11,15-22 By comparison,

our study is the first to use more rigorous cross-validation testing

(through LOOCV) to offset potential risks of overfitting, whereby

each biopsy sample in our cohort is treated as an “unseen” or

unknown case to test predictive performance.3 While cross-vali-

dation strengthens our confidence in these initial findings, pro-

spective validation in future studies will ultimately be needed.

Second, we have used neuropathologists’ estimates of TCD as the

benchmark measure of tumor content. We believe that this rep-

resents a more clinically relevant metric compared with total cell

density, which can comprise both tumoral and nontumoral com-

ponents (eg, astrocytes, microglia).9,16

Nonetheless, we are currently pursuing automated quantifica-

tion of cellular density in our histologic samples.16 This type of

standardization will help facilitate TL implementation across dif-

ferent institutions in the future. Finally, we recognize that image

distortions and brain shift following craniotomy could lead to

misregistration errors. To compensate, neurosurgeons used small

craniotomy sizes to minimize brain shift and also visually vali-

dated stereotactic image location with intracranial neuroanat-

omic landmarks to help correct for random brain shifts. Rigid-

body coregistration of multiparametric imaging also helped

reduce possible geometric distortions.2,3,12,18 Overall, our experi-

ence suggests that combined misregistration is approximately 1–2

mm from both brain shift and registration techniques, which is

similar to that from previous studies using stereotactic needle

biopsy.11 To help minimize the effects of these potential misreg-

istration errors, we selected larger ROI sizes relative to the ex-

pected biopsy tissue volumes. Thus, any minor shifts in the re-

corded biopsy locations (at the time of tissue sampling) would, in

all likelihood, remain colocalized to the specified ROI.

CONCLUSIONS
We present an MR imaging– based transfer learning approach

that optimizes individualized models of TCD and extent for pa-

tients with GBM. These models show particularly high predictive

performance for the nonenhancing infiltrative tumor segment

that is problematic to the diagnosis and treatment of GBM. Par-

ticularly, relevant clinical applications include surgical guidance

for the extent of resection and dosimetric radiation targeting of

nonenhancing residual tumor during postoperative adjuvant

care.
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